



Abstract— The constructive topology of the cascade

correlation algorithm makes it a popular choice for many

researchers wishing to utilize neural networks. However, for

multimodal problems, the mean squared error of the

approximation increases significantly as the number of modes

increases. The components of this error will comprise both bias

and variance and we provide formulae for estimating these

values from mean squared errors alone.

We achieve a near threefold reduction in the overall error by

using early stopping and ensembling. Also described is a new

subdivision technique that we call patchworking. Patchworking,

when used in combination with early stopping and ensembling,

can achieve an order of magnitude improvement in the error.

Also presented is an approach for validating the quality of a

neural network’s training, without the explicit use of a testing

dataset.

Index Terms—Bias, Cascade Correlation, early stopping,

ensembling, multimodal functions, patchworking, subdivision

method, variance.

I. INTRODUCTION

 Neural networks are commonly used for regression

modelling. However, a perennial problem in the specification

is determining the topology of the network. Constructive

topology neural networks have gained in popularity because

hand crafting this structure is very time consuming. Cascade

correlation [1] is a well known member of the constructive

neural networks, with hundreds of associated publications

each year. Rather than requiring decisions from the user such

as: how many hidden layers, how many neurons in each layer,

and which activation functions should be used, cascade

correlation automatically makes these choices during its

supervised learning process.

The first version of cascade correlation was intended to

work best as a classifier, but subsequently, its author made

some minor changes that improved its performance in

regression roles [2]. The new algorithm was named “Cascade

II” but is referred to in this paper as “CasCor”.

Manuscript received October 8, 2010. This work was supported by an

EPSRC Doctoral Training Grant.

 Mike J. W. Riley is a Doctoral Research Student in the School of
Engineering, Cranfield University, Cranfield, Bedford MK43 0AL, UK.

(e-mail: m.riley@cranfield.ac.uk).

Karl W. Jenkins is a senior lecturer in the Department of Engineering
Computing and Cybernetics at Cranfield University and specializes in

computational engineering. (e-mail: k.w.jenkins@cranfield.ac.uk).

Chris P. Thompson is the Head of the Department of Engineering
Computing and Cybernetics at Cranfield University.

(e-mail: chris.thompson@cranfield.ac.uk)

The aim of this paper is to present mechanisms that

improve the fit of the CasCor neural network, focusing on

multimodal surfaces. Test functions for global optimization

were being used by the current authors to create training

surfaces, and curiosity grew as to why certain functions

caused exceptional mapping problems for CasCor neural

networks. Whilst undertaking work to resolve these problems,

the most successful method discovered was subdividing the

input domain (see [3]).

Ensemble averaging and early stopping are two techniques

commonly used to reduce neural network generalization

errors [4]. We found clear benefits from employing these

techniques for the functions under consideration. Ensembling

and early stopping address the variance problem of neural

networks. We introduce a subdivision method called

“Patchworking” that addresses the bias problem of CasCor

networks, by raising their information capacity. This capacity

is a measure of a neural network‟s ability to represent the

features within the training set. By using patchworking for

domain subdivision the information content in the training

sets, and hence the error, is much reduced. The total

information capacity of the patchwork has grown – thus we

obtain improved generalization on multimodal test functions.

The layout of this paper is as follows: Section II describes

the three techniques we use to improve the fit for multimodal

functions. Section III gives details of the early stop, training

set size, ensembling, and patchworking experiments. Section

IV contains the results, and closing remarks are made in

Section V.

II. IMPROVING THE FIT OF THE CASCOR NEURAL NETWORK

Three techniques are presented in this paper, all of which

are designed to improve the fit of the CasCor neural network

to given datasets thereby improving generalization. These

three methods are:

1) Early stopping

2) Ensemble averaging

3) Patchworking

Our previous work [3] indicated other areas for future

work such as: how the sizes of training datasets influence the

result of training, and, what are the effects of the size of the

validation set when we use early stopping? The current work

answers these questions.

A. Early stopping

One of the disadvantages of CasCor neural networks is

their propensity to overfit on the training data, thus losing

generalization of the underlying function [4]. Inspecting the

A Study of Early Stopping, Ensembling, and

Patchworking for Cascade Correlation Neural

Networks

Mike J. W. Riley, Karl W. Jenkins, and Chris P. Thompson

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

monotone decrease of the training mean squared error (MSE)

gives no indication of this. Typically, the error during

training is seen to reduce, almost uninterrupted, until one of

the stopping criteria is met and the network is pronounced as

“trained”. If, however, a call-back function is set, the training

progress can briefly be interrupted to test the (still evolving)

neural network against the validation dataset.

The validation dataset is wholly independent from the

training set and it allows us to determine an early stopping

point. The MSE graph on this validation data typically takes

the approximate form of a hockey stick outline – initially the

validation MSE falls as the network fits to the underlying

function, but at some point too many neurons are added, there

is a loss of generality, and the MSE starts to increase. Early

stopping halts the training at or around this minimum point

thus minimizing negative impacts from overfitting. In reality,

the profile of the validation error is not smooth and some

form of heuristic needs to be used to halt the training at an

appropriate moment; the heuristic is described in Section

III.D.

