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Abstract—Block Krylov subspace spectral (KSS)
methods are a “best-of-both-worlds” compromise be-
tween explicit and implicit time-stepping methods for
variable-coefficient PDE, in that they combine the ef-
ficiency of explicit methods and the stability of im-
plicit methods, while also achieving spectral accuracy
in space and high-order accuracy in time. Block KSS
methods compute each Fourier coefficient of the solu-
tion using techniques developed by Gene Golub and
Gérard Meurant for approximating elements of func-
tions of matrices by block Gaussian quadrature in the
spectral, rather than physical, domain. This paper
demonstrates the superiority of block KSS methods,
in terms of accuracy and efficiency, to other Krylov
subspace methods in the literature. It is also de-
scribed how the ideas behind block KSS methods can
be applied to a variety of equations, including prob-
lems for which Fourier spectral methods are not nor-
mally feasible. In particular, the versatility of the ap-
proach behind block KSS methods is demonstrated
through application to nonlinear diffusion equations
for signal and image processing, and adaptation to
finite element discretization.
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1 Introduction

In [17] a class of methods, called block Krylov subspace
spectral (KSS) methods, was introduced for the pur-
pose of solving parabolic variable-coefficient PDE. These
methods are based on techniques developed by Golub and
Meurant in [8] for approximating elements of a function of
a matrix by Gaussian quadrature in the spectral domain.
In [18], these methods were generalized to the second-
order wave equation, for which these methods have ex-
hibited even higher-order accuracy.

It has been shown in these references that KSS methods,
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by employing different approximations of the solution op-
erator for each Fourier coefficient of the solution, achieve
higher-order accuracy in time than other Krylov subspace
methods (see, for example, [14]) for stiff systems of ODE,
and they are also quite stable, considering that they are
explicit methods. They are also effective for solving sys-
tems of coupled equations, such as Maxwell’s equations
[23], and elliptic PDE such as Poisson’s equation or the
Helmholtz equation [21].

In this paper, we review block KSS methods, and com-
pare their performance to other Krylov subspace meth-
ods from the literature. It is then shown that block KSS
methods are applicable to PDE other than those best
suited to Fourier spectral methods. Section 2 presents
the approximation of bilinear forms involving functions of
matrices by block Gaussian quadrature, as developed by
Golub and Meurant. Section 3 describes how block KSS
methods are built on this work, as applied to parabolic
problems, and summarizes their main properties. Section
4 discusses implementation details, and demonstrates
why KSS methods need to explicitly generate only one
Krylov subspace, although information from several is
used. In Section 5, we discuss modifications to block
KSS methods in order to apply them to systems of cou-
pled equations, such as Maxwell’s equations. Numerical
results are presented in Section 6, in which block KSS
methods are compared to other Krylov subspace meth-
ods. In Section 7, block KSS methods are applied to
nonlinear diffusion equations for signal and image pro-
cessing. In Section 8, we discuss the adaptation of block
KSS methods to bases other than the Fourier basis, which
allows application to problems featuring complicated ge-
ometries or more general boundary conditions. Conclu-
sions and discussion of future work are in Section 9.

2 Elements of Functions of Matrices

In [8] Golub and Meurant describe a method for comput-
ing quantities of the form

uT f(A)v, (1)
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where u and v are N -vectors, A is an N ×N symmetric
positive definite matrix, and f is a smooth function.

The basic idea is as follows: since the matrix A is sym-
metric positive definite, it has real eigenvalues

b = �1 ≥ �2 ≥ ⋅ ⋅ ⋅ ≥ �N = a > 0, (2)

and corresponding orthogonal eigenvectors qj , j =
1, . . . , N . Therefore, the quantity (1) can be rewritten
as

uT f(A)v =
N∑
j=1

f(�j)u
Tqjq

T
j v. (3)

which can also be viewed as a Riemann-Stieltjes integral

uT f(A)v = I[f ] =

∫ b

a

f(�) d�(�). (4)

As discussed in [8], the integral I[f ] can be approximated
using Gaussian quadrature rules, which yields an approx-
imation of the form

I[f ] =
K∑
j=1

wjf(�j) +R[f ], (5)

where the nodes �j , j = 1, . . . ,K, as well as the weights
wj , j = 1, . . . ,K, can be obtained using the symmetric
Lanczos algorithm if u = v, and the unsymmetric Lanc-
zos algorithm if u ∕= v (see [11]).

