
 
 

 

  
Abstract—This paper studies the optimal collision avoidance 

strategies in a close proximity coplanar cooperative encounter 
between two participants with equal linear speeds, but unequal 
turn capabilities. The synthesis of optimal control can be 
presented in the form of a 2D diagram with dispersal curves 
partitioning the plane of the initial relative positions into 
sub-regions of initial positions for different optimal strategies. 
To resolve the non-uniqueness of the optimal strategies 
associated with the dispersal curves, the maneuver time is 
introduced as an additional performance criterion. We show 
that, while in the case of an encounter of identical participants 
the optimal collision avoidance strategies that start at the 
dispersal point often have identical maneuver time, this is no 
longer the case when the participants have unequal turn 
capabilities. We show that a unique strategy with a smaller 
maneuver time can be identified based on the non-dimensional 
parameter of the problem. Efficient numerical algorithms for 
calculation of the maneuver time for optimal strategies are 
presented. The results in this paper are applicable in aviation 
and marine collision avoidance and  in robotics applications.  
 

Index Terms — Optimal control, Collision avoidance, 
Cooperative maneuvers, Dispersal curves, Maneuver time  
 

I. INTRODUCTION 

Encounters, where the participants are sufficiently close in 
space and time to be of operational concern (they are often 
called close proximity encounters), can occur in many 
applications in aviation, navigation and robotics. The optimal 
cooperative collision avoidance strategies for a coplanar close 
proximity encounter between two identical participants was 
first studied by Merz [1], [2] (a rigorous analysis is given in 
[3]). Recently, the analysis has been extended for an 
encounter of participants with unequal turn capabilities, but 
with equal linear speeds [4-6].  

In [1-6], the synthesis of the optimal control solution is 
presented in the form of a 2D diagram which establishes the 
optimal collision avoidance strategy for both participants 
based on their initial relative position and relative orientation. 
Such a diagram presents an important tool for setting and 
validating the traffic rules, and also for testing and validating 
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automatic collision avoidance systems.  
 There is a vast body of literature devoted to the optimal 

resolution of conflicts and optimal control for aviation and 
marine collision avoidance applications and for robotics (the 
references [7-32] are just a few examples).  While an advance 
in numerical optimization techniques makes it possible to 
study complex scenarios involving many participants, 
analytic and semi-analytic synthesis of optimal control 
solutions of the type developed in [1-6] are still important, as 
they provide an insight into the underlying structure of the 
solution and can be used as benchmarks against which 
numerical solutions can be compared.  

This paper continues the study in [1-6] and focuses on the 
dispersal curves for the case of participants with unequal turn 
capabilities. A dispersal curve (which is a planar case of a 
dispersal or singular surface in differential games theory [33]) 
separates the regions of different optimal strategies. Such a 
curve presents a locus of the initial positions for which an 
optimal solution is not unique (i.e., there are two optimal 
strategies that result in the same terminal miss distance). In 
the case of the coplanar close proximity encounter, there is 
also a triple point present, where the three optimal strategies 
result in the same terminal miss distance. Dispersal curves and 
the triple point therefore involve conflicting decisions for the 
participants as to which of equally optimal paths to take. 

This paper introduces an additional performance criterion 
that can be used to select a unique optimal strategy that 
originates at a dispersal point or at the triple point. Such a 
criterion is the maneuver time, which is not only important in 
a theoretical sense as a measure of efficiency, but also in a 
practical sense as an input to a flight management / autopilot 
system design. 

The main results of the paper can be summarized as 
follows. We have shown for the case of identical participants 
that the maneuver times for two optimal strategies originating 
at a dispersal point are often identical; this is not the case for 
participants with unequal turn capabilities. We show that a 
unique strategy for participants with unequal turn capabilities 
can be selected if the maneuver time is considered as an 
additional performance criterion. A simple analytic 
characterization of the unique strategy with the smaller 
maneuver time is established. Efficient numerical algorithms 
for calculation of the maneuver time are also presented. Only 
the RR-LL dispersal curve and the triple point are considered, 
as they are situated in the region of smaller relative distance 
between the participants, and therefore are of main concern in 
a close proximity encounter.  However, it is straightforward to 
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extend the analysis to other dispersal curves.  
This paper is an extended and revised version of the 

conference paper [6]. 