B. Ensembling

Tetko and Villa [4] described ensemble averaging, or a

“committee of machines”, as acting to reduce the variance

that is common in neural networks. Multiple neural networks

are trained on the same dataset, but in use, the arithmetic

mean is taken across the output responses of the ensemble

members. The testing error of these ensembles is much lower

than the average test errors of their constituent parts and,

when compared to the basic CasCor neural network, often

represents a reduction in the MSE by a factor of two to three -

the only penalty being an increase in required training time.

C. Patchworking - a subdivision method

A third technique for improving the fit is “patchworking”,

a method of subdivision that addresses the bias problem of

CasCor neural networks by raising their capacity. This

technique is particularly suited to highly multimodal

response surfaces and its benefits are shown in Section IV.E.

Determined empirically, we define “highly multimodal” as

six or more distinct extrema over a multi-dimensional

surface; the fit deteriorates significantly when the extrema

exceed nine. Functions such as these are used in this paper to

demonstrate CasCor‟s difficulty in fitting the underlying

function (Table I). These poor fits appear as high MSEs on

testing sets and are also clearly visible in surface plots.

Neither early stopping, nor ensembling, are sufficient to

overcome these poor fits as the source of this problem is the

inability of a single CasCor neural network to represent the

complex features in the dataset.

The ensembled and early-stopped plot of the Schwefel

function, Fig. 2, correctly maps the global minimum and

global maximum, but is clearly a poor approximation of

Schwefel‟s form (Fig. 1). The Langermann function, Fig. 3

likewise challenges the mapping ability of the CasCor neural

network even with ensembling and early stopping (Fig. 4).

Some of the greatest strengths attributed to the CasCor

type of neural network are as a result of it growing its own

topology during training. An intrinsic feature is that at any

point during training, no more than one new neuron will be

having its weights optimized. It is widely believed that this

distinguishing behaviour results in rapid training times;

however, this is challenged by [5], in which Squires et al.

conclude that freezing of formerly trained weights can be

detrimental to effective learning.

The universal function approximation abilities of the

CasCor neural network, mathematically proven in [6], are

only applicable if we assume that correct choices have been

made when each and every neuron was inserted. By taking a

system view of the training process, we argue that correct

choices are frequently not made when mapping multimodal

functions.

Figure 1 Schwefel function, range x(i) [0,500]

Figure 2 CasCor mapping of Schwefel with ensembling and early

stopping

Informally, the training process plays the role of an agent

in the system. This agent aims to train and fix in the network

one neuron at a time that, in isolation, reduces the MSE on the

training set by the largest possible amount. Several time

steps later in the training, more neurons have been added and

we see, with the benefit of hindsight, that incorrect choices

have been made in the early stages of training. What were

once apparently optimal additions to the network are

ultimately conspiring to deflect the network from a good

mapping of the underlying function. The training algorithm

dictates that once neurons have been placed in the network,

they may not be removed or re-trained (weight freezing) and

so the problem becomes irreconcilable [5].

The problem is one of decision theory – specifically

evidential decision theory: how can a training process place a

neuron in the network which, later in time, will combine with

downstream neurons in only a beneficial way?

A more formal description can be found in [7] where they

consider the problems caused when training on the simple

“double-tanh” function. The problem is seen to be sufficient

to preclude, or at least delay, convergence of the CasCor

0

247

495

0

400

800

1200

1600

0

247

495

X1

X2

0

247

495

0

400

800

1200

1600

0

247

495

X1

X2

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

network. Variants of the CasCor neural network include one

that only adds neurons to a single hidden layer (breadth) [2]

and one that chooses whether to add depth or breadth to the

network [8]. Both have mixed success against the standard

CasCor.

In our training experiments with datasets that contain

highly multimodal functions (Table I), the training problem

becomes clearer when monitoring the validation MSE. As the

network is training, the insertion of new neurons should be

conferring a greater information capacity to the neural

network, and the validation MSE should decrease. Inserting

the first two or three hidden neurons does cause a small

decrease in the validation MSE, but soon after, this error

increases resulting in a very poor generalization of the

underlying function.

Figure 3 Langermann function, range x(i) [0,2]

Figure 4 CasCor mapping of Langermann with ensembling and

early stopping

The hypothesis behind patchworking is that by subdividing

the input domain, the number of extrema that any one neural

network must approximate is kept below the multimodal

threshold. Hence, CasCor networks with a small number of

neurons can approximate the function over each subdivision

with a lower MSE. In this way, patchworking overcomes the

problems associated with weight freezing. Ensembling and

early stopping can be used in conjunction with patchworking

and are, in fact, logical accompaniments.

