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Non-unique Optimal Collision Avoidance
Strategies for Coplanar Encounter of Participants
with Unequal Turn Capabilities

Tanya Tarnopolskaya, Neale L. Fulton

automatic collision avoidance systems.

Abstract—This paper studies the optimal collision avoidance There is a vast body of literature devoted to the optimal
strategies in a close proximity coplanar cooperative encounter resolution of conflicts and optimal control for aviation and
between two participants with equal linear speeds, but unequal i 4rine collision avoidance applications and for robotics (the
turn capab_llltles. The syntheS|s_ of optlmal c_ontrol can be references [7-32] are just a few examples). While an advance
presented in the form of a 2D diagram with dispersal curves A RIS ; ) . .
partitioning the plane of the initial relative positions into N Numerical optimization techniques makes it possible to
sub-regions of initial positions for different optimal strategies. Study complex scenarios involving many participants,
To resolve the non-uniqueness of the optimal strategies analytic and semi-analytic synthesis of optimal control
associated with the dispersal curves, the maneuver time is go|ytions of the type developed in [1-6] are still important, as
introduced as an additional performance criterion. We show they provide an insight into the underlying structure of the

that, while in the case of an encounter of identical participants uti d b d b h K inst which
the optimal collision avoidance strategies that start at the solution and can be used as benchmarks aganst whic

dispersal point often have identical maneuver time, this is no numgrical SO|Uti0n_3 can be compa_red.

longer the case when the participants have unequal turn  This paper continues the study in [1-6] and focuses on the
capabilities. We show that a unique strategy with a smaller dispersal curves for the case of participants with unequal turn
maneuver time can be identified based on the non-dimensional capabilities. A dispersal curve (which is a planar case of a
parameter of the problem. Efficient numerical algorithms for dispersal or singular surface in differential games theory [33])

calculation of the maneuver time for optimal strategies are tes th . f diff t optimal strateai Such
presented. The results in this paper are applicable in aviation Separates the regions of difierent optimal strategies. such a

and marine collision avoidance and in robotics applications. curve presents a locus of the initial positions for which an
optimal solution is not unique (i.e., there are two optimal
Index Terms — Optimal control, Collision avoidance, strategies that result in the same terminal miss distance). In
Cooperative maneuvers, Dispersal curves, Maneuver time the case of the coplanar close proximity encounter, there is

also a triple point present, where the three optimal strategies
result in the same terminal miss distance. Dispersal curves and
the triple point therefore involve conflicting decisions for the
Encounters, where the participants are sufficiently close frarticipants as to which of equally optimal paths to take.
space and time to be of operational concern (they are ofterThis paper introduces an additional performance criterion
called close proximity encounters), can occur in mangat can be used to select a unique optimal strategy that
applications in aviation, navigation and robotics. The optimalkriginates at a dispersal point or at the triple point. Such a
cooperative collision avoidance strategies for a coplanar closdterion is the maneuver time, which is not only important in
proximity encounter between two identical participants was theoretical sense as a measure of efficiency, but also in a
first studied by Merz [1], [2] (a rigorous analysis is given irpractical sense as an input to a flight management / autopilot
[3]). Recently, the analysis has been extended for a&gstem design.
encounter of participants with unequal turn capabilities, but The main results of the paper can be summarized as
with equal linear speeds [4-6]. follows. We have shown for the case of identical participants
In [1-6], the synthesis of the optimal control solution ighat the maneuver times for two optimal strategies originating
presented in the form of a 2D diagram which establishes thea dispersal point are often identical; this is not the case for
optimal collision avoidance strategy for both participantparticipants with unequal turn capabilities. We show that a
based on their initial relative position and relative orientatiomnique strategy for participants with unequal turn capabilities
Such a diagram presents an important tool for setting andn be selected if the maneuver time is considered as an
validating the traffic rules, and also for testing and validatingdditional performance criterion. A simple analytic
characterization of the unique strategy with the smaller
Manuscript received October 29, 2010. maneuver time is established. Efficient numerical algorithms
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extend the analysis to other dispersal curves. N L
This paper is an extended and revised version of the y . i
conference paper [6]. Participant #2

II.  OPTIMIZATION PROBLEM

The assumptions adopted in this paper are the same as in
the close proximity encounter models [1]-[5]. Thus, we
assume that the linear speeds of the participants are constant.