II.  OPTIMIZATION PROBLEM 

The assumptions adopted in this paper are the same as in 
the close proximity encounter models [1]-[5]. Thus, we 
assume that the linear speeds of the participants are constant. 
The maximization of the terminal miss distance (which is a 
minimal distance between the participants during the 
maneuver) is adopted as the performance criterion. 

 The nondimensional equations of motion of the two 
participants with equal linear speeds but unequal turn 
capabilities in the moving polar coordinate system are [1]-[5] 

1

1 2

cos cos( )

[sin sin( )] / ( , ),r f u

φ θ φ
ρ σ φ θ φ ρ

σ ωσ

− + − 
 = − + + − ≡ 
 − + 

ɺ       (1)  

where ( , , )T rρ φ θ= ; , ,r φ θ specify the non-dimensional 

instantaneous relative distance between the participants and 
the instantaneous angles defining the relative direction of 

their motion (see Fig. 1),  min
1: / ,r r R=  min

1R  is the lower 

bound on the turn radius of the first participant; 1 2,σ σ are 

the non-dimensional angular speeds of the participants scaled 
so that they are contained in the interval [-1, 1], with positive 
values corresponding to the right turns (from the point of view 
of the participant), and negative values corresponding to the 

left turn, max
1 1 1/ ,σ ω ω=  max

2 2 2/ ,σ ω ω=  where 1 2,ω ω are 

the angular speeds, max max
1 2,ω ω  are the absolute values of 

physical bounds on the angular speeds of the participants; 
ω is the non-dimensional parameter of the problem, 

max max
2 1/ 0.ω ω ω= >  The derivatives with respect to the 

non-dimensional time max
1( : )t t t ω= are denoted with dots. 

The domains for the variables ,φ θ are defined as 

,π φ π− ≤ < 0 2 .θ π≤ <  

The system of ordinary differential equations (1) can be 
viewed as a control system with the state vector 

( , , )T rρ φ θ= and control function 1 2( , ),Tu σ σ=   
2: [0, ] ; , [ 1,  1] [ 1,  1].→ ⊆ = − × −u T U U R U  

The non-dimensional maneuver time T  (also known as the 
terminal time) is defined as the time to closest approach 
between the participants.  It is defined by the conditions 

( ) 0,r T =ɺ                                 (2)  

( ) 0 for [0, ].< ∈ɺr t t T                        (3) 

The objective is to maximize the terminal miss distance 

( , ) Tt T
u r rψ ρ == ≡  over all admissible controls. Thus, the 

performance index is a function of the terminal time only. As 
the terminal time T  is unknown, the problem can be 
considered as a Mayer problem with free terminal point. 

By substituting the expression for ɺr  from the first equation 
of (1) into the terminal condition (2), it is easy to see that the 
terminal condition (2) splits into two equations 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
sin( / 2) 0,Tθ =  

sin( / 2) 0,T Tφ θ− =  

which yield two terminal conditions: 
1. 0=

T
θ ;                                                                  (4)                                                                                                         

2.     .2/,2/
TTTT

θφπθφ =−=                                   (5)                                                                                                        

III.  NECESSARY CONDITIONS FOR NONSINGULAR OPTIMAL 

CONTROLS 

     The Hamiltonian function in the polar coordinate system is 
given by: 

1 2

1

( , , ) ( , )

[ cos cos( )] ( )

{ [sin sin( )] / },
θ

φ

λ ρ λ ρ
λ φ θ φ λ σ ωσ

λ σ φ θ φ

=
= − + − + − +

+ − + + −

i
T

r

H u f u

r

         (6) 

where the adjoint variables ( , , )T
r ϕ θλ λ λ λ≡  satisfy the 

equations Hλ = −∇ɺ , that is 
2[sin sin( )] /

(sin sin( )) [cos cos( )] /

sin( ) cos( ) /
r

r

r

r

r

φ

φ

φ

λ φ θ φ
λ λ φ θ φ λ φ θ φ

λ θ φ λ θ φ

 + −
 

= − + − − − − 
 − + −
 

ɺ   (7)                       

subject to 

( ) ( ( ), ) [1, 0, 0]TT T uλ ψ ρ= ∇ = .                  (8) 

Using the Pontryagin Maximum Principle [34], [35], 
together with the terminal conditions (4), (5), and adjoint 
equations (7), (8), it can be shown ([3], [4]) that there are two 
types of possible optimal strategies at the terminal time: 1) 
terminal condition (4) corresponds to  121 ±=−= σσ  (the 

participants are turning with maximum possible angular 
speeds in an opposite directional sense). We will call such 
strategies the right-left (RL) and the left-right (LR) strategies, 
where the first letter indicates the strategy of the first 
participant (located in the origin of Fig.1); 2) terminal 
condition (5) results in 121 ±== σσ  (both participants are 

turning in the same directional sense with maximum possible 
angular speeds). Such strategies will be called the right-right 
(RR) and the left-left (LL) strategies. 

