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Abstract—Mining companies world-wide are faced

with the problem of how to accurately value and plan

extraction projects subject to uncertainty in both fu-

ture price and ore grade. Whilst the methodology

of modelling price uncertainty is reasonably well un-

derstood, modelling ore-grade uncertainty is a much

harder problem to formulate, and when attempts have

been made the solutions have taken unfeasibly long

times to compute. This paper provides a new partial

differential equations approach to the problem, and

achieves this by treating the grade uncertainty as a

stochastic variable in the amount extracted from the

resource. We show that this method is well-posed,

since it can realistically reflect the geology of the sit-

uation, and in addition it enables solutions to be de-

rived in the order of a few seconds. The paper also

provides for ore-grade parameter estimation by us-

ing Maximum Likelihood Estimates on the estimated

ore-grade data set, thus generalising the approach.

A comparison is made between a real mine valua-

tion where the prior estimate of ore grade variation

is taken as fact, and our approach, where we treat it

as a stochastic uncertain estimate.

Keywords: Real-Options, Ore-Grade Uncertainty,

Stochastic Control, Reserve Valuations, Mining.

1 Introduction

The planning of an extraction project and its associ-
ated valuation is exposed to many uncertainties. A
project can last for many years, and is therefore subject
to wide variations in the underlying commodity price.
It is also subject to variation in the grade or quality
of ore, whose expectations are estimated by interpolat-
ing between pre-extraction bore-holes. This interpola-
tion, known as Kriging, produces estimation errors, even
though subsequent mine planning treats the Kriging es-
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timates as fact. The traditional, and most widely-used
application of Kriging within numerical-based mine plan-
ning, is in the Lerchs-Grossmann algorithm [12] which
is an extremely useful method for devising an optimal
mine design. This involves taking the estimated orebody
model, which consists of a large number of constituent
blocks, and then designating which blocks should be ex-
tracted so as to maximise the mines value. However,
the Lerchs-Grossman algorithm does not take account
of price uncertainty, grade uncertainty, or discount rates
[19], and therefore current mine valuations and planning
do not properly address these important uncertainties.
As such a new approach is required to incorporate grade
and price uncertainty into mine valuations and planning.

Whilst there is general agreement that the commodity
price can be modelled as a exogenous stochastic pro-
cess [1], [18], there appears to be no agreed method for
modelling grade uncertainty. Recent attempts have fo-
cused upon planning for plausible simulated ore-bodies
using mixed integer programming (MIP), where multiple
ore-bodies are generated in a Monte-Carlo-type fashion
[10], [14], [17], or using genetic algorithms [15]. Once a
particular ore-body has been generated, numerous paths
through the mine are calculated, where each path carries
its own valuation, which in turn is calculated from nu-
merous price simulations. It is clear that this approach
involves an extremely large number of simulations. Find-
ing an approximately optimal valuation and schedule can
involve computational times of nearly twenty-four hours
[4], even for mines with fewer than the 106 blocks which
are common, making MIPs unfeasible for common usage
for large mines. Although this approach does have its
merits, it is rare to find a robust defense of which param-
eters behind the geological uncertainty were used, and
how such methods for determining parameter estimates
can be made general to all mines. In the oil and gas in-
dustry, early stage research has recently been conducted
to quantify, and utilise, the geological uncertainty from
explorative bore-holes, where improved estimates upon
geological measurements are obtained [9].

This paper addresses the computational limitations of
existing approaches and provides an alternative, more
transparent, valuation methodology to existing simula-
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tions approaches. We achieve this via partial differential
equations (PDEs), as originally suggested in [8]. This
form of modelling extends existing PDE mine valuation
methodologies which have not considered grade uncer-
tainty [3], [7], [11]. The advantage of PDEs, is that one
can extract either close form solutions from them, nu-
merical solutions, or approximations to them. This then
allows one to gain rapid insight into the core dynamics
and governing processes underpinning a system. Approx-
imate solutions also, crucially, allows one to robustly test
numerical solutions, so that one can test the reliability
of numerical codes. This use of PDEs not only gives far
faster computational speeds, allowing rapid calculation of
model sensitivities but also allows several classes of opti-
mal decisions to be incorporated, as demonstrated in [11]
and [7].