In the case u ∕= v, there is a possibility that the weights
may not be positive, which destabilizes the quadrature
rule (see [2] for details). Instead, we consider[

u v
]T
f(A)

[
u v

]
, (6)

which results in the 2× 2 matrix∫ b

a

f(�) d�(�) =

[
uT f(A)u uT f(A)v
vT f(A)u vT f(A)v

]
, (7)

where �(�) is a 2× 2 matrix function of �, each entry of
which is a measure of the form �(�) from (4).

In [8] Golub and Meurant showed how a block method
can be used to generate quadrature formulas. We will
describe this process here in more detail. The integral∫ b
a
f(�) d�(�) is now a 2 × 2 symmetric matrix and the

most general K-node quadrature formula is of the form∫ b

a

f(�) d�(�) =

K∑
j=1

Wjf(Tj)Wj + error, (8)

with Tj and Wj being symmetric 2 × 2 matrices. By
diagonalizing each Tj , we obtain the simpler formula∫ b

a

f(�) d�(�) =
2K∑
j=1

f(�j)vjv
T
j + error, (9)

where, for each j, �j is a scalar and vj is a 2-vector.

Each node �j is an eigenvalue of the matrix

TK =

⎡⎢⎢⎢⎢⎢⎣
M1 BT1
B1 M2 BT2

. . .
. . .

. . .

BK−2 MK−1 BTK−1

BK−1 MK

⎤⎥⎥⎥⎥⎥⎦ , (10)

which is a block-triangular matrix of order 2K. The vec-
tor vj consists of the first two elements of the correspond-
ing normalized eigenvector. To compute the matrices Mj

and Bj , we use the block Lanczos algorithm, which was
proposed by Golub and Underwood in [10].

3 Krylov Subspace Spectral Methods

We now review block KSS methods, which are easier to
describe for parabolic problems. Let S(t) = exp[−Lt]
represent the exact solution operator of the problem

ut + Lu = 0, t > 0, (11)

u(x, 0) = f(x), 0 < x < 2�, (12)

u(0, t) = u(2�, t), t > 0. (13)

The operator L is a second-order, self-adjoint, positive
definite differential operator of the form

Lu = (p(x)ux)x + q(x)u, (14)

where p(x) > 0 and q(x) ≥ 0 on [0, 2�]. It follows that L
is self-adjoint and positive definite.

Let ⟨⋅, ⋅⟩ denote the standard inner product of functions
defined on [0, 2�]. Block Krylov subspace spectral meth-
ods, introduced in [17], use Gaussian quadrature on the
spectral domain to compute the Fourier coefficients of
the solution. These methods are time-stepping algo-
rithms that compute the solution at time t1, t2, . . ., where
tn = nΔt for some choice of Δt.

Given the computed solution ũ(x, tn) at time tn, the so-
lution at time tn+1 is computed by approximating the
Fourier coefficients that would be obtained by applying
the exact solution operator to ũ(x, tn),

û(!, tn+1) =

〈
1√
2�
ei!x, S(Δt)ũ(x, tn)

〉
. (15)

This is accomplished by applying the approach from the
previous section for approximating (1), with A = LN
where LN is a spectral discretization of L, f(�) =
exp(−�t) for some t, and the vectors u and v are, respec-
tively, ê! and un, where ê! is a discretization of 1√

2�
ei!x
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and un is the approximate solution at time tn, evaluated
on an N -point uniform grid.

For each wave number ! = −N/2+1, . . . , N/2, we define
R0(!) =

[
ê! un

]
and compute the QR factorization

R0(!) = X1(!)B0(!). We then carry out block Lanczos
iteration, applied to the discretized operator LN , to ob-
tain a block tridiagonal matrix TK(!) of the form (10),
where each entry is a function of !.

Then, we can express each Fourier coefficient of the ap-
proximate solution at the next time step as

[ûn+1]! =
[
BH0 E

H
12 exp[−TK(!)Δt]E12B0

]
12

(16)

where E12 =
[

e1 e2

]
. The computation of (16) con-

sists of computing the eigenvalues and eigenvectors of
TK(!) in order to obtain the nodes and weights for Gaus-
sian quadrature, as described earlier.