Using the transformation of variables 22 yxr += , 

,sin xr =φ yr =φcos , (1) can be re-written in the Cartesian 

coordinates and presented  in terms of backward (retrograde)  
 

Figure 1: Schematics of the coplanar 
encounter in the moving coordinate system 
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derivatives as   

1 1 1 2sin , 1 cos , ,x y y xσ θ σ θ θ σ ωσ= − = − − = −
� � �

   (9)                                                   

where circles denote the derivative with respect to τ  
( T tτ = − ). 

Solving (9) subject to the conditions 
0

,Tx xτ = =   

0
,Ty yτ = =  and each of the two terminal conditions (4), (5) 

in turn yields the following two cases for the extremals: 
 

Case I.  0=
T

θ , 121 ±=−= σσ . This case corresponds to the 

RL and LR strategies. The solution of (9) is given by 

1 1

1 1

1 1

1

(1 ) for 1,

2 (1 ) for 1,

sin( ) [1 cos[(1 ) ] /

(1 )cos / ],

cos( ) (1 )sin /

sin[(1 ) ] / ,

T T

T T

x r

y r

σ ω τ σ
θ

π σ ω τ σ
φ σ τ σ ω τ ω

ω τ ω
φ σ τ ω τ ω

ω τ ω

+ =
=  + + = −

= + + + +
− +

= + + +
− +

      (10)               

where subscript “T” refers to the terminal instant. For T=τ , 
(10) describes the locus of the initial conditions  

),(
0000 ==

≡≡
tt

yyxx for the RL and LR strategies and takes 

the form 
For :11 =σ               

2
0 0 0

2 2
0 0 0

{ 1 cos / (1 )cos[ / (1 )] / }

{ (1 )sin[ / (1 )] / sin / } ,T

x

y r

θ ω ω θ ω ω

ω θ ω ω θ ω

− − + + +

+ − + + + =
        (11) 

For :11 −=σ                  

0 0

2
0 0 0

2 2
0

{ (1 )cos[( 2 ) / (1 )] / 1

cos / } { (1 )sin[( 2 ) / (1 )] /

sin / } .T

x

y

r

ω θ π ω ω

θ ω ω θ π ω ω

θ ω

− + − + +

+ + + + − +

− =

    (12) 

One can see that, for given  0,θ ω  and Tr , the loci of the 

initial relative positions (11), (12) for the RL and LR 
strategies respectively represent circles. 
                          
Case II.  ;2or22

TTTT
φθπφθ =+=  121 ±== σσ . This 

case corresponds to the RR and LL strategies. The solution of 
(9) takes the form 

1

1

1 1 1

1 1 1

1 1 1

(1 ) ,

cos( ) sin

{sin( ) sin[ (1 ) ]} / ,

sin( ) cos( ) /

(1 cos ) cos[ (1 ) ] / .

T

T T

T T

T T T

T

y r

x r

θ σ ω τ θ
φ σ τ τ

σ θ σ τ θ σ ω τ ω
φ σ τ σ θ σ τ ω

σ τ σ θ σ ω τ ω

= − +
= + +
− + − + −

= + + +
+ − − + −

    (13)                               

For T=τ  we have ,)1(10 T
T θωσθ +−= and the locus of 

the initial conditions ),(
0000 ==

≡≡
tt

yyxx  for the RR and LL 

strategies is given by: 
For 2/

TT
θφ = : 

2 2
0 1 0 0 1 0

2
0 1

1 0 1

[ (1 cos / )] ( sin / )

2 2cos[ (1 ) ] /

2 (1 1/ )sin[( (1 ) ) / 2],

σ θ ω σ θ ω

θ σ ω ω
σ ω θ σ ω

− − + −

= + − − −
− + − −
T

T

x y

r T

r T

      (14)    

   For πθφ −= 2/
TT

:  

2 2
0 1 0 0 1 0

2
0 1

1 0 1

[ (1 cos / )] ( sin / )

2 2cos[ (1 ) ] /

2 (1 1/ )sin[( (1 ) ) / 2].