X
The maximization of the terminal miss distance (which is a >
minimal distance between the participants during the Participant #1
maneuver) is adopted as the performance criterion.
The nondimensional equations of motion of the two ] _ ]
participants with equal linear speeds but unequal turn Figure 1: Schematics of the coplanar
capabilities in the moving polar coordinate system are [1]-[5] encounter in the moving coordinate system
—Ccosg+ cosg -
| P+ COS¢-¢ ) sin@; /2)= 0,
p=|-oyt[sing+sin@-g)lir|=fou), (1) :
sin(@g - &, /2)=0,
-0, + wo, L . "
which yield two terminal conditions:
where p” =(r,9,0) ; r, @, 6 specify the non-dimensional 1. 6.=0; ) (4
instantaneous relative distance between the participants and 2. ¢ =g /2-77, ¢ =6 /2 15

the instantaneous angles defining the relative direction of
their motion (see Fig. 1), :=r/R™", R™" is the lower
I1l.  NECESSARYCONDITIONS FORNONSINGULAR OPTIMAL

CONTROLS

the non-dimensional angular speeds of the participants scaled-l-he Hamiltonian function in the polar coordinate system is

bound on the turn radius of the first participaay; o,are

so that they are contained in the interval [-1, 1], with positiv&Ven by:
values corre;pondlng to the rlght turns (from the pomt of view HOL pou) = AT+ (o.0)
of the participant), and negative values corresponding to the e '
= A.[-cosp+ cos@-@ )l Ay €0y +wo, | (6)

left turn, oy = / ™, 0, =w, | ¥, wherew, w,are
ax , ,max +/]¢{ -0 +[Sin ¢+Sin(0_¢)]/ r},
the angular speeds)™, w)'™ are the absolute values of

. . . T _ .
physical bounds on the angular speeds of the participaridere the adjoint variabled” =(4,,4;,4¢) satisfy the
w is the non-dimensional parameter of the problen@quations,i =-0H , thatis

w:‘@nax

non-dimensional time (¢ := t‘a{"ax

/‘a)l”‘ﬂ >0. The derivatives with respect to the Alsing+ sin@- )] /r?

) are denoted with dots. A=|=A (sinp+ sin@ - ))- A, [cosp— coH—-¢ )]F| (7)
A sin@-@)+A,cos@-@)Ir

The domains for the variables @ are defined as
-T<@p<m 0<0< 2. subject to
The system of ordinary differential equations (1) can be A(T) =0y(p(T),u) =[1,0,0f . (8)
viewed as a control system with the state vector Using the Pontryagin Maximum Principle [34], [35],
of =(r.96) and control function u” =(0,,0,), together with the .termlnal conditions (4), (5), and adjoint
) equations (7), (8), it can be shown ([3], [4]) that there are two
u:[0,T] - U;U OR", U =[-1, 1]x[-1, 1]. types of possible optimal strategies at the terminal time: 1)
The non-dimensional maneuver tirfie (also known as the terminal condition (4) corresponds t@, =-o, =+1 (the
terminal time) is defined as the time to closest approagfricipants are turning with maximum possible angular
between the participants. Itis defined by the conditions  gheeds in an opposite directional sense). We will call such
7(T) =0, (2) strategies the right-left (RL) and the left-right (LR) strategies,
r(t)<0 for tO[0,T]. (3) where the first letter indicates the strategy of the first
The objective is to maximize the terminal miss distand@articipant (located in the origin of Fig.1); 2) terminal
w(p, u)=r|t:T =r, over all admissible controls. Thus, thecondition (5) results iro, =, =+1 (both participants are
turning in the same directional sense with maximum possible

performance index is a function of the terminal time only. Agn ular speeds). Such strategies will be called the right-right
the terminal timeT is unknown, the problem can be g P ' g ght-rig

. ) . . (RR) and the left-left (LL) strategies.
considered as a Mayer problem with free terminal point. _ _ _
By substituting the expression fér from the first equation ~ USIng the transformation of variables=./x"+y" ,
of (1) into the terminal condition (2), it is easy to see that thesing= x, r cos¢ =y , (1) can be re-written in the Cartesian

terminal condition (2) splits into two equations coordinates and presented in terms of backward (retrograde)
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derivatives as

x= oy —sind, y =1-0,x- cod , 6= o, -wo,, (9)
where circles denote the derivative with respectrto
(r=T-t).