III. EXPERIMENTAL SET UP

The architecture of the CasCor algorithm is well known

[1],[2],[9]. The CasCor neural networks under consideration

are created from the open source library created by Nissen

[10]. The library contains an implementation of the Cascade

Correlation II algorithm based on the original Lisp code

written by Fahlman in 1996 (unpublished).

Here, the FANN C source code is used with default

settings chosen for CasCor training. The target MSE for the

training is 10−4 when early stopping is not used and an

arbitrary setting of 10−5 when early stopping is used. In use,

the lower target will never be reached, due to early stopping

triggering a halt to the training. The current release,

2.1.0-Beta, does not yet provide a neural network copy utility

or functions that correctly scale and de-scale datasets, and so

these have been added to our implementation.

One traditional test for the quality of regression fits (such

as presented in the current work) is to calculate the MSE

against a testing set, in which the samples differ from those in

the training set. Lower is better, and so we can measure the

success of the techniques herein by how much they reduce

the MSE. Our testing sets are generated from the algorithm in

[11]. The size is chosen as 1000 × 𝑑 where 𝑑 is the number

of inputs to the neural network (or dimensions). The

positioning of so many points is computationally expensive,

especially when trying to maintain space filling properties.

For this reason only one template was generated for each of

the four different dimensions that were tested.

The range of all inputs and outputs is normalized to the

interval [0.1,0.9] with the scaling factors saved after

processing. These factors are later used to scale down the

queries and scale up the neural network response.

Note: All MSE errors presented in this paper are also

calculated on scaled data [0.1,0.9], thus making possible fair

comparisons between otherwise disparate function output

ranges.

A. Sample size

When choosing the size of the training datasets, how many

samples should be used? Too few samples will mean that our

training set may not accurately represent the underlying

pattern. However, in situations where generating training

data is very time-expensive, we would like to know the

minimum size that can be of practical use in training our

neural networks. We would also like to answer the question

of how the demand for training data varies with the

dimensions of the problem at hand. To determine the answers

to these questions we performed CasCor training using 13

test functions (defined in Table I) in two, three, four and five

dimensions with training datasets sizes in the range [16 ×
𝑑, 384 × 𝑑] (where 𝑑 is the number of dimensions).

Orthogonal arrays (OAs) were chosen to generate our

training datasets. An OA is defined in the form 𝑂𝐴.𝑁. 𝑘. 𝑠. 𝑡
indicating an orthogonal array with 𝑁 runs, 𝑘 factors, 𝑠
levels, and strength 𝑡. This is an array of size 𝑁 by 𝑘, with

entries from 0 to 𝑠 − 1 with the property that in any of the 𝑡
columns each of the 𝑠𝑡 possibilities occurs equally often [12].

The training set is made up from repeated runs of

𝑂𝐴. 16.5.4.2 [13]. With 16 evaluations being made each time,

6 runs of this OA would be required to generate a training

dataset of 96 points. The selection of the factors in each

subsequent OA is known as the infill criteria [14]; when

subsequent OAs are evaluated, each of its factors is chosen to

be numerically furthest from all previously tested factors.

The use of orthogonal arrays in the current work is only an

artifact of the intended application of this work in surrogate

0.0

1.0

2.0

-1

0

1

0.0

1.0

2.0

X1

X2

0.0

1.0

2.0

-1

0

1

0.0

1.0

2.0

X1

X2

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

Table I Multimodal test functions

Function Name Range

Ackley = −20 ∙ exp −
1

5
∙

1

𝑛
 𝑥𝑗

2

𝑛

𝑗=1

 − exp
1

𝑛
∙ 𝑐𝑜𝑠 2𝜋𝑥𝑗

𝑛

𝑗=1

 + 20 + exp(1)
−30 ≤ 𝑥𝑗 ≤ 30

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
(1)

De Jong‟s 5th

= 0.002 + 𝑖 + 𝑥1 − 𝑎1𝑖
6 + 𝑥2 − 𝑎2𝑖

6 −1

25

𝑖=1

−1

where

𝑎1𝑖

𝑎2𝑖
 =

−32 − 16 0 16 32 − 32 … 0 16 32

−32 − 32 − 32 − 32 − 32 − 16…32 32 32

−20 ≤ 𝑥𝑗 ≤ 20

𝑗 = 1,2

(2)

Langermann

= 𝑐𝑖exp −
1

𝜋
 𝑥𝑗 − 𝑎𝑖𝑗

2
2

𝑗=1

5

𝑖=1

cos 𝜋 𝑥𝑗 − 𝑎𝑖𝑗
2

2

𝑗=1

where

 𝑎𝑖𝑗 =
3 5 2 1 7

5 2 1 4 9

𝐓

 𝑐𝑖 = 1 2 5 2 3 𝐓

0 ≤ 𝑥𝑗 ≤ 2

𝑗 = 1,2

(3)