σ θ ω σ θ ω

θ σ ω ω
σ ω θ σ ω

− − + −

= + − − −
+ + − −
T

T

x y

r T

r T

     (15) 

For given  0,θ ω  and Tr , the loci of the initial relative 

positions for the RR and LL strategies (14) and (15) represent 
arcs of spirals. 

IV.  SYNTHESIS OF OPTIMAL CONTROL 

First, consider the locus of points on the plane of the initial 

relative positions satisfying 
0

0
t
r = =ɺ . This locus is called in 

[3], [4] an initial zero range rate line. It partitions the plane of 

the initial relative positions ( , )x y  into the regions 
0

0= >ɺ
t
r  

(diverging relative distance) and 
0

0= <ɺ
t
r (converging 

relative distance) at the beginning of the maneuver. Condition 
(3) implies that the optimal trajectories can only start in the 

region of converging relative distance 
0

0.= <ɺ
t
r The 

following property follows from the terminal condition (2): 
Property 1 A straight line passing through the origin 

with )2/tan(tan
0

θφ =  represents the locus 
0

0.= =ɺ
t
r         

     In a similar manner, the locus 0= =ɺ
t T
r is called in [3], [4] 

a terminal zero range rate line. It follows from the first of Eqs. 
(13) and terminal conditions (5) that: 
Property 2 Straight lines passing through the origin with 

0 1 1tan tan{[ (1 ) ] / 2}, 1,φ θ σ ω σ= − − = ±T T        (16) 

represent the loci 0
t T
r = =ɺ  for the RR and the LL strategies. 

For given 0θ  and ω , the RR and LL trajectories end on  lines 

(16). 
     The first step toward identifying the optimal strategy is to  
identify the trajectories from the sets of extremals (10), (13), 
such that the distance between the participants decreases on 
the time interval ],0[ Tt ∈  (i.e., condition (3) is satisfied). 

The following property holds [4]: 
Property 3 For the loci of initial relative positions (15) with 

1 1σ =  and (14) with 1 1σ = − , there exists an interval 

[0, ], 0,ε ε >  such that the trajectories with [0, ]T ε∈  have 

decreasing relative distance.  
The synthesis of optimal control can be constructed as 

follows (for details, see  [3], [4]): 
• for a given 0, Trθ and ω , select the trajectories from the 

sets of extremals (10), (13), such that the distance 
between the participants decreases on the time interval 

],0[ Tt ∈  (i.e., condition (3) is satisfied); 

• for a given 0, Trθ and ω , construct the loci of the initial 

relative positions with associated strategies that 
correspond to the trajectories with decreasing distance 
between the participants on ],0[ Tt ∈ ;  

• for the loci constructed in the previous step, construct the 
internal envelope (i.e., the locus of points that are closest 
to the origin for each value of φ ); this envelope consists 

of the initial positions for different nonsingular 
strategies. It can be shown (see [4]) that the strategies 
associated with the internal envelope are the optimal 
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strategies for given 0, Trθ andω ;  

 For given 0,Tr θ ( πθ << 00 ) andω , the internal 

envelope consists of the arcs of the loci of the initial 
positions for the RR strategy (15) ( 1

1
=σ ), the LL 

strategy (14) ( 1
1

−=σ ) and, for certain values of Tr , also 

contains the arc of the locus of the initial conditions for 
the RL strategy (11);  

• finally, extend the internal envelope for all values of Tr .  

     As a result of this procedure, the half-plane of initial 
relative positions that correspond to trajectories with initially 
converging relative distance is partitioned into the 
sub-regions of initial relative positions for different optimal 
strategies, with dispersal curves separating them.   