Solving (9) subject to the conditionsc|r:0 =X,

[xo — 011 - cosby 1w)f + Yo -0, SiNG, Iw
=rf+2-2cospy -0, (FwT llw
+2rp0, (L4 1/w)sin[@, -0y, (-w] )/ 2).
For given €, w and r;, the loci of the initial relative
positions for the RR and LL strategies (14) and (15) represent

(15)

Y|,., = Yr. and each of the two terminal conditions (4), (5arcs of spirals.

in turn yields the following two cases for the extremals:

Casel. 6 =0, g, =-0, =+1. This case corresponds to the

RL and LR strategies. The solution of (9) is given by
o (l+wyr for o, =1,
- {27T+ o l+w)yr for o, =-1,
x =rpsin(g +oyr)+ oy [1+ cos[(H w7 Jlw
-(1+w)cost lw],
Yy =rpCoS@gr +oy7 )+ (tw)sim w
=sin[(l+ w)r]/ w,
where subscript “T” refers to the terminal instant. FerT',
(10) describes the locus of the initial
(x,=x

(10)

the form
For o, =1:

{x,-1-cos, lw+ (I+ w)cosh, / (Fw )]wF

Hyo ~(L+ @) sin[@, / A+ w)]/ w+sing, | wy? =17, ()
For o, =-1:

{xg—L+acos[(E, - 2m1) | (I+ w)]/w+1

+c0sf, lw¥ Hyp +A+w)sin[(G, -2m) / I+t w)]/w  (12)

-sing, /wy* =r?.
One can see that, for giver}, w andr;, the loci of the

IV. SYNTHESIS OFOPTIMAL CONTROL

First, consider the locus of points on the plane of the initial
relative positions satisfyin@ﬂt:O =0. This locus is called in

[3], [4] an initial zero range rate line. It partitions the plane of
the initial relative positiongx,y) into the regionsr'|t:O >0
(diverging relative distance) and'| 420 <0 (converging

relative distance) at the beginning of the maneuver. Condition
(3) implies that the optimal trajectories can only start in the

region of converging relative distancé|t:0<0. The

following property follows from the terminal condition (2):

conditiondroperty 1 A straight line passing through the origin
.y, =y|) for the RL and LR strategies and takeshith tanp= tan@, /2) represents the locug,_, = 0.

In a similar manner, the Iocur'jst:T =0is called in [3], [4]

aterminal zero range rate line. It follows from the first of Egs.
(13) and terminal conditions (5) that:
Property 2 Straight lines passing through the origin with
tang, = tan{lg, —o, - w)'1/ 2}, o0, =+1, (16)

represent the Ioo'r|t:T =0 for the RR and the LL strategies.
For giveng, and w, the RR and LL trajectories end on lines
(16).

The first step toward identifying the optimal strategy is to
identify the trajectories from the sets of extremals (10), (13),

initial relative positions (11), (12) for the RL and LRsuch that the distance between the participants decreases on

strategies respectively represent circles.

Casell. 6, =2p.+21 or 6,=2¢.; g,=0,=%1.This

the time intervalt O[O, T] (i.e., condition (3) is satisfied).

The following property holds [4]:
Property 3 For the loci of initial relative positions (15) with

case corresponds to the RR and LL strategies. The solution@f=1 and (14) with oy =-1, there exists an interval

(9) takes the form
0=0(l-wr+86,,
Yy =rpCos(@r + o7 )+ sinr
—oy{sin(@, + oy7) —sin[@, + o, (1-w)r ]}/ w
x =rpsin(g +oyr)+ 0, cos@ + o7 ) Iw
t+o,(l-cosr )0, cosfp +o; (tw) .
Forr =T we haved, =0, (l-w)T +6,,and the locus of
.Y, =y|_) forthe RRand LL

(13)

the initial conditions(x, = x

dtrategies is given by:
Forg. =6,12:
[xo - 031 —cosB, Iw)Ff + (Y, — 0, sind, Iw ¥
=rf+2-2cospy -0, FwT llw
=2rp0y L+ 1/w)sin[@, -0y, -w T )/ 2],
Forg. =6, /2-m:

(14)

[0,£], £>0, such that the trajectories with(J[0,6] have

decreasing relative distance.