Michalewicz = − sin 𝑥𝑗 ∙ sin
𝑗 ∙ 𝑥𝑗

2

𝜋

20𝑛

𝑗=1

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

When 𝑗 = 2, 0 ≤ 𝑥𝑗 ≤ 𝜋

When 𝑗 = 5, 1.0 ≤ 𝑥𝑗 ≤ 1.5

(4)

Schwefel = 418.9829𝑛 − 𝑥𝑗 sin 𝑥𝑗

𝑛

𝑗=1

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

When 𝑗 = 2, 0 ≤ 𝑥𝑗 ≤ 500

When 𝑗 = 4, 100 ≤ 𝑥𝑗 ≤ 300

When 𝑗 = 5, 100 ≤ 𝑥𝑗 ≤ 300

(5)

Shubert = 𝑖 cos 𝑖 + 1 𝑥1 + 𝑖

5

𝑖=1

 ∙ 𝑖 cos 𝑖 + 1 𝑥2 + 𝑖

5

𝑖=1

−8 ≤ 𝑥𝑗 ≤ −6.2

𝑗 = 1,2
(6)

Six Hump Camel Back = 4 − 2.1𝑥1
2 +

𝑥1
4

3
 ∙ 𝑥1

2 + 𝑥1𝑥2 + −4 + 4𝑥2
2 ∙ 𝑥2

2
−1.9 ≤ 𝑥1 ≤ 1.9

−1 ≤ 𝑥2 ≤ 1
(7)

Hartmann,
3,4H

 
4 3

2

1 1

expi ij j ij

i j

c a x p
 

 
    

 
 

where

i
ija

ic ijp

1

2
3

4

3.0

0.1
3.0

0.1

10

10
10

10

30

35
30

35

1.0

1.2
3.0

3.2

0.6890

0.4699
0.1091

0.0381

0.1170

0.4387
0.8732

0.5743

0.2673

0.7470
0.5547

0.8828

0 ≤ 𝑥𝑗 ≤ 1

𝑗 = 3 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

(8)

Rosenbrock = 100 𝑥𝑗
2 − 𝑥𝑗+1

2
+ 𝑥𝑗 − 1

2

𝑛−1

𝑗=1

−10 ≤ 𝑥𝑗 ≤ 10

𝑗 = 𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
(9)

modelling, and their inclusion is not believed to alter the

findings of this paper. In creating training datasets, less

complex sampling methods should be sufficient to repeat our

results.

B. Early stopping

Several tests were undertaken in order to answer two

questions: 1. What is the smallest size of validation set that

can be used? 2. Does the use of larger size validation sets

have any beneficial effect on improving the fit of the trained

networks? The validation sets ranged from a size of 5% of the

training set to 100% of the training set. Code from

Beachkofski and Grandhi [11] provides the method of

distributing the samples in the validation set. This “improved

Latin hypercube” sampling was chosen because:

1) Generating validation sets of less than 1000 points is not

computationally expensive and can be done at run time,

2) The algorithm in [11] produces points that fill the

hypercube uniformly, the statistical properties of which

are desirable as described in [14],

3) The technique is fundamentally different from that used

to generate the training set - ensuring that most, if not all,

of the validation data points are automatically

independent from those in the training set.

After the validation error is initialized to 1.0, our heuristic

algorithm for early stopping is run each time a new hidden

neuron is added to the network, and is given below:

 Test the network against the validation set.

 If this new validation error is less than the old one,

update the old validation error with this new value and

make a copy of this “best network so far”.

 Do not initiate early stopping until at least five hidden

neurons exist in the network.

 Trigger early stopping on the earliest of:

o The error on the validation set becoming less than

5 × 10−5 (suitably low error)

o The validation error growing to be 50% larger than

the smallest experienced validation error (network

is diverging)

o More than 31 hidden neurons existing in the

network (likelihood of a diverging network)

 When early stopping occurs, the “best network so far” is

recalled from memory to replace the active network. The

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

training is halted and the network is saved to permanent

storage. The saved neural network is that which had the

smallest validation error.

C. Dispensing with the testing set

Our early stopping validation set shares the same property

of a testing set in that they both contain samples wholly

independent from the training dataset. The only difference is

that testing sets are usually of a large size. Testing sets are

useful in determining how successful a neural network‟s

training has been. However, there may be circumstances

where sampling is very time-expensive, for example

surrogate modelling. If we want to avoid the cost of

generating a large testing set, yet still retain a test for the

quality of the fit, is there a size of validation set that can give

us a reasonable approximation to the results we would get

from a testing set? Experiments were performed that compare

the MSE calculated from validation sets of sizes [5%,100%]

of the training set against MSE calculations from our much

larger testing sets of size 1000 × 𝑑.

D. Ensembling

When preparing an ensemble, we need to answer the

question of how many neural networks to include in that

ensemble. Others have chosen an arbitrary number [4],[15]

for their ensembles, but we investigated the ensemble size

with respect to its influence on reducing the MSE.