Below, we summarize several results from [4] that are 
useful for the analysis in this paper.    
• For πθ << 00 , there are three sub-regions of initial 

relative positions for optimal strategies: the sub-region of 
the initial positions for the right-right (RR) strategy 
(called the RR locus for brevity); the sub-region of initial 
positions for the left-left (LL) strategy (the LL locus), and 
the sub-region of the initial positions for the right-left 
(RL) strategy (the RL locus).  For πθπ 20 << , the three 

sub-regions are the RR, the LL and the LR loci; 
• For πθ << 00 , there exists a value of the terminal miss 

distance = tp
T Tr r  such that the points on the internal 

envelope that correspond to the initial relative positions 
for the RR, LL and RL strategies have a common 
intersection point. Such point is called a triple point; 

• For any tp
T Tr r< , the internal envelope does not contain 

the points that correspond to the initial conditions for the 
RL or LR strategies; the points on the internal envelope 
that correspond to the initial relative positions for the RR 
and LL strategies intersect at a point that is called the 
RR-LL dispersal point; 

• For any > tp
T Tr r , the points on the internal envelope that 

correspond to the initial relative positions for the RR and 
RL strategies intersect at a point that is called the RR-RL 
dispersal point; the points on the internal envelope that 
correspond to the initial relative positions for the LL and 
RL strategies intersect at the LL-RL dispersal point. The 
RR-RL and the LL-RL dispersal points do not coincide;  

• The optimal trajectory will never leave the locus of the 
initial relative positions corresponding to a given optimal 
strategy if it started in this locus; 

• The strategies that include singular controls are 
suboptimal. 

 
     The synthesis of optimal control diagram presented in 
Figure 2 shows the typical structure of the synthesis. The 
plane of the initial relative positions, at the initial time, is 

partitioned by the zero range rate line (the locus 
0

0
t
r = =ɺ ) 

into two half-planes of initial relative positions for trajectories 
with diverging and converging relative distance respectively. 
The half-plane of initial relative positions for trajectories with 
converging relative distance is further separated into three 
regions of initial relative positions with each region 

corresponding to a different optimal strategy. The dispersal 
curves separate these regions. For 00 ,θ π< < there are three 

dispersal curves: the RR-LL, the RL-LL and the RL-RR 
dispersal curves. They separate the half-plane of converging 
relative distance into the loci of the initial relative positions 
for the RR, the LL and the RL optimal strategies (we call them 
the RR, LL and RL loci respectively for brevity). A triple 
point (i.e. the point on the plane of initial relative positions 
such that  the RR, LL and RL strategies that start at this point 
result in the same terminal miss distance) is also illustrated in 
Fig. 2. Note that the synthesis of the optimal control diagram 
for identical participants shown in Fig.2 is characterized by 
the symmetry of the dispersal curves with respect to the 
RR-LL dispersal curve (which in case of identical participants 
represents a straight line). For the case of an encounter of 
participants with unequal turn capabilities, the synthesis of 
optimal control diagram is shown in Fig. 3. While the zero 
range rate line remains unchanged for different values of ω  
in this case, the dispersal curves shift clockwise. Thus, the 
symmetry of the synthesis of the optimal control diagram is 
lost. 

V. DISPERSAL CURVES AND TRIPLE POINT 

     In what follows, we only consider the case  00 θ π< <   for 

the sake of brevity, and show how the triple point and the 
dispersal curves can be calculated. To find the triple point, 
one needs to find, for given 0, Trθ and ,ω  the point of 

intersection of the loci of the initial relative position for the 
LL strategy, the RR strategy and the RL strategy that result in 
the trajectories with decreasing relative distance. Thus, one 
needs to satisfy the conditions 

/2 /2

/2 /2

/2

/2

( ) ( ) ,

( ) ( ) ,

( ) ( , ),

( ) ( , ),

T T T T

T T T T

T T

T T

tp tpLL RR
LL RR

tp tpLL RR
LL RR

tp tp tpLL RL
LL T T

tp tpLL TP RL
LL T T

x T x T

y T y T

x T x r

y T y r

φ θ φ θ π

φ θ φ θ π

φ θ

φ θ

φ

φ

= = −

= = −

=

=

=

=

=

=

     (17) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2: Synthesis of optimal control diagram,  
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where tp
LLT   and tp