This algorithm has local temporal accuracy O(Δt2K−1)
[17]. Furthermore, block KSS methods are more accurate
than the original KSS methods described in [20], even
though they have the same order of accuracy, because
the solution un plays a greater role in the determination
of the quadrature nodes. They are also more effective
for problems with oscillatory or discontinuous coefficients
[17].

Block KSS methods are even more accurate for the
second-order wave equation, for which block Lanczos it-
eration is used to compute both the solution and its time
derivative. In [18, Theorem 6], it is shown that when the
leading coefficient is constant and the coefficient q(x) is
bandlimited, the 1-node KSS method, which has second-
order accuracy in time, is also unconditionally stable. In
general, as shown in [18], the local temporal error is
O(Δt4K−2) when K block Gaussian nodes are used.

4 Implementation

KSS methods compute a Jacobi matrix corresponding to
each Fourier coefficient, in contrast to traditional Krylov
subspace methods that normally use only a single Krylov
subspace generated by the initial data or the solution
from the previous time step. While it would appear that
KSS methods incur a substantial amount of additional
computational expense, that is not actually the case, be-
cause nearly all of the Krylov subspaces that they com-
pute are closely related by the wave number !, in the 1-D
case, or !⃗ = (!1, !2, . . . , !n) in the n-D case.

In fact, the only Krylov subspace that is explicitly com-
puted is the one generated by the solution from the pre-
vious time step, of dimension (K + 1), where K is the
number of block Gaussian quadrature nodes. In ad-

dition, the averages of the coefficients of Lj , for j =
0, 1, 2, . . . , 2K − 1, are required, where L is the spatial
differential operator. When the coefficients of L are in-
dependent of time, these can be computed once, during a
preprocessing step. This computation can be carried out
in O(N logN) operations using symbolic calculus [19, 22].

With these considerations, the algorithm for a single time
step of a 1-node block KSS method for solving (11), where
Lu = −puxx + q(x)u, with appropriate initial conditions
and periodic boundary conditions, is as follows. We de-
note the average of a function f(x) on [0, 2�] by f , and
the computed solution at time tn by un.

ûn = fft(un), v = Lun, v̂ = fft(v)
for each ! do

�1 = −p!2 + q (in preprocessing step)
�1 = v̂(!)− �1û

n(!)

�2 = ⟨un, v⟩ − 2 Re [ûn(!)v(!)] + �1∣un(!)∣2
e! = [⟨un, un⟩ − ∣ûn(!)∣2]1/2

T! =

[
�1 �1/e!

�1/e! �2/e
2
!

]
ûn+1(!) = [e−T!Δt]11û

n(!) + [e−T!Δt]12e!
end
un+1 = ifft(ûn+1)

It should be noted that for a parabolic problem such
as (11), the loop over ! only needs to account for non-
negligible Fourier coefficients of the solution, which are
relatively few due to the smoothness of solutions to such
problems.

5 Application to Maxwell’s Equations

We consider Maxwell’s equation on the cube [0, 2�]3, with
periodic boundary conditions. Assuming nonconductive
material with no losses, we have

div Ê = 0, div Ĥ = 0, (17)

curl Ê = −�∂Ĥ

∂t
, curl Ĥ = "

∂Ê

∂t
, (18)

where Ê, Ĥ are the vectors of the electric and magnetic
fields, and ", � are the electric permittivity and magnetic
permeability, respectively.

Taking the curl of both sides of (18) yields

�"
∂2Ê

∂t2
= ΔÊ + �−1curl Ê×∇�, (19)

�"
∂2Ĥ

∂t2
= ΔĤ + "−1curl Ĥ×∇". (20)

In this section, we discuss generalizations that must be
made to block KSS methods in order to apply them to a
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non-self-adjoint system of coupled equations such as (19).
Additional details are given in [23].