Ensembles of CasCor neural networks were trained on our

13 test functions; each test was repeated ten times for the

larger ensembles and 30 times for ensembles smaller than

ten.

E. Patchworking

The algorithm used to construct the patchwork is shown in

the appendix. It allows for a user defined number of

subdivisions known as “depth” and can be applied to as many

input dimensions as is practical. Note, though, that the

number of required networks grows exponentially
()2 depthxdimensions

 and so this method may not be practical if the

dimensions number more than nine or ten. The patchworking

technique is shown in Fig. 5 and is applied as follows:

1. Train at first without subdividing the domain

(patchwork depth=0)

2. Test the MSE after this training.

3. Subdivide the input domain if the test error is

undesirably high (depth = depth + 1).

4. Create more training samples if necessary and

re-train on these subdivisions (or „patches‟).

5. Repeat steps 2-4 until the testing MSE is

satisfactorily low.

A relatively simple algorithm can be constructed to query

such a patchwork, assuming that we have stored on file the

minimum and maximum bounds of each network‟s domain.

Figure 5 Patchworking subdivisions for a 2D function

IV. RESULTS

A. Sample size

Fig. 6 shows the results of the sample size test. Neural

networks were trained on the 13 test functions, covering two

to five dimensions. Each test was repeated ten times. After

each training, the quality of the fit was evaluated by a testing

set of size 1000 × 𝑑. The resulting MSEs often differed by

one or two orders of magnitude, hence a need to normalize

the results. In normalizing the results, the set of mean squared

errors for each function were scaled such that the size of the

training dataset that yielded the worst error was attributed 1.0;

the dataset set size with the lowest MSE was attributed a

score of 0.0. Therefore, Fig. 6 shows the mean of the

normalized results of training across the 13 test functions.

Figure 6 Change in test MSE against training set size

The demand for training data scales linearly with the

number of dimensions. Less than 32 samples/dimension

leads to poor mappings of the underlying function. Optimal

training occurred when the training datasets were of size 96

samples/dimension. For more cost-effective training, 48 to 64

samples/dimension are sufficient to yield low mapping

errors.

B. Early stopping

Fig. 7 shows the results of an experiment that aimed to

determine how big the validation set should be with respect to

the training set. For this experiment, we chose to train our

neural networks with 96 samples per dimension. As before,

we trained on all 13 test functions and each test was repeated

ten times – Fig. 7 showing the mean average of the results.

Figure 7 Reductions in the tested MSE with larger validation sets

A trend line has been added to Fig. 7 that shows the error

reducing by 25% as we increase the size of the validation set

Depth 0 Depth 1 Depth 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 64 128 192 256 320 384
Training data per dimension

Normalised
error

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

0% 20% 40% 60% 80% 100%

M

S

E

Validation set size as % of Training set size

Mean MSE of 13
test functions

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

from 5% to 100% of the training set. The conclusion we make

is that validation set sizes as small as 5% (or minimum size of

10 samples) can be relied on to achieve the early stopping

behavior that we desire.

In column five of Table II, the results of early stopping are

displayed. For all the experiments in this table, the training

datasets were created from 48 samples per dimension and the

validation sets were set at 20% of the size of the training

datasets. The mean reductions in the MSE range from 10% to

57% due to early stopping (ES). In all test cases, early

stopping has reduced the common tendency of the CasCor

neural network to overfit.

C. Dispensing with a testing set

There was one other early stopping experiment for which

we desired an answer. If we are using unseen data for our

early stopping set, then could we dispense with a testing set

entirely – relying only on the MSE calculated from the

validation dataset? If this approach is viable then, in

circumstances when creating datasets is time-expensive, we

could dispense with the creation of a testing set - relying

solely on our validation error as a test for the quality of our

fit.

The results in Fig. 8 were generated from the same

experiment performed for the results in Fig. 7. However, for

each size of validation set, we also compared the MSE

calculated from the validation set with the MSE calculated

from our much larger testing sets (1000 × 𝑑). The results

suggest that validation sets of 20% or greater are sufficient to

give a close approximation to the results from a much larger

testing set. Taking a two dimensional test function as an

example; the training set would have numbered 48 × 2 = 96

samples, and a 45% validation set would have been of size

96 × 0.45 = 44 . The total number of samples we would

have created = 140. With this validation set, Fig. 8 predicts

that the MSE calculated from this, size = 44, validation set

will be within 7% (σ = 5%) of the MSE calculated from a

testing set of size = 2000 samples.

Figure 8 How close the validation MSE is to the testing set MSE

D. Ensembling

For clarity, only three of the thirteen test functions are

shown in Fig. 9, however, the form of the line graphs were

similar throughout all 13 functions; the MSE reduced rapidly

as the ensemble size increased from one to seven. Smaller

reductions in the MSE occurred until ensembles with a size

greater than 25 were seen to deliver little benefit. We also

used early stopping in this experiment and so the MSEs in

Fig. 9 reflect the combination of both techniques.