In Section 2 we propose to model the grade quality as a
stochastic uncertainty, where the stochastic behavior is
realised as one extracts ore from the mine; a higher ex-
traction rate implies the grade uncertainty will fluctuate
faster. As shown in Section 3, this method can model
a mine in a continuum manner using partial differential
equations (PDEs). This formulation allows for model be-
havior to be investigated and, as shown in Section 4, in
some instances it allows for exact solutions to be derived.
In Section 5 we present results for a particular single-ore
mine, composed of some 20,000 blocks.

2 Data Interpretation

Our sample grade data for the weight of resource per
unit of estimated ore extracted, G (grams per tonne),
is from a sample mine composed of 30,000 blocks, and
the order of extraction has been specified1. By view-
ing this data in order of extraction, Figure 1 (top), one
can see how G varies through the cumulative amount ex-
tracted, Q̄. However, given that measurement error exists
at each data point, we interpret this sample of data as
one random simulation from a whole range of possible
Kriging samples, where each simulation will lie closely
around a specified mean-path. This mean-path could be
regarded as an interpolation between the known data-
points (which themselves are functions of measurement
error). To model this large range of random simulations,
we treat the grade variation as a stochastic random pro-
cess through Q̄. A suitable model is a CIR process [6] of
the form,

dG = k(α(Q̄)−G)dQ̄ + σG
√
GdXG, (1)

where α(Q̄) is the mean-path of G through the ore-body
(its spatial pattern being given), and dXG, is normally

distributed as N(0,
√

dQ̄). This process allows the re-
alised ore grade to vary either side of the estimated mean-
path, but without the grade becoming less than zero.

1The data has been supplied by Gemcom Software International,

a large mining industry solutions provider.

This model is easy to generalise, for example to include
Levy processes, which we leave for future work.

We next need to estimate the associated parameter val-
ues of k, σG and α(Q̄). The mean value α is relatively
straight-forward to generate; we create this using a cubic
spline interpolated from Kriged data and is shown in Fig-
ure 1 (centre). This gives us a smooth mean-path for ore
grade variation. For the remaining two parameters we
compute infill maximum likelihood estimates for a CIR
process (eq. 71 and 72, [16]). Using these equations on
our data estimates the parameter values to be

k = 52 kg−1 and σG = 9.6 G1/2 kg−1/2. (2)

To show how these parameter estimates behave, Figure 1
(bottom) shows one particular simulation using these pa-
rameter values, SDE and mean-path. As it demonstrates,
the simulation is qualitatively consistent and representa-
tive of the data, consequently we view this methodology
well-posed. In Section 5 we compare a valuation assum-
ing this level of grade uncertainty with a valuation which
treats the input Kriging data as fact.

It may be the case that the mining company already has
knowledge to the uncertainty surrounding the grade es-
timates (see [13] for an example). It is feasible that one
could use these (appropriately transformed) parameter
values into 1, provided the uncertainty is Gaussian. This
then allows the user to harness the power of a PDE ap-
proach, without having to use the alternative parameter
estimates given by .

3 Model Construction

To create a finite-reserve valuation, V , we can choose
to utilise one of two methods to arrive at the same un-
derlying equation. The first method is the standard in
financial mathematics, known as a contingent claims ap-
proach. This relies upon being able to constructing a
risk-neutral portfolio containing the mine valuation and
other suitable traded assets, as originally explained by
[2]. The second method is by utilising the Feynman-Kac
method probabilistic approach. This method relies upon
being able to take expectations, and is fully explained in
[7], in relation to calculating the expected lifetime of an
extraction project. In this current paper, we shall explain
how the first, contingent claims, approach can be used.

We first prescribe four state-space variables. These are
the price S per unit of the underlying resource in the ore,
the cumulative weight of ore extracted from the mine
Q̄, time t and resource ore grade G. However, to aid
notational consistency, we use the variable for remaining
resource, Q, defined by,

Q = Qmax − Q̄, (3)
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Figure 1: The top figure shows ore-grade data from
a sample mine (supplied by Gemcom Software Interna-
tional), the middle graph shows its mean path and the
third graph shows a grade simulation generated from
equation (1) using the mean-path and the parameter val-
ues from (2).

where Qmax is the maximum ore quantity extractable
from the reserve. An obvious consequence of this is that
dQ = −dQ̄. With this, the rate of extraction of ore-
bearing material, q, is introduced via the equation

dQ = −qdt, (4)

and will be subject to physical and practical constraints
on its maximum and minimum levels, requiring q ∈
[qmin, qmax]. This is not to say that q is a continuous

function, as mine operations often work in a on/off (bang-
bang) fashion, where switching between on and off states
is costly.