The synthesis of optimal control can be constructed as
follows (for details, see [3], [4]):
« for a giveng,, rr and w, select the trajectories from the

sets of extremals (10), (13), such that the distance
between the participants decreases on the time interval
td[o,T] (i.e., condition (3) is satisfied);

+ for a giveng,, rr and w, construct the loci of the initial

relative positions with associated strategies that
correspond to the trajectories with decreasing distance
between the participants anil[0, 77 ;

» for the loci constructed in the previous step, construct the
internal envelope (i.e., the locus of points that are closest
to the origin for each value @#); this envelope consists
of the Iinitial positions for different nonsingular
strategies. It can be shown (see [4]) that the strategies
associated with the internal envelope are the optimal

(Advance online publication: 23 November 2010)
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strategies for giver®,, rr andw; corresponding to a different optimal strategy. The dispersal
For givenr,6, (0<6,<m) andw , the internal CUves separate these regions. Berg, < r7,there are three
envelope consists of the arcs of the loci of the initiffiSPersal curves: the RR-LL, the RL-LL and the RL-RR
positions for the RR strategy (15)o(=1), the LL dlsp.ersal.curves.-They sepa-rate the.h.a-lf-plane- of converging
relative distance into the loci of the initial relative positions
for the RR, the LL and the RL optimal strategies (we call them
contains the arc of the locus of the initial conditions fofhe RR, LL and RL loci respectively for brevity). A triple
the RL strategy (11); point (i.e. the point on the plane of initial relative positions
« finally, extend the internal envelope for all valuesof  such that the RR, LL and RL strategies that start at this point
As a result of this procedure, the half-plane of initialesult in the same terminal miss distance) is also illustrated in
relative positions that correspond to trajectories with initiallfig. 2. Note that the synthesis of the optimal control diagram
converging relative distance is partitioned into théor identical participants shown in Fig.2 is characterized by
sub-regions of initial relative positions for different optimathe symmetry of the dispersal curves with respect to the

strategy (14) &, = —1) and, for certain values of , also

strategies, with dispersal curves separating them. RR-LL dispersal curve (which in case of identical participants
Below, we summarize several results from [4] that arepresents a straight line). For the case of an encounter of
useful for the analysis in this paper. participants with unequal turn capabilities, the synthesis of

« For 0<g, <, there are three sub-regions of initialoptimal control diagram is shown in Fig. 3. While the zero

relative positions for optimal strategies: the sub-region §f"9€ rate line remains unchanged for different values of
the initial positions for the right-right (RR) strategyn this case, the dispersal curves shift clockwise. Thus, the

(called the RR locus for brevity); the sub-region of initiafymmetry of the synthesis of the optimal control diagram is
positions for the left-left (LL) strategy (the LL locus), andlOSt:
the sub-region of the initial positions for the right-left
(RL) strategy (the RL locus). Far< 8, <2, the three
sub-regions are the RR, the LL and the LR loci; In what follows, we only consider the cade<é, < for

« For0<@, <, there exists a value of the terminal misghe sake of brevity, and show how the triple point and the
distancer, =r? such that the points on the internaldlspersal curves can be cglculated. To find the tr!ple point,
one needs to find, for give#dy, rr andw, the point of

envelope that correspond to the initial relative positionst . f the loci of the initial relati ition for th
for the RR, LL and RL strategies have a comm Intersection of the loci of the initial relative position for the

) .
intersection point. Such point is called a triple point; EL strategy, the RR strategy and the RL strategy that result in

. . _the trajectories with decreasing relative distance. Thus, one
« Foranyr, <r, the internal envelope does not contain,aeds to satisfy the conditions

V. DISPERSALCURVES AND TRIPLE POINT

the points that correspond to the initial conditions for the LL tp _ RR (mptp
rrespond t¢ . ) =)
RL or LR strategies; the points on the internal envelope @=6,12 @=6,12-1
that correspond to the initial relative positions for the RR LL (ptp = yRR (TP
. . . . y LL) _ _y ( RR) _ 1
and LL strategies intersect at a point that is called the =61 @=6p12-1 a7
RR-LL dispersal point; LL (ptp _ JRL, tp qd}p
; . . x(T1) —0.12 =x" (@),
« For anyr; >r”, the points on the internal envelope that @ =br
correspond to the initial relative positions for the RR and y** (TLTLP)‘%_H P yEr®dP),
-T

RL strategies intersect at a point that is called the RR-RL
dispersal point; the points on the internal envelope that
correspond to the initial relative positions for the LL and

RL-LL

10
T

RL strategies intersect at the LL-RL dispersal point. The RL-RR <dispersal curve
RR-RL and the LL-RL dispersal points do not coincide; dispersal, ]
© Fcurve LL locus