Figure 9 Reduction in mean squared error due to ensembling

The curves in Fig. 9 take the form:

  2
1

2
EnsSize

Ensemble

MSE Bias
MSE Bias

EnsSize

 
  (10)

where 1EnsSizeMSE  is the mean MSE of the neural networks

that constitute the ensemble. Bias
2

 is the asymptote to which

the curves tend. Effectively, the bias is an MSE boundary that

no size of ensemble can reduce because ensembling acts only

on the part of the error that is due to variance. Likewise the

early stopping, provided by our validation set, acts only to

reduce the variance by limiting overfitting.

Equation (10) can be derived from the equations presented

in the seminal paper of Geman [16] where he describes the

bias/variance dilemma of neural network training. The

general form of the error is given in their paper as:

2Error Variance Bias  (11)

and it can be shown that (10) and (11) are equivalent.

Equation (10) provides us a convenient test for the relative

contribution of variance and bias to the overall error.

Evaluating the MSE is a function commonly built into neural

network libraries and so, using MSE evaluations alone, we

can estimate the bias (12) and then the variance (13) for any

ensemble. If variance is found to dominate, then creating a

larger size of ensemble will reduce the MSE and improve the

mapping of the underlying function. If we find that the bias is

the largest component of our mapping error, we know that the

information capacity of our CasCor neural network has been

exceeded. Installing more neurons will confer additional

capacity and patchworking provides that utility.

12 ()

(1)

EnsSizeEnsembleEnsSize MSE MSE
Bias

EnsSize

 



 (12)

  2
1EnsSizeMSE Bias

Variance
EnsSize

 
 (13)

By way of example, Fig. 10 presents a smaller region of

Fig. 9 and, for clarity, only the Michalewicz data is

0%

10%

20%

30%

40%

50%

60%

0% 20% 40% 60% 80% 100%
Validation set size as % of Training set size

Mean inaccuracy of
validation MSE
compared to testing
MSE. Vertical bars show
standard deviation (σ).

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 10 20 30 40 50 60 70 80 90 100

M

S

E

Ensemble Size

2D Michalewicz

Hartmann

Six Hump

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

re-plotted. Say that an ensemble of size 10 has been created.

We calculate the MSE of that ensemble and also calculate the

mean MSE of the 10 members of that ensemble. Now, by

using (12) and (13), we find that our Bias
2
 = 0.01 and the

Variance of our ensemble = 0.0004. Ensembling to a size of

15 would reduce our variance to 0.00027, but it is clear that

the dominant component of our MSE is the bias. A CasCor

ensemble that possesses a high bias indicates a highly

multimodal function in the training dataset. When the MSE is

undesirably high (and dominated by bias), the application of

our patchworking method is advocated.

Figure 10 Michalewicz scatter plot

Table II Benefits of ES, Ens, and patchworking

 103𝑀𝑆𝐸

Test

function
Dims

Size of train +

early-stop sets.

Patchwork

Off/On

Cascade

Correlation

(CasCor)

CasCor

+ ES

CasCor with

Patchworking

CasCor

with Ens

+ ES

CasCor with

Patchworking

+Ens + ES

Ackley 2 116/461
33.79 14.33 6.31 3.10 1.53

Reduction in error: 57.59% 81.33% 90.82% 95.47%

DeJongs5th 2 116/461
176.33 80.06 33.20 58.10 11.23

Reduction in error: 54.60% 81.17% 67.05% 93.63%

Langermann 2 116/461
77.33 33.32 3.82 22.43 1.48

Reduction in error: 56.91% 95.06% 70.99% 98.09%

Michalewicz 2 116/461
22.90 14.38 5.23 10.78 3.27

Reduction in error: 37.22% 77.16% 52.92% 85.72%

Schwefel 2 116/461
36.73 19.96 3.77 4.39 0.80

Reduction in error: 45.67% 89.75% 88.06% 97.81%

Shubert 2 116/461
32.08 20.24 3.11 4.59 0.27

Reduction in error: 36.89% 90.31% 85.69% 99.15%

Six Hump 2 116/461
13.39 6.77 1.46 4.26 0.36

Reduction in error: 49.42% 89.09% 68.15% 97.34%

Ackley 3 173/1383
14.66 6.36 4.78 5.64 2.37

Reduction in error: 56.62% 67.38% 61.56% 83.84%

Hartmann 3 173/1383
12.67 11.60 2.44 6.50 2.38

Reduction in error: 8.40% 80.76% 48.66% 81.18%

Rosenbrock 4 231/3687
18.27 14.41 4.88 8.19 2.99

Reduction in error: 21.10% 73.27% 55.18% 83.61%

Schwefel 4 231/3687
27.47 20.73 2.84 13.70 2.37

Reduction in error: 24.51% 89.66% 50.12% 91.36%

Michalewicz 5 288/9216
10.64 9.52 1.74 5.38 1.35

Reduction in error: 10.53% 83.62% 49.45% 87.35%

Schwefel 5 288/9216
44.77 22.61 3.66 22.07 1.55

Reduction in error: 49.50% 91.83% 50.71% 96.54%

Average

reduction in

error

39.15% 83.88% 64.57% 91.62%

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0 5 10 15 20 25

M

S

E

Ensemble Size

2D Michalewicz

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

E. Patchworking

In Table II Enssize = 15 was used and the basic CasCor

results are shown alongside the benefits of early stopping,

patchworking, ensembling (Ens) + early stopping (ES), and

all three combined. Patchworking is applied to a depth of one.