RRT  are the maneuver times for the LL and 

the RR strategies at the triple point respectively.  The terminal 
miss distance and the terminal relative bearing at the triple 

point are tpTr  and tp
Tφ respectively. Conditions (17) can be 

reduced to the following system of three trigonometric 
equations 

0 0

0

0 0

0 0

0

0 sin(( ) / 2) 2cos /

sin(( ) / 2) cos 2

cos [cos( ) cos( )] / ,

0 cos(( ) / 2) 2sin /

cos(( ) / 2) sin

tp tp tp
LL LLT

tp tp tp tp
RR RR LLT

tp tp tp
RR LL RR

tp tp tp
LL LLT

tp tp tp tp
RR RR LLT

r T T

r T T T

T T T

r T T

r T T T

θ ω θ ω

θ ω

θ ω θ ω ω

θ ω θ ω

θ ω

= − − +

+ + + + −

+ − − + +

= − − −

+ + + +

0 0

2
0

2
0 0

0

0

sin [sin( ) sin( )] / ,

( ) { sin(( ) / 2) cos 2

cos( ) / ( 1)cos( / (1 )) / }

{ cos(( ) / 2) sin 2

sin( ) / ( 1)sin[

tp tp tp
RR LL RR

tp tp tp tp tp
LL LL LLT T

tp
LL

tp tp tp tp
LL LL LLT

tp
LL

T T T

r r T T T

T

r T T T

T

θ ω θ ω ω

θ ω

θ ω ω ω θ ω ω

θ ω

θ ω ω ω

− + − + +

= − − + −

− − + + +

+ − − + −

+ − − + 2
0 / (1 )] / } ,θ ω ω+

(18) 

with the unknowns  ( , , )tp tp tp
LL RR TT T r . The initial guesses for 

the unknowns are obtained from the corresponding values for 
identical participants (ω = 1) [4] 

,1 ,1 0
,1

0

2sin( / 2)
arccos ,

[ 2sin( / 2)]
tp tp
LL RR tp

T

T T
r

θ
θ

  = =  
+  

     (19) 

2
,1 0

0 0

(1 cos( / 2))

sin( / 2) cos( / 2) 1
tp
Tr

θ
θ θ

−
=

+ −
.                 (20) 

Equations (18) are solved incrementally, starting with ω=1, 
until the value of interest is reached, updating the initial guess 

at each step. Using the calculated values( , , )tp tp tp
LL RR TT T r , the 

coordinates of the triple point can then be computed from one 
of the equations (17). 
     We now consider the RR-LL dispersal curve for given 

values of 0θ  andω . This dispersal curve is of a special 

importance for a close proximity encounter as it corresponds 
to the smaller of the relative distances between the 
participants (see Figs. 2 and 3). To find the RR-LL dispersal 
point, one needs to find a point of intersection of the loci of 
initial relative position for the LL strategy (14) and of the loci 
of initial relative positions for the RR strategy (15). Thus, for 
a given Tr , one needs to find the maneuver times LLT  and 

RRT  for the LL and RR strategies so that  

/2 /2
( ) ( ) ,

T T T T

LL RR
LL RRx T x T

φ θ φ θ π= = −
=    

/2
( )

T T

LL
LLy T

φ θ=
=

/2
( )

T T

RR
RRy T

φ θ π= −
. 

These conditions can be written as the following system of 
two trigonometric equations with the unknown maneuver 
times( , )LL RRT T  

0 0

0

0 0

0 1 0

0

0 0

0 sin(( ) / 2) 2cos /

sin(( ) / 2) cos 2

cos [cos( ) cos( )] / ,

0 cos(( ) / 2 ) 2sin /

cos(( ) / 2) sin sin

[sin( ) sin(

T LL LL

T RR RR LL

RR LL RR

T LL LL

T RR RR LL RR

LL RR

r T T

r T T T

T T T

r T T

r T T T T

T T

θ ω θ ω
θ ω

θ ω θ ω ω
θ ω θ ω
θ ω

θ ω θ ω

= − − +
+ + + + −
+ − − + +
= − − −
+ + + + −
+ − + + )] / 2.ω −

 (21) 

The initial guesses for LLT  and RRT  can be obtained from 

the solution for identical participants (19). To construct a 
dispersal curve, one needs to solve (21) incrementally for the 

value of Tr   between 0 and tp
Tr . Once the maneuver times are 

found from (21), the RR-LL dispersal curve can be 
constructed using equations for either of the RR or LL loci of 
the initial relative positions. 

To find the RL-LL dispersal point, one needs to find a point 
of intersection of the loci of the initial relative positions for 
the LL strategy (14) and the loci of initial relative positions 
for the RL strategy (11), that is  

 
/2

( ) ( , ),
T T

LL RL
LL T Tx T x r

φ θ
φ

=
=  

     
/2

( )
T T

LL
LLy T

φ θ=
=   ( , )RL

T Ty r ϕ .  