We maintain the use of a CIR process to describe the
grade uncertainty as given by equation (1), and without
loss of generality we assume the underlying price S to
follow a geometric Brownian motion,

dS = µSdt+ σsSdXs, (5)

where µ is the drift and σs the volatility of S. The random
variable dXs, is normally distributed as N(0,

√
dt).

Using this notation, we may apply Ito’s lemma to write
an incremental change in V as,

dV =σs
∂V

∂S
dXs + σG

√
G
∂V

∂G
dXG (6)

+

(

∂V

∂t
+

1

2
σs

2 ∂
2V

∂S2
+ µ

∂V

∂S

)

dt

−

(

−
∂V

∂Q
+

1

2
GσG

2 ∂
2V

∂G2
+ k(α−G)

∂V

∂G

)

dQ,

where we have taken powers of (dt)2 and (dQ)2 to be
negligible. We wish to remove the dQ term via equation
(4), which means that equation (6) can be transformed
into,

dV =σ1
∂V

∂S
dXs + σG

√
G
∂V

∂G
dXG (7)

+

(

∂V

∂t
− q

∂V

∂Q
+

1

2
σ1

2 ∂
2V

∂S2
+ µ

∂V

∂S

)

dt

+

(

1

2
qGσG

2 ∂
2V

∂G2
+ qk(α−G)

∂V

∂G

)

dt.

To follow the conventional approach in creating and valu-
ing risk-free portfolios, we construct a portfolio, Π, in
which we are instantaneously long in (owning) the mine
and are short in (owing) γs amounts of commodity fu-
tures contracts and short in γG amounts of options on
the mine C (this option could be a call or put option,
just so long as it is an option on the same mine). This
defines Π = V − γsS − γGC, such that,

dΠ = dV − γsdS − γGdC. (8)

This portfolio is designed to contain enough freedom in
γs and γG to be able to continually hedge away the uncer-
tainties of dXs and dXG, which is the standard approach
in creating risk-free portfolios [18], [20]. It also means
that within a small time increment, dt, the value of Π
will increase by the risk-free rate of interest minus any as-
sociated economic value generated during the increment.
This economic value is typically composed of two parts,
the first, negative, being the cost per unit to extract ore,
ǫM , and the second, positive, the cash generated by sell-
ing the resource content of the ore extracted. An extra
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stage of processing (e.g. milling) is usually required after
ore extraction to isolate a saleable form of the resource.
We model the case where the processing cost is variable
and avoidable, so processing is done if qSG > ǫP , where
ǫP is the processing cost per unit of ore extracted. With
this form of optimal decision the incremental change in
portfolio value may be written as

dΠ = rΠdt− γSδSdt−max(0, qGS − ǫP )dt− ǫMdt. (9)

By using appropriate values of γs and γG to be,

γs =
∂V

∂S
−
∂V

∂G

(

∂C

∂G

)

−1
∂C

∂S
,

γG =
∂V

∂G

(

∂C

∂G

)

−1

, (10)

and substituting equations (5), (7) and (8) into (9), we
may write our two-factor valuation equation as,

1

2
σs

2S2 ∂
2V

∂S2
+

1

2
qGσG

2 ∂
2V

∂G2
+
∂V

∂t
− q

∂V

∂Q
(11)

+ (r − δ)S
∂V

∂S
+ qk(α̂− δ)

∂V

∂G
− rV +max(0, qGS − ǫP )− ǫM = 0,

where α̂ = α − σGλG/κ, and λG is the market price of
risk for ore grade. If we wish to reduce this model to a
one-factor model, with price as the only uncertainty, we
can set the grade quality to be a constant, giving,

∂V

∂t
− q

∂V

∂Q
+ (r − δ)S

∂V

∂S
+

1

2
σs

2S2∂
2V

∂S2
(12)

− rV +max(0, qGS − ǫP )− ǫM = 0.