First, we consider the following 1-D problem,

∂2u

∂t2
+ Lu = 0, t > 0, (21)

with appropriate initial conditions, and periodic bound-
ary conditions, where u : [0, 2�]× [0,∞)→ ℝn for n > 1,
and L(x,D) is an n × n matrix where the (i, j) entry is
an a differential operator Lij(x,D) of the form

Lij(x,D)u(x) =

mij∑
�=0

aij� (x)D�u, D =
d

dx
, (22)

with spatially varying coefficients aij� , � = 0, 1, . . . ,mij .

Generalization of KSS methods to a system of the form
(21) can proceed as follows. For i, j = 1, . . . , n, let Lij(D)
be the constant-coefficient operator obtained by averag-
ing the coefficients of Lij(x,D) over [0, 2�]. Then, for
each wave number !, we define L(!) be the matrix with
entries Lij(!), i.e., the symbols of Lij(D) evaluated at !.
Next, we compute the spectral decomposition of L(!) for
each !. For j = 1, . . . , n, let qj(!) be the Schur vectors
of L(!). Then, we define our test and trial functions by

�⃗j,!(x) = qj(!)⊗ ei!x.

For Maxwell’s equations, the matrix AN that discretizes
the operator

AÊ =
1

�"

(
ΔÊ + �−1curl Ê×∇�

)
is not symmetric, and for each coefficient of the solu-
tion, the resulting quadrature nodes �j , j = 1, . . . , 2K,
from (9) are now complex and must be obtained by a
straightforward modification of block Lanczos iteration
for unsymmetric matrices.

6 Numerical Results

In this section, we compare the performance of block KSS
methods with various methods based on exponential in-
tegrators [13, 15, 30].

6.1 Parabolic Problems

We first consider a 1-D parabolic problem of the form
(11), where the differential operator L is defined by
Lu(x) = −pu′′(x) + q(x)u(x), where p ≈ 0.4 and

q(x) ≈ −0.44 + 0.03 cosx− 0.02 sinx+ 0.005 cos 2x−
0.004 sin 2x+ 0.0005 cos 3x

is constructed so as to have the smoothness of a function
with three continuous derivatives, as is the initial data
u(x, 0). Periodic boundary conditions are imposed.

We solve this problem using the following methods:

∙ A 2-node block KSS method. Each time step re-
quires construction of a Krylov subspace of dimen-
sion 3 generated by the solution, and the coefficients
of L2 and L3 are computed during a preprocessing
step.

∙ A preconditioned Lanczos iteration for approximat-
ing e−�Av, introduced in [24] for approximating
the matrix exponential of sectorial operators, and
adapted in [30] for efficient application to the so-
lution of parabolic PDE. In this approach, Lanczos
iteration is applied to (I+ℎA)−1, where ℎ is a param-
eter, in order to obtain a restricted rational approxi-
mation of the matrix exponential. We use m = 4 and
m = 8 Lanczos iterations, and choose ℎ = Δt/10, as
in [30].

∙ A method based on exponential integrators, from
[13], that is of order 3 when the Jacobian is approx-
imated to within O(Δt). We use m = 8 Lanczos
iterations.

Since the exact solution is not available, the error is es-
timated by taking the ℓ2-norm of the relative difference
between each solution, and that of a solution computed
using a smaller time step Δt = 1/64 and the maximum
number of grid points.

The results are shown in Figure 1. As the number of
grid points is doubled, only the block KSS method shows
an improvement in accuracy; the preconditioned Lanc-
zos method exhibits a slight degradation in performance,
while the explicit fourth-order exponential integrator-
based method requires that the time step be reduced by
a factor of 4 before it can deliver the expected order of
convergence; similar behavior was demonstrated for an
explicit 3rd-order method from [14] in [20].

The preconditioned Lanczos method requires 8 Lanczos
iterations to match the accuracy of a block KSS method
that uses only 2. On the other hand, the block KSS
method incurs additional expense due to (1) the compu-
tation of the moments of L, for each Fourier coefficient,
and (2) the exponentiation of separate Jacobi matrices for
each Fourier coefficient. These expenses are mitigated by
the fact that the first takes place once, during a prepro-
cessing stage, and both tasks require an amount of work
that is proportional not to the number of grid points, but
to the number of non-negligible Fourier coefficients of the
solution.
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Figure 1: Estimates of relative error at t = 0.1 in solu-
tions of (11) computed using preconditioned exponential
integrator [30] with 4 and 8 Lanczos iterations, a 4th-
order method based on an exponential integrator [15],
and a 2-node block KSS method. All methods compute
solutions on an N -point grid, with time step Δt, for var-
ious values of N and Δt.

