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Theoretical Computation of Lyapunov Exponents
for Almost Periodic Hamiltonian Systems

FAROUK CHERIF

Abstract—Lyapunov exponents are an important concept
to describe qualitative properties of dynamical systems. For
instance, chaotic systems can be caracterized with the positivity
of the largest Lyapunov exponent. In this paper, we use the
Iwasawa decomposition of the semisimple Lie group Sp(n,R)
and the enlargement of the phase space to give a theoret-
ical computation of Lyapunov exponents of almost periodic
Hamiltonian systems. In particular, we obtain the existence
of Lyapunov exponents everywhere in the surface of constant
energy of the Hamiltonian H. It turns out that, in this context,
the Oseledec’s assumption is not necessary to guarantee the
existence and the finitness of Lyapunov exponents.

Index Terms—Almost periodic functions, Hamiltonian sys-
tems, Lyapunov exponents.

I. INTRODUCTION

In 1932, Birkhoff proved the individual Ergodic Theorem,
which related the time averages of individual orbits to the
space average for certain types of dynamical systems. While
this theorem is a remarkable result, it is constrained by the
type of averages that are used. In 1963, Kingman extended
Birkhoff’s theorem by proving the subadditive Ergodic The-
orem, which allowed more general types of averages for
subadditive sequences. On the other hand, the theory of
Lyapunov exponents in a form adapted the need of the theory
of dynamical systems and of ergodic theory was given only
in 1968 in the paper by Oseledec [13]. In his paper, Oseledec
proved the Multiplicative Ergodic Theorem, which allowed
for the computation of geometric means for similar ergodic
process and opened a door to practical analysis of dynamical
systems. A direct result of Oseledec’s Multiplicative Ergodic
Theorem is the existence of Lyapunov exponents. There are
as many Lyapunov exponents as there are dimensions in
the state space of the system, but the largest is usually the
most important. For instance, the largest Lyapunov exponent
measures the sensitivity to initial condition in dynamical
systems. In particular Lyapunov exponents play a crucial role
in analyzing dynamics of evolutionary systems, especially in
chaotic and bifurcative systems.

The multiplicative ergodic theorem of Oseledec states that
for an invariant measure p, Lyapunov exponents exist for
the orbit of p—almost every point x. Therefore, Lyapunov
exponents exist for the orbit of a randomly chosen point z
with respect to . If the dynamical system is conservative
(preserves a measure equivalent to Lebesgue measure), then
the multiplicative ergodic theorem does imply that Lyapunov
exponents exist for Lebesgue almost every point in the phase
space. Nevertheless, the relationship between the existence
of such measures and Lyapunov exponents is subtle and so-
phisticated. However, if a system admits a measure satisfying
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certain nice properties, then Lyapunov exponents will exist
for a large set of points.

Until now, many analysis and algorithms exist for the
computation of Lyapunov exponents of a given system
(see for example [1], [2], [7], [8], and [9]). Scientists often
compute Lyapunov exponents without checking whether or
not the exponents actually exist. If the dynamical system is
not conservative, then the existence of Lyapunov exponents
is a not an obvious question and one can find a counter-
example where the Lyapunov exponents fail to exist [14].

The multiplicative