This is the standard one-factor equation of Brennan and
Schwartz (eq. 15, [3]), except that they added taxation
terms.

We next need to prescribe boundary conditions for (11).
The boundary condition that no more profit is possible
occurs either when the reserve is exhausted Q = 0, or
when a lease to operate the mine has reached its expiry
date t = T , hence:

V = 0 on Q = 0, or t = T. (13)

Since the extraction rate will have a physical upper
bound, the extraction rate and cost will not vary with
S when S is large. This permits a far field valuation of
the form,

∂V

∂S
→ A(G,Q, t) as S → ∞. (14)

When the underlying resource price is zero we need only
solve the reduced form of equation (11) with S = 0.

The boundary conditions on G are that its behavior is
convection-dominated as it moves far from above its mean

or tends to zero, since diffusion effects are then negligi-
ble. In these cases we solve equation (11) without second
derivatives of G. Hence G is unlikely to drift far from
its mean, as is standard with mean-reverting processes.
Specifically, the conditions become,

−
∂V

∂τ
− q

∂V

∂Q
+ qκα

∂V

∂G
+ (r − d)S

∂V

∂S

+
1

2
σ2
SS

2 ∂
2V

∂S2
− rV − ǫM = 0, (15)

as G→ 0, and as G→ ∞ we require,

−
∂V

∂τ
− q

∂V

∂Q
+ qκ(α−G)

∂V

∂G
+ (r − d)S

∂V

∂S

+
1

2
σ2
SS

2 ∂
2V

∂S2
− rV + qGS − ǫP − ǫM = 0. (16)

This complete the specification of our underlying euqa-
tion and its boundary conditions, and we are now in a
position to conduct an analysis upon deriving solutions
from it.

4 Reserve- and Time- Dependent Ex-

traction Rate

In this section we simplify to assume that the rate of
extraction and the decision to process are independent of
both price and ore grade. This simplifies the extraction
rate and the extraction-processing cost per unit of ore
respectively to the forms q = q(Q, t) and ǫ = ǫ(Q, t).
Hence the cash flows generated by the mine are of the
form qSG− ǫ, since there is no longer a decision whether
or not to process. Using this and the fact that dQ/dt =
−q, we may determine Q(t) exactly, and calculate the
moment when the reserve will be exhausted, T . There
are two alternative ways of defining T ; first as the lease
contract expiry date, and the other as the date when the
extractable amount of reserve is exhausted. If these dates
differ, one would take T as the lesser of the two. These
assumptions allow us to remove the Q variation from our
model, and write q̄(t) = q(Q(t), t) and ǭ(t) = ǫ(Q(t), t).

We begin by searching for a solution to (11), as suggested
by (14), with the Q derivative no longer necessary, of the
form,

V = SV1(G, t) + V2(G, t). (17)

By substituting this into equation (11) we obtain the two
equations,

∂V1
∂τ

− q̄κ(α̂−G)
∂V1
∂G

− q̄
1

2
σ2
GG

∂2V1
∂G2

+ dV1 = Gq̄,

∂V2
∂τ

− q̄κ(α̂−G)
∂V2
∂G

− q̄
1

2
σ2
GG

∂2V2
∂G2

+ rV2 + ǭ = 0. (18)

We may split equation (18) up further to seek a solution
of the form V1(G, τ) = φ(τ)G + ψ(τ), such that,

φ′ + (q̄κ+ δ)φ = q̄,

−ψ′ + qκαφ− δψ = 0. (19)
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By introducing the variable ξ(τ) =
∫ τ

0
q(x)dx, we may

write our solution for φ, ψ and V2 as,

φ = e−(κξ+δτ)

∫ τ

0

q(η)eκξ(η)+δηdη,

ψ = e−dτ

∫ τ

0

καq(η)φ(η)eδηdη,

V2 = −e−rτ

∫ τ

0

ǫ(η)erηdη. (20)

In the particular case of a constant extraction regime,
these integrals can be calculated to be,

φ̄ = q̄
q̄κ+d

(

1− e−(q̄κ+d)τ
)

,

ψ̄ = q̄2κα
q̄κ+δ

{

1
d

(

1− e−δτ
)

+ 1
q̄κ

(

e−(q̄κ+d)τ − e−δτ
)

}

,

V2 = ǭ
r (1− e−rτ ), (21)

which determines our exact solution to a mine valuation
in the presence of price and ore-grade uncertainty, when
extraction and processing are independent of price and
grade.