6.2 Maxwell’s Equations

We now apply a 2-node block KSS method to (19), with
initial conditions

Ê(x, y, z, 0) = F(x, y, z),
∂Ê

∂t
(x, y, z, 0) = G(x, y, z),

(23)
with periodic boundary conditions. The coefficients �
and " are given by

�(x, y, z) = 0.4077 + 0.0039 cos z + 0.0043 cos y −
0.0012 sin y + 0.0018 cos(y + z) +

0.0027 cos(y − z) + 0.003 cosx+

0.0013 cos(x− z) + 0.0012 sin(x− z) +

0.0017 cos(x+ y) + (24)

0.0014 cos(x− y), (25)

"(x, y, z) = 0.4065 + 0.0025 cos z + 0.0042 cos y +

0.001 cos(y + z) + 0.0017 cosx+

0.0011 cos(x− z) + 0.0018 cos(x+ y) +

0.002 cos(x− y). (26)

The components of F and G are generated in a similar
fashion, except that the x- and z-components are zero.

We use a block KSS method that uses K = 2 block
quadrature nodes per coefficient in the basis described
in Section 5, that is 6th-order accurate in time, and a

cosine method based on a Gautschi-type exponential in-
tegrator [13, 15]. This method is second-order in time,
and in these experiments, we use m = 2 Lanczos itera-
tions to approximate the Jacobian. It should be noted
that when m is increased, even to a substantial degree,
the results are negligibly affected.

Figure 2 demonstrates the convergence behavior for both
methods. At both spatial resolutions, the block KSS
method exhibits approximately 6th-order accuracy in
time as Δt decreases, except that for N = 16, the spatial
error arising from truncation of Fourier series is signifi-
cant enough that the overall error fails to decrease below
the level achieved at Δt = 1/8. For N = 32, the so-
lution is sufficiently resolved in space, and the order of
overgence as Δt→ 0 is approximately 6.1.

We also note that increasing the resolution does not pose
any difficulty from a stability point of view. Unlike ex-
plicit finite-difference schemes that are constrained by a
CFL condition, KSS methods do not require a reduction
in the time step to offset a reduction in the spatial step in
order to maintain boundedness of the solution, because
their domain of dependence includes the entire spatial
domain for any Δt.

Figure 2: Estimates of relative error at t = 1 in solu-
tions of (19), (23) computed using a cosine method based
on a Gautschi-type exponential integrator [13, 15] with
2 Lanczos iterations, and a 2-node block KSS method.
Both methods compute solutions on an N3-point grid,
with time step Δt, for various values of N and Δt.

The Gautschi-type exponential integrator method is
second-order accurate, as expected, and delivers nearly
identical results for both spatial resolutions, but even
with a Krylov subspace of much higher dimension than
that used in the block KSS method, it is only able to
achieve at most second-order accuracy, whereas a block
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KSS method, using a Krylov subsapce of dimension 3,
achieves sixth-order accuracy. This is due to the incorpo-
ration of the moments of the spatial differential operator
into the computation, and the use of Gaussian quadra-
ture rules specifically tailored to each Fourier coefficient.

7 Other Spatial Discretizations

The main idea behind KSS methods, that higher-order
accuracy in time can be obtained by componentwise ap-
proximation, is not limited to the enhancement of spec-
tral methods that employ Fourier basis functions. Let
A be an N × N matrix and f be an analytic function.
Then f(A)v can be computed efficiently by approxima-
tion of each component, with respect to an orthonormal
basis {uj}Nj=1, by a K-node Gaussian quadrature rule if
expressions of the form

uHj A
kuj , uHj A

kv, vHAkv (27)

can be computed efficiently for j = 1, . . . , N and k =
0, . . . , 2K − 1, and transformation between the basis
{uj}Nj=1 and the standard basis can be performed effi-
ciently.