* The optimal trajectory will never leave the locus of the
initial relative positions corresponding to a given optimal

RR-LL dispersa

strategy if it started in this locus; RR locus Turve
e The strategies that include singular controls are ol ITiple poin /\\ .
suboptimal. ‘

Locus Fl,.o =0 |

The synthesis of optimal control diagram presented in
Figure 2 shows the typical structure of the synthesis. The ]
plane of the initial relative positions, at the initial time, is Region of diverging relativg
partitioned by the zero range rate line (the logus =0) distance ]

-5

1%

-10

I I I
-5 0 5

into two half-planes of initial relative positions for trajectories
with diverging and converging relative distance respectively.
The half-plane of initial relative positions for trajectories with
converging relative distance is further separated into three
regions of initial relative positions with each region

X

Figure 2: Synthesis of optimal control diagram,
6, =5m/6;w=1.
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values of g, andw . This dispersal curve is of a special
importance for a close proximity encounter as it corresponds
to the smaller of the relative distances between the
participants (see Figs. 2 and 3). To find the RR-LL dispersal
point, one needs to find a point of intersection of the loci of
initial relative position for the LL strategy (14) and of the loci
of initial relative positions for the RR strategy (15). Thus, for
a giverr;, one needs to find the maneuver tinfgg and

Trr for the LL and RR strategies so that

xH (TLL)‘ _ = xRR (TRR)‘
@ =61

LL
T
y( LL)‘@

2 @-=9T/2—77'

_ RR
:arlz_y (TRR)‘@:erlz—n'

Region of diverging relative . ) ]
distance | These conditions can be written as the following system of
two trigonometric equations with the unknown maneuver

! . 9 times(T;;, Trr)
-5 [o] 5

-10

x O:rT Sin((HO—aj]‘LL—TLL)/Z)+ 200390 lw
Figure 3: Synthesis of optimal control diagram +7p 5iN((G, + g + Tep) ! 2)+ cOST}, — 2
for different values otw, 6, =57/6. +COSTp — [COSGy — Ty, W cofy + e )&

21
O0=r,cos(Gy—-afly, —T;)!2))-2sing, Iw @D

where T and T2, are the maneuver times for the LL and ¥ 77 COS(€ + Wlrg +Trg)/2)+SinTy = SinTge
the RR strategies at the triple point respectively. The terminal  *[Sin(@ — &1y, )+sin@ + wlgg)]/ w=2.
miss distance and the terminal relative bearing at the tripféhe initial guesses fof;;, and Txr can be obtained from

point arethp and q#’ respectively. Conditions (17) can bethe solution for identical participants (19). To construct a
reduced to the following system of three trigonometri€lispersal curve, one needs to solve (21) incrementally for the

equations value of r, betweenO andthp . Once the maneuver times are
0=rP sin(@ - wTE -T2)2)+2cod, Iw found from (21), the RR-LL dispersal curve can be
. constructed using equations for either of the RR or LL loci of
¥ thp sin( * aﬂ}%’? " T’g%) f2)+ COSTL% -2 the initial relativegpo(litions.
+CosT, — [cos@y —wIL W codly +al b, To find the RL-LL dispersal point, one needs to find a point
0=1r cos(@ - wI'? ~TP)/2)- 2sin6, lw of intersection of the loci of the initial relative positions for
Tt 0 LLt LLt _ Ot the LL strategy (14) and the loci of initial relative positions
+17 CoS(6 + Wiy +Tgr) ! 2)+sinTyy (1) for the RL strategy (11), that is
-sinTZ, +[sin@, - T2 )+ sin@y + Wl )]/w, xLE (TLL)‘%_H . (e, @),
-vT

(rP)? ={rPsin(8, - T2 -T2) ] 2)+ cosT® - 2
-cos@, - Wl ) lw+ @+ 1)cos, /(Fw )b}
+{rPcos((6y - Wl -T2)12) +sinT -2

+sin@, - wTLtf )/ w— (w+1)sinB, / (1+w)]/ W’

LL — RL
y )|, , = v ).