The same computer program was used to generate all the

neural networks, the only changes being flags that turn on/off

the features shown. Results shown are formed from the

arithmetic mean of ten trials.

When compared to a standalone CasCor neural network,

the mean effect of patchworking is to reduce the error 6.2

times. Employing ensembling and early stopping on these

functions reduces the error by a mean factor of 2.8. However,

the real benefit of patchworking is that it can be combined

with the techniques of early stopping and ensembling – here

delivering a mean reduction in neural network testing error of

11.9 times (91.6%).

F. Visualization of patchworking + Ens + ES results

Fig. 2 showed the ensembled and early stopped mapping of

a small part of the Schwefel function. Similarly, Fig. 4

showed the ensembled and early stopped plot of part of the

Langermann function. After patchworking to a depth of one,

Figs. 11 and 12 show clearly the significant improvement

achieved from using the patchworking method.

Figure 11 CasCor mapping of Schwefel (Patchworking + Ens + ES)

Figure 12 CasCor mapping of Langermann (Patchworking + Ens +

ES)

G. Patchworking for larger depths and dimensions

From our experience with the CasCor neural network, no

more than nine features can be mapped satisfactorily by one

network alone. Taking the full domain of the two

dimensional Schwefel function as an example, Fig. 13, we

see significantly more than nine stationary points on this

surface. Patchworking to a depth of one, Fig. 14, begins to

approximate the Schwefel surface but, using the recursive

facility of the patchworking algorithm, we can see the

significant improvement in Fig. 15 when patchworking has

been allowed to continue to a depth of three.

Figure 13 Schwefel function, range x(i) [-500,500]

Figure 14 CasCor of Schwefel (Patchworking, depth=1 + Ens +ES)

Figure 15 CasCor of Schwefel (Patchworking, depth=3 + Ens +ES)

The required sizes of training datasets per patch remain the

same for any given problem, but the number of patches grows

exponentially = 2 𝑑𝑒𝑝𝑡 ℎ×𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 therefore, so too will the

total training data required. Some fields in which

patchworking may be appropriate are those which already

have very large datasets e.g. health databases, astronomy

data, chemical process data, or any other collection of data

samples where the data available is exponentially larger than

0

247

495

0

400

800

1200

1600

0

247

495

X1

X2

0

1

2

-1

0

1

0

1

2

X1

X2

-500

-5

490

0

500

1000

1500

2000

-500

-5

490

X1

X2

-500

-5

490

0

500

1000

1500

2000

-500

-5

490

X1

X2

-500

-5

490

0

500

1000

1500

2000

-500

-5

490

X1

X2

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

the dimensions of that data. The information capacity of

patchworked CasCor networks also grows exponentially and

so we can provide a calculation for the number of features

that can be mapped. In the general case:

Maximum features mappable ()9 2 depthxdimensions 

Therefore, given an eight-dimensional problem,

patchworking to a depth of one could map as many as 2,304

unique features in a training dataset numbering 98,304

samples.

V. CONCLUSION

The architecture of the Cascade Correlation neural

network means that it is quick and simple to configure for

training. However, its weight freezing mechanism hinders the

mapping of multimodal functions. To address the

bias/variance problem for this neural network type, three

techniques have been presented: early stopping, ensembling,

and patchworking.

Early stopping and ensembling have been shown to be

valuable tools in reducing the variance component of error.

Early stopping sets as small as 5% of the training set have

been shown to be effective in reducing the variance error. Our

work also suggests that there may be no need for a separate

testing set. A validation set of size 45% of the training set can

substitute for a testing set 45 times larger, returning an MSE

calculation within 7% of the MSE from that testing set

(5%)  . This offers the possibility of saving a significant

amount of time that would otherwise have been spent

sampling for a testing set.

Ensembling has been shown to be more effective than

early stopping in reducing variance and, in the limit, will

reduce the variance to zero. Equations have been presented in

this work that will provide approximations for the variance

and the bias of an ensemble using mean square error

calculations alone.

Our patchworking technique has been introduced to reduce

the bias component of error by raising exponentially the

information capacity of the Cascade Correlation neural

network. Although patchworking does require exponentially

larger training datasets, it overcomes the weight freezing

problem of this neural network type and leads to significantly

improved fits for multimodal problems - yielding a reduction

in error of over ten in some cases.