These conditions can be reduced to a single trigonometric 
equation in LLT  

2
0

2
0 0

0

2
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  (22) 

The RL-RR dispersal point can be calculated in a similar 
manner by finding a point of intersection of the loci of initial 
relative  positions for the RL (11) and the RR (15) strategies, 
which can then be reduced to solving a single trigonometric 
equation with the unknown RRT  

2 0
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Figure 3: Synthesis of optimal control diagram 
for different values ofω , 0 5 / 6θ π= . 
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 (23) 

Equations (22) and (23) are solved iteratively, starting with 
the value of the terminal miss distance at the triple point 

tp
T Tr r=  and using  tp

LL LLT T=  (or tp
RR RRT T= ) for a 

given 0θ  and ω as an initial guess. The value Tr is then 

increased incrementally, while updating the initial guess for 

LLT  (or RRT ) at each step.  

VI.  MANEUVER TIMES FOR STRATEGIES THAT START AT THE   

DISPERSAL OR TRIPLE POINT                                                                                                                                                

Dispersal curves can be viewed as the loci of the initial 
relative positions that deliver a non-unique optimal strategy. 
This poses a problem in practical applications. By 
recognizing that, in the interest of efficiency of conflict 
resolution, a shorter maneuver time may be preferable, we 
now compare the competing strategies in order to identify the 
strategy that takes shorter time to implement.  

The maneuver times , ,LL RRT T as applicable for the 

strategies that originate at the RR-LL, RL-LL or RL-RR 
dispersal points, can be computed from (21), (22) and (23) 
respectively. The maneuver time for the strategies that 
originate at the triple point can be computed from (18). The 
maneuver time for RL strategy RLT  is given by simple 

formula 0 / (1 )RLT θ ω= +  (see first equation of (10)). 

A. Identical Participants 

First, we consider the case of identical participants. 
Proposition 1 For identical participants ( 1ω = ), the RR and 
LL strategies, that start at the RR-LL dispersal point with a 
given terminal miss distanceTr , have identical maneuver 

times given by 

0 0arccos{2sin( / 2) / [ 2sin( / 2)]}.LL RR TT T rθ θ= = +  (24) 

At the triple point, the maneuver times for the RR and LL 
strategies are identical, while the maneuver time for the RL 
strategy always exceeds that for the RR and LL strategies for 

00 θ π< < . 

Proof For the case of identical participants, the RR-LL 

dispersal curve is a straight line normal to the line 
0

0
t
r = =ɺ  

(which is called a zero range rate line in [3]). The RR and LL 
loci of terminal positions in this case coincide with the locus 

0
0.

t
r = =ɺ  For a given Tr , the RR and LL trajectories are the 

arcs of the circles that are symmetric relative to the RR-LL 
dispersal curve with centers on the zero range rate line (see [3] 
for details) and with a radius 0( ) 2sin( / 2).T TR r r θ= +  

Simple geometric considerations give 

0 0

cos( ) cos( ) [ ( ) ] / ( )

2sin( / 2) / [ 2sin( / 2)],
LL RR T T T

T

T T R r r R r

rθ θ
= = −

= +
       (25) 

which proves (24) . 
     It follows from (19), (20) and the first equation of (10) that 
the maneuver time for RL strategy is larger than the maneuver 
time for RR (or LL) strategy if 

0 0 0

0

[1 cos( / 2)] / [(sin( / 2) cos( / 2) 1]

2 tan( / 2) 0.

θ θ θ
θ

− + −
− <

     (26) 

It is straightforward to show that inequality (26) is valid for 

00 θ π< < □   

     The above results are illustrated in Fig.4, where the 
dispersal curves and the optimal trajectories for collision 
avoidance of identical participants are shown for0 2 / 3θ π= . 

Note that, in case of an encounter of identical participants, the 

locus 
0

0
t
r = =ɺ coincides with the loci of terminal relative 

positions for both the RR and LL strategies, and we can see in 
Fig. 4 that the optimal RR and LL trajectories end on this 
locus. For the RL strategy that starts at the triple point, the 
circle of terminal relative positions is shown with a dotted 
line.  