5 Price Dependent Extraction Rates

Let us return to the more general case where we oper-
ate a processing constraint, equation (11). Since we can
no longer predict a date T when the mines value will
be exhausted, we must retain all derivatives within the
model and turn to numerical techniques for solution. As
detailed in [8] and [5], we choose to solve (11) using a
semi-Lagrangian scheme, in which the solution is evalu-
ated on the characteristics dQ = −qdt via an interpo-
lation between the adjacent nodes. This scheme can be
second-order convergent in time and thus allows for ac-
curate solutions to be quickly derived.

5.1 Example Valuation

We compare valuations of a single ore sample mine (as
detailed in Section 2), where one valuation assumes error
of (and around) the Kriging estimate or ore grade, and
the other takes that estimate as fact. This is equivalent to
comparing a valuation made with all possible ore-grade
simulations to a valuation made with just ore-grade sim-
ulation. For the grade uncertainty we use the inferred
parameter values of (2) and the mean-path of the grade
as shown in Figure 1 (middle), and take our other price
parameter values to be,

σS = 0.5 yr−1/2, r = 0.1 yr−1, δ = 0.1 yr−1. (22)

For the mine extraction cost parameters we use ǫM =
$1 tonne−1 and ǫP = $4 tonne−1, and the processing
capacity constraint of ore-bearing tonnage is qmax =
20, 000, 000 tonne yr−1, as specified by Gemcom Soft-
ware International. With these we are able to construct
our price and grade uncertainty valuation as shown by
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Figure 2: Valuation of a mine reserve for differing lev-
els of current commodity price made in the presence of
stochastic grade uncertainty.

Figure 2. As expected the valuation becomes linear in
S for higher prices, and losses are limited for low prices
(roughly S < 30 $ gr−1). This is expected, as we are op-
erating a processing decision rule where we only process
cost-effective ore.

To compare this valuation under both price and grade un-
certainty with one where there is only price uncertainty,
Figure 3 shows the difference between these valuations for
a range of prices. At higher prices, grade uncertainty has
only a small impact on the valuation. This might be ex-
pected, as the expected benefits of unexpectedly high ore
grade are symmetrical with the losses of its unexpectedly
low grade. The only region where these opposing effects
do not cancel each other out, is when the expected cash
from sales is similar to the cost of processing. Here the
mine has a valuable option to process all or none of the
current flow of extracted material, avoiding processing
where it is unprofitable. This explains the existence of a
maximum point in Figure 3.

6 Conclusions

This paper has presented a method for how to incorporate
ore grade uncertainty, and a simple optimising decision
in response to ore grade, into a finite resource valuation.
The method of treating the grade as a CIR stochastic pro-
cess (along a preset trajectory in space), not only allows
plausible ore-body grade simulations to be produced, but
also allows the model to be constructed as a single PDE.
This can be solved in the order of 10 seconds on a modern
laptop computer, giving values theoretically equivalent
to infinitely large set of simulation runs of the resource
price, the ore grade and the prescribed rule for processing
ore. As such, the methodology can rapidly provide robust
and defensible mine valuations under many alternative
stochastic structures. Whilst possible enhancements to
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Figure 3: The difference between valuations where one
treats the ore-grade as an uncertainty and the other
where one treats it as fact, for a range of underlying
prices. This is equivalent to viewing the difference be-
tween a valuation made with all possible ore-grade simu-
lations, to a valuation made with just one simulation.

the CIR process could be made, such as the inclusion of
jumps, the underlying methodology of the paper would
remain the same.

We find for our example mine, that including price and
ore grade uncertainty adds up to five million dollars to a
valuation assuming only price uncertainty. At high levels
of the commodity price, the option not to process poorer
grades of ore is seldom used and adds relatively little
value, but at lower commodity prices, and higher levels
of ore grade volatility, this option appreciably raises the
mines value.

It is hoped that this paper also raises the issue that
research which includes an ore-grade uncertainty, must
demonstrate open and defensible techniques for defining
ore-grade uncertainty parameter values. This will enable
practitioners and scientists alike, to improve this field of
research at a much faster pace, as appears to be the case
in oil and gas exploration, [9].
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