APPENDIX

Figure 16 The Patchworking algorithm

ACKNOWLEDGMENT

The authors are grateful to Adeline Schmitz of California

State University for a discussion about her ensembling/early

stopping experiments with the cascade correlation neural

network, and, Steffen Nissen for creating and sharing FANN.

Mike Riley thanks Rick Drury for his comments on this

paper.

REFERENCES

[1] S. E. Fahlman and C. Lebiere, “The cascade-correlation learning

architecture,” National Science Foundation under Contract Number

EET-8716324 and Defense Advanced Research Projects Agency

(DOD), ARPA Order No. 4976 under Contract F33615-87-C-1499.,

1991.

[2] L. Prechelt, “Investigation of the cascor family of learning

algorithms,” Neural Networks, vol. 10, pp. 885–896, 1996.

[3] M. J. W. Riley, C. P. Thompson, and K. W. Jenkins, “Improving the

Performance of Cascade Correlation Neural Networks on

Generate LatinHyperCube template for use in early stopping

Run_LatinHyperCube() //to create Validation set

Increment global count_of_evaluations

Scale the Training set and the Validation set [0.1,0.9]

Train Neural Networks (ensemble_size)

Update the NeuralNetQuery file to reflect the sub-domain of these
new Neural Networks

Iterate “n” times

sub_domain_k = list_of_sub_domains(n)

Call RecursiveFunction(sub_domain_k, depth+1)

RETURN (success)

False

True

False

IF (count_of_evaluations > max_permissible_evaluations)
OR IF

(depth > max_permissible_depth) RETURN (fail)

IF (NNvalidation_error < desired_NNerror)
RETURN (success)

IF (count_of_evaluations > max_permissible_evaluations)
RETURN (fail)

while (available_training_data) <
(user_specified_minimum_train_data_per_NN)

Run_Orthogonal_DoE() //builds Training set Ref. Section III(A)

Increment global count_of_evaluations

True

//Our problem size grows exponentially
n = 2 ^ (count_of_parameters);

//Generate list of „n‟ sub_domains
BranchAndBoundDescriminator()

False

RecursiveFunction(domain_to_study, depth)

Global count_of_evaluations = 0
depth = 0
Call RecursiveFunction(whole_domain, depth)

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

Multimodal Functions,” Lecture Notes in Engineering and

Computer Science: Proceedings of The World Congress on

Engineering 2010, WCE 2010, 30 June - 2 July, 2010, London, U.K.,

pp. 1980-1986.
[4] I. V. Tetko and A. E. P. Villa, “An enhancement of generalization

ability in cascade correlation algorithm by avoidance of

overfitting/overtraining problem,” Neural Processing Letters, no. 6,

pp. 43–50, 1997.

[5] C. S. Squires, Jr., and J. W. Shavlik, “Experimental analysis of

aspects of the cascade-correlation learning architecture,” Computer

Sciences Department, University of Wisconsin-Madison, Tech.

Rep., 1991.

[6] T.Y. Kwok and D.Y. Yeung, “Objective functions for training new

hidden units in constructive neural networks,” IEEE Transactions on

Neural Networks, vol. 8, no. 5, pp. 1131–1148, Sep 1997.

[7] G. P. Drago and S. Ridella, “On the convergence of a growing

topology neural algorithm,” Neurocomputing, vol. 12, no. 2-3, pp.

171–185, 1996.

[8] S. Baluja and S. E. Fahlman, “Reducing network depth in the

cascade-correlation learning architecture,” Carnegie Mellon

University, School of Computer Science, Tech. Rep., 1994.

[9] K. Mehrotra and S. Ranka, Elements of artificial neural networks.

The MIT Press, 1996.

[10] FANN, http://leenissen.dk/fann/. Fast Artificial Neural Network

Library. (Retrieved Jan 12th 2010.)

[11] B. Beachkofski and R. Grandhi, “Improved distributed hypercube

sampling,” in 43rd Structures, Structural Dynamics, and Materials

Conference, 2002.

[12] N. J. A. Sloane, http://www2.research.att.com/ njas/oadir/. A

Library of Orthogonal Arrays. (Retrieved Feb 8th 2010.)

[13] W. F. Kuhfeld, http://support.sas.com/techsup/technote/ts723.html.

Orthogonal Arrays Provided as a Service of SAS (Retrieved Feb 8th

2010).

[14] A. Forrester, A. Sobester, and A. Keane, Engineering Design Via

Surrogate Modelling: A Practical Guide. Wiley Blackwell, 2008.

[15] A. Schmitz and H. Hefazi, “Constructive neural network ensemble

for regression tasks in high dimensional spaces,” Sixth International

Conference on Machine Learning and Applications, pp. 266–273,

2007.

[16] S. Geman, “Neural Networks and the Bias/Variance Dilemma,”

Neural Computation, vol. 4, pp. 1-58, 1992.

IAENG International Journal of Applied Mathematics, 40:4, IJAM_40_4_12

(Advance online publication: 23 November 2010)

__