These conditions can be reduced to a single trigopnometric
equation inT;;

r? ={rysin(6y - &y, — Ty, )/ 2]- 2+ cosTy,

with the unknowns (T2, T2, ,r#). The initial guesses for 1 1+ w)

the unknowns are obtained from the corresponding values for _Z)COSGO —ol It o cosf, /(w)Jf 2
identical participantsug= 1) [4] +{rpcos[(8, - Ty, —T;.)! 2]+sinTy,

2sin@, /2) 1. Q+w) .
Tt =T =arcco i . (19) +=sin@, - afly; )- sinfg, / (1+ w)]¥.
r” = 1Rr [P+ 25in(@, /2)] o & - o) o 6 / (1+ w)]}
The RL-RR dispersal point can be calculated in a similar
pa_  (-cos@ /2)f persa' P

. : (20) manner by finding a point of intersection of the loci of initial
sin@ /2)+ cosg /2y 1 relative positions for the RL (11) and the RR (15) strategies,

Equations (18) are solved incrementally, starting withh, which can then be reduced to solving a single trigonometric
until the value of interest is reached, updating the initial guegguation with the unknowff

H tp tp
at each step. Using the calculated va(@§s, T, ,r7), the ) sin{(go + g + Trp)

T

coordinates of the triple point can then be computed from oné = 2
of the equations (17). 2
We now consider the RR-LL dispersal curve for given _Z)COSHO+

1
+—co0s@, + T,
} ~cosh + Wlig )

1+ w)

cos, /(#w )t cofyy 3

(Advance online publication: 23 November 2010)
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1- [ 2)1/](si /12 /2% 1
- cos{ (6 + Wlgr + Tgr) } —isin(Ho + g ) [1-cos& /2)]/[(sin€ /2)}+ cosy /2} (26)
2 w 23) -2tan@, /2)< 0.
2 . 1+ w) . . It is straightforward to show that inequality (26) is valid for
+Z)S|n6?0 - )smpo I (1+ )]+ SinTyg ¥ . 0<8, < 3D quality (26)

Equations (22) and (23) are solved iteratively, starting with The above results are illustrated in Fig.4, where the
the value of the terminal miss distance at the triple poi@ispersal curves and the optimal trajectories for collision
rr=r® and using T, =T% (or Trr =T ) for a avoidance of identical participants are showrgfor 277/ 3.

given g, and w as an initial guess. The valug is then Note that, in case of an encounter of identical participants, the
increased incrementally, while updating the initial guess fd@cus 7|,_, = 0 coincides with the loci of terminal relative

Ty, (orTgg) at each step. positions for both the RR and LL strategies, and we can see in
Fig. 4 that the optimal RR and LL trajectories end on this

VI. MANEUVER TIMES FORSTRATEGIES THATSTART AT THE  locus. For the RL strategy that starts at the triple point, the
DISPERSAL ORTRIPLE POINT circle of terminal relative positions is shown with a dotted

Dispersal curves can be viewed as the loci of the initifine-
relative positions that deliver a non-unique optimal strategy.g. Participants with Unequal Turn Capabilities

e e e o e T The ety of h enounter ies for he R and e L
resolg tion ga sh(;rter maneuver time may be yreferable stgategies in the case of an encounter of identical participants
ution, uver d Y P ' Wthe result of symmetry of the synthesis of optimal control

now compare the competmg strate.g|es in order to identify t%{?agram discussed in Section IV. For the case of participants
strategy that takes shorter time to implement.

h e T licable f h with unequal turn capabilities, the symmetry is lost and the
e maneuver timesl;;, Tre, as applicable for the .. 0 ver times for the strategies originating at the same

Srategies that Originate at the RR'LL, RL-LL or RL'RRdispersa| point are never the same.

dispersal points, can be computed from (21), (22) and (23he maneuver times for the RR and the LL strategies starting

respectively. The maneuver time for the strategies thatthe RR-LL dispersal point are plotted in Fig.5 as functions

originate at the triple point can be computed from (18). Thet ¢, for 8, =2m/3,r, = 1. We can see that the LL strategy
maneuver time for RL strateg¥y; is given by simple

formula T, =6,/ (1+w) (see first equation of (10)).

takes longer to complete than the RR strategydorl, while
the opposite is true forv<1. The maneuver times coincide

A. ldentical Participants for w=1. Extensive numerical calculations show that such a

First, weconsider the case of identical participants.
Proposition 1 For identical participants@¢=1), the RR and
LL strategies, that start at the RR-LL dispersal point with a
given terminal miss distaneg , have identical maneuver
times given by

T, =Trp =arccos{2sing, /2)/f; + 2sir, /2)]} (24)

At the triple point, the maneuver times for the RR and LL
strategies are identical, while the maneuver time for the RL
strategy always exceeds that for the RR and LL strategies for
0<gy<rm.