B. Participants with Unequal Turn Capabilities 

The equality of the encounter times for the RR and the LL 
strategies in the case of an encounter of identical participants 
is the result of symmetry of the synthesis of optimal control 
diagram discussed in Section IV. For the case of participants 
with unequal turn capabilities, the symmetry is lost and the 
maneuver times for the strategies originating at the same 
dispersal point are never the same. 
The maneuver times for the RR and the LL strategies starting 
at the RR-LL dispersal point are plotted in Fig.5 as functions 
of ω for 0 2 / 3, 1Trθ π= = . We can see that the LL strategy 

takes longer to complete than the RR strategy for1ω > , while 

the opposite is true for 1ω < . The maneuver times coincide 

for 1ω = . Extensive numerical calculations show that such a  
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5 

Region of diverging 
relative distance 

Locus 
0

0
t
r = =ɺ  

Figure 4: Dispersal curves and optimal trajectories, 

0 2 / 3;θ π=  1;ω =  1 and 2 are the RR and LL optimal 

trajectories that start on the RR-LL dispersal point 
with 0.3,Tr =  0.55LL RRT T= = ; 3, 4 and 5 are RR, LL 

and RL trajectories respectively that start at the triple 

point with 0.683,tp
Tr = 0.771,= =LL RRT T  

1.047=RLT . 
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relationship between the maneuver times for the RR and LL 
strategies, that start at the RR-LL dispersal point, is typical for  

00 θ π< < .  

     Figures 6 and 7 show the RR-LL dispersal curves and the 
trajectories that start on these curves for 1ω >  and 1ω <  

respectively. Note that for the encounter of participants with 

unequal turn capabilities, the locus 
0

0
t
r = =ɺ does not 

coincide with the loci of the terminal positions for the RR and 
LL strategies. These loci represent straight lines passing 
through the origin. They rotate anticlockwise for the LL and 
clockwise for the RR strategies respectively for 1ω > , and  
 
  
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
clockwise for the RR and anticlockwise for the LL strategies 
respectively for 1ω <  (this behaviour is also illustrated in 

Figs. 6 and 7). 

VII.  CONCLUSIONS 

This paper studies the optimal collision avoidance strategies 
associated with the dispersal curves and the triple point. Such 
strategies are essentially non-unique. We show that the issue 
of non-uniqueness of the optimal collision avoidance strategy 
starting at the dispersal point can be resolved for the case of 
participants with unequal turn capabilities, if the maneuver 
time is considered as an additional performance criterion. 

     We prove that, for identical participants, the maneuver 
times for the RR and LL strategies that start at the RR-LL 
dispersal point (including the triple point) are equal. This is 
the result of the symmetry inherent in the synthesis of the 
optimal control diagram for the case of an encounter with 
identical participants. For identical participants, the RL 
strategy that starts at the triple point, always takes longer to 
complete than the RR or LL strategies. However, for the 
encounter of participants with unequal turn capabilities, the 
symmetry of the synthesis of the optimal control diagram is 
lost and the encounter times for the RR or LL strategies are 
never equal. The LL strategy that starts at the RR-LL dispersal 
curve takes longer to complete than the RR strategy for1ω > , 

while the opposite is true for 1ω < . 

     Thus, a unique optimal collision avoidance strategy with a 
smaller maneuver time can be identified based on the 
non-dimensional parameter of the problem.ω  Efficient 

numerical algorithms for calculation of the maneuver time for 
optimal collision avoidance strategies are presented.  
     The results in this paper are applicable in aviation and 
marine collision avoidance and robotics applications.  

Figure 5: Non-dimensional maneuver times for LL 
(solid line) and RR (dashed-dotted line) strategies, 
that start at the RR-LL dispersal point, as functions 
of ω; 0 2 / 3, 1Trθ π= = .  
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RR locus of 
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LL locus of terminal 
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0

0
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Figure 7: Dispersal curves and optimal trajectories 
for 0 5 / 6; 0.5θ π ω= = , 1 and 2 are the RR and LL 

optimal trajectories respectively that start on the 
RR-LL dispersal point with 0.6,Tr =  0.8166,=LLT  

0.8599=RRT  

Figure 6: Dispersal curves and optimal trajectories for 

0 5 / 6; 4θ π ω= = ; 1 and 2 are the RR and LL optimal 

trajectories respectively, that start on the RR-LL 
dispersal point with 0.6,Tr =  0.4302,=LLT  

0.3742=RRT . 
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