The first expression in (27) can be computed in a prepro-
cessing stage if the operator discretized by A is indepen-
dent of time, or it can be computed analytically if the
members of the basis {uj}Nj=1 can be simply expressed
in terms of j, as in Fourier spectral methods. The other
two expressions in (27) are readily obtained from bases
for Krylov subspaces generated by v. Thus it is worth-
while to explore the adaptation of KSS methods to other
spatial discretizations for which the recursion coefficients
can be computed efficiently. The temporal order of ac-
curacy achieved in the case of Fourier spectral methods
is expected to apply to such discretizations, as only the
measures in the Riemann-Stieltjes integrals are changing,
not the integrands.

Consider a general PDE of the form ut = Lu on a domain
Ω, with appropriate initial and boundary conditions. A
finite element discretization results in a system of ODEs
of the form Mut = Ku+F, where M is the mass matrix,
K is the stiffness matrix, F is the load vector, and u is
a vector of coefficients of the approximate solution in the
basis of trial functions. Because M and K are sparse, our
approach can be used to compute bilinear forms involving
functions of M−1K, where the basis vectors uj are sim-
ply the standard basis vectors. Through mass lumping,
M can be replaced by a diagonal matrix in a way that
preserves spatial accuracy [16].

We now present some algorithmic details. Let A be a
symmetric positive definite matrix. For j = 1, . . . , N , we
approximate eTj exp[−At]f using the following algorithm

Figure 3: Solution at t = 0 (top) and t = 0.5 (bottom).

based on block Lanczos iteration. First, we perform the
following initializations:

X0 = 0 (28)

R0 =
[

ej f
]
. (29)

Next, we let K denote the number of block Gaussian
quadrature nodes to be used for each component. Then,
for k = 1, . . . ,K, we compute the following:

Rk−1 = XkΓk−1 (QR factorization) (30)

Mk = XT
k AXk (31)

Rk = AXk −XkMk −Xk−1Γk−1 (32)

Next, we compute the block tridiagonal matrix TK as
in (10). Finally, we approximate each component of the
solution as in (16):

eTj exp[−At]f ≈ eT1 ΓT0 E
T
12 exp[−TKt]E12Γ0e2.

The challenge is to efficiently compute the elements of
TK for all j = 1, . . . , N .
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Figure 4: Relative error at t = 0.5 at various time steps.

To that end, we now consider an alternative approach to
describing block Lanczos iteration, applied to all compo-
nents simultaneously. We define

R0 =
[
I feT

]
, (33)

where e is an N -vector of all ones. Then, we define

R0 = X1Γ0 (34)

where Γ0 is a 2N × 2N matrix with block structure

Γ0 =

[
Γ11

0 Γ12
0

0 Γ22
0

]
. (35)

Each block is a diagonal matrix. The entries of these
blocks satisfy[

[R0]j [R0]j+N
]

=
[

[X1]j [X1]j+N
]
×[

[Γ0]jj [Γ0]j,j+N
[Γ0]j+N,j [Γ0]j+N,j+N

]
,(36)

for j = 1, . . . , N . Because this factorization is actually
a QR factorization of columns j and j + N of R0, the
(2, 1)-block of Γ0, Γ21

i , is zero. The remaining entries can
be computed as follows. We write

R0 =
[
R01 R02

]
, X1 =

[
X11 X12

]
, (37)

and then obtain

Γ11
0 = diag(eT [R01 ∗R01])1/2 (38)

X11 = R01[Γ11
0 ]−1 (39)

Γ12
0 = [Γ11

0 ]−1diag(eT [R01 ∗R02]) (40)

Y12 = R02 −R01[Γ11
0 ]−1Γ12

0 (41)

Γ22
0 = diag(eT [Y12 ∗ Y12])1/2 (42)

X12 = Y12[Γ22
0 ]−1 (43)

where we denote the componentwise products of matrices
A and B by A ∗B.