Proof For the case of identical participants, the RR-LL
dispersal curve is a straight line normal to the Ii1|1§o =0

(which is called a zero range rate line in [3]). The RR and LL : ' Region ofidiverging
loci of terminal positions in this case coincide with the locus | relative di§tance

r'|t:0 =0. For a givenr;, the RR and LL trajectories are the

¥ oF- -

arcs of the circles that are symmetric relative to the RR-LL .

dispersal curve with centers on the zero range rate line (see [3]

for details) and with a radiuR(ry) =rp +2sin@, /2). Figure 4: Dispersal curves and optimal trajectories,

Simple geometric considerations give 6, =2m/3;, w=1;1and 2 are the RR and LL optimal
cos(ly; )= coslzr F Rtr »rr IR € ) (25) trajectories that start on the RR-LL dispersal point
=2sin@, /2)/r + 2sin@, /2)], withr, =0.3, T, =Trr =0.55;3,4and5are RR, LL

which proves (24) and RL trajectories respectively that start at the triple

It follows from (19), (20) and the first equation of (10) that  point with rqu =0.683, T;; =Trp =0.771,
the maneuver time for RL strategy is larger than the maneuver Ty, =1.047.
time for RR (or LL) strategy if
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Figure 5: Non-dimensional maneuver times for LL
(solid line) and RR (dashed-dotted line) strategies, Figure 7: Dispersal curves and optimal trajectories
that start at the RR-LL dispersal point, as functions forg, =5m/6;w= 0.5, 1 and 2 are the RR and LL
ofw 6 =2m/3,rp = 1. optimal trajectories respectively that start on the
RR-LL dispersal point with, =0.6, T;; =0.8166,

relationship between the maneuver times for the RR and LL
strategies, that start at the RR-LL dispersal point, is typical for

0<Gy<m. clockwise for the RR and anticlockwise for the LL strategies
Figures 6 and 7 show the RR-LL dispersal curves and thespectively for w<1 (this behaviour is also illustrated in
trajectories that start on these curves for1 and w<1 Figs. 6 and 7).

respectively. Note that for the encounter of participants with
unequal turn capabilities, the IocuéL:0 =0 does not VII. CONCLUSIONS

T = 0.8599

coincide with the loci of the terminal positions for the RR and _ . o _ .
LL strategies. These loci represent straight lines passiA§is paper studies the optimal collision avoidance strategies
through the origin. They rotate anticlockwise for the LL an@ssociated with the dispersal curves and the triple point. Such

clockwise for the RR strategies respectively fop 1, and strategies are essentially non-unique. We show that the issue
of non-uniqueness of the optimal collision avoidance strategy

starting at the dispersal point can be resolved for the case of
participants with unequal turn capabilities, if the maneuver
time is considered as an additional performance criterion.

We prove that, for identical participants, the maneuver
times for the RR and LL strategies that start at the RR-LL
dispersal point (including the triple point) are equal. This is
the result of the symmetry inherent in the synthesis of the
optimal control diagram for the case of an encounter with
identical participants. For identical participants, the RL

R ~_ strategy that starts at the triple point, always takes longer to
. | Locus r|t=(5 =0 B complete than the RR or LL strategies. However, for the
S ;" RR locus of 1 encounter of participants with unequal turn capabilities, the

)/ terminal position symmetry of the synthesis of the optimal control diagram is

, < LL locus of terminal lost and the encounter times for the RR or LL strategies are

s position: never equal. The LL strategy that starts at the RR-LL dispersal
L curve takes longer to complete than the RR strategwfel,

- 08 ° 05 ! while the opposite is true fap<1.

Thus, a unique optimal collision avoidance strategy with a
smaller maneuver time can be identified based on the
non-dimensional parameter of the problem Efficient

numerical algorithms for calculation of the maneuver time for
optimal collision avoidance strategies are presented.
Tre =0.3742. The results in this paper are applicable in aviation and
marine collision avoidance and robotics applications.

0.5

X

Figure 6: Dispersal curves and optimal trajectories for
6, =5m/6;w=4;1 and 2 are the RR and LL optimal

trajectories respectively, that start on the RR-LL
dispersal point withr, =0.6, T;; =0.4302,
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