Next, we define

M1 = (XT
1 AX1) ∗ (E2 ⊗ IN ), (44)

where E2 is a 2× 2 matrix of ones, and IN is the N ×N
identity matrix. In other words, M1 is a 2N ×2N matrix
that is a 2×2 matrix of diagonal blocks, where each block
is the diagonal of the corresponding block of XT

1 AX1.
It should be noted that M1 can be computed without
forming XT

1 AX1 in its entirety. From

[M1]ij = �i mod N,j mod N

N∑
k,ℓ=1

[X1]kiAkℓ[X1]ℓj , (45)

and (37), we obtain

M1 =

[
diag(eT [X11 ∗ Y11]) diag(eT [X11 ∗ Y12)]
diag(eT [X12 ∗ Y11]) diag(eT [X12 ∗ Y12)]

]
,

Y11 = AX11, Y12 = AX12.

The remaining blocks Mk, k = 2, . . . ,K, can be com-
puted in a similar fashion. The matrices R1, . . . , RK−1

can be computed by standard matrix multiplication, tak-
ing sparisty into account. The matrices X2, . . . , XK and
Γ2, . . . ,ΓK−1 can be computed by carrying out the QR
factorization as in (38)-(43).

Once the matrices Mk and Γk are computed, we can
compute the matrices TK , as defined in (10), for each
component of the solution. Each of these matrices is
2K × 2K. From its eigenvalues and eigenvectors, we ob-
tain the nodes and weights for block Gaussian quadrature
that enable us to approximate the appropriate component
of the solution.

As an example of the applicability of block Gaussian
quadrature to spatial discretizations other than a Fourier
spectral discretization, an adaptation of a 2-node block
KSS method is used to solve an advection-diffusion prob-
lem on the rectangle (0, 1)2, in which the flow is being
advected from the origin at a 45-degree angle. The ini-
tial data is Gaussian, with homogeneous Dirichlet inflow
boundary conditions, and homogeneous Neumann out-
flow boundary conditions. The Peclet number is 200. A
15 × 15 uniform mesh and piecewise bilinear basis func-
tions are used. The results are shown in Figures 3 and 4.
As in the Fourier spectral case, the adapted KSS method
is 3rd-order accurate in time. We see that KSS methods
can be just as effective for time-stepping in finite element
models, such as that described in [28], as in Fourier spec-
tral methods
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8 Nonlinear Diffusion for Signal and Im-
age Processing

In [12], Guidotti and the author introduced the nonlinear
diffusion equation

ut −∇ ⋅ (g(u)∇u) = 0, (46)

g(u) =
1

1 + c2∣∇1−"u∣2
, 0 < � < 1. (47)

The diffusion coefficient g(u) involves a slight weakening
of the nonlinearity featured in the well-known Perona-
Malik equation [26] for sharpening and denoising images,
in order to overcome its drawbacks of being ill-posed and
susceptible to “staircasing” effects [12], without introduc-
ing blurring, as some regularizations of Perona-Malik do
[1, 5].

For diffusion equations such as (46), (47) it is generally
not practical to use explicit time-stepping methods, be-
cause of the severe constraints they impose on the time
step. A straightforward alternative is to use implicit
time-stepping in conjunction with an iterative method
such as MINRES [25]. However, this approach has not
been found to be efficient, and solutions tend to exhibit
staircasing and high-frequency oscillations.

These effects are illustrated by solving (46), (47) in one
space dimension, with initial data equal to a character-
istic function convolved with a Gaussian kernel. The re-
sults are shown in Figure 5. As the signal sharpens, the
solution exhibits staircasing and high-frequency oscilla-
tions, which are eventually eliminated over time.

Figure 5: Sharpening of a smooth function, using c = 1,
" = 0.1, Δt = 0.0003. Left plot: backward Euler with
MINRES for time-stepping. Right plot: KSS method.

To demonstrate the effectiveness of KSS methods for im-
age processing applications, the same problem is solved
with a 1-node KSS method. As seen in Figure 5, the
previously observed staircasing and high-frequency oscil-
lations do not occur.

We then illustrate the use of block KSS methods in de-
noising of images. Here the application (46) is inves-

tigated in the context of color images for which u ∈
ℝ3. The experiments performed were not limited to a
channel-by-channel generalization of (46), but the best
results were obtained for such a choice. It would also
conceivably be best to choose the contstant c taylored to
each channel ui, i = 1, 2, 3. Once more experiments de-
liver the best results when the constants are chosen equal
to give

{u it −∇ ⋅
(

1

1 + c∣∇1−"ui∣2
∇ui

)
= 0 , ui(0) = ui0 , (48)

for i = 1, 2, 3.

In order to make sense of this model, the fractional gradi-
ent appearing in the equations needs to be defined. It is
convenient (but not necessary) to work with doubly peri-
odic functions (non periodic images can always be made
periodic by appropriate reflection across the boundaries
as to avoid boundary effects. Then one has

∂z = ℱ−1
z diag

[
2�ikz

]
ℱz , z = x, y ,

where ℱ denotes the discrete Fourier transform. The the

fractional gradient is defined as ∇� =

[
∂�x
∂�y

]
, where

∂�z = ℱ−1
z diag

[
(2�ikz)

�
]
ℱz , z = x, y .

The exponentiation of Λz;n,n is carried out as follows:

(ik)1−" = ∣k∣1−"ei�/2(1−")sign(k), k = −n/2+1, . . . , n/2.

We now apply this model to a test image that is 256×256.
The noise is Gaussian, with standard deviation of 11%.
The result is shown in Figure 6. We observe that the noise
is removed over a very short interval in time, without any
visible artifacts, blurring or loss of contrast.

Figure 6: Denoising of L.A. aerial photo with � = 0.1,
c = 0.5 and T = 1.5× 10−4

Block KSS methods also effective as a time-stepping
scheme for reaction-diffusion equations that are used to
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achieve sharpening of images via deconvolution, such as

ut = ∇ ⋅ (g(u)∇u))− �ℎ̃ ∗ (ℎ ∗ u− f), (49)

where ℎ is a blurring kernel and ℎ̃ is the mirror kernel
ℎ̃(x, y) ≡ ℎ(−x,−y). This equation is a modification of
an equation introduced in [31], with the diffusion coef-
ficient defined in (47). A 1-node block KSS method is
applied to the convolution of a flower-shaped characteris-
tic function,with a Gaussian kernel, resulting in a blurred
image.The original and blurred images, as well as the re-
sult of the deconvolution, are shown in Figure 7.

Figure 7: Left plot: Original image defined via
flower-shaped characteristic function. Center plot:
Blurred flower image obtained by convolution with kernel
ℎ(x, y) = e−100(x2+y2). Right plot: Deblurred flower im-
age obtained by solving (49) to time T = 0.3 with � = 0.1,
c = 0.01, Δt = 0.0002, and � = 104.

It should be noted that the use of iterative methods such
as MINRES necessitates that larger images are handled
by decomposing them into blocks of a manageable size,
such as 128 × 128, and denoised independently of one
another. When using periodic boundary conditions, a
“padding” border must be added around each block, re-
flecting the image across its boundary as needed, in or-
der to prevent artifacts from appearing at the interfaces
between blocks or on the boundary of the entire image.
Unfortunately, when integrating over longer periods of
time, mismatches at the interfaces between blocks can
still appear. The block KSS method, on the other hand,
is capable of efficiently denoising larger images without
such decomposition, thus circumventing these implemen-
tation difficulties.

The approach used to model this kind of fractional dif-
fusion equation can readily be applied to other equations
involving fractional spatial differentiation, such as in [4].

9 Summary and Future Work

We have demonstrated that block KSS methods can be
applied to Maxwell’s equations with smoothly varying
coefficients, by appropriate generalization of their ap-
plication to the scalar second-order wave equation, in a

way that preserves the order of accuracy achieved for the
wave equation. Furthermore, it has been demonstrated
that while traditional Krylov subspace methods based on
exponential integrators are most effective for parabolic
problems, especially when aided by preconditioning as
in [30], KSS methods perform best when applied to hy-
perbolic problems, in view of their much higher order of
accuracy.

Future work will extend the approach described in this
paper to more realistic applications involving Maxwell’s
equations, and related models such as the Vlasov-
Maxwell-Fokker-Planck system [7], by using symbol mod-
ification to efficiently implement perfectly matched layers
(see [3]) for simulation on infinite domains, and various
techniques (see [6, 29]) to effectively handle discontin-
uous coefficients. In addition, block KSS methods will
be adapted to work with bases of Chebyshev polynomi-
als for problems with non-homogeneous boundary condi-
tions, including nonlocal boundary conditions as in [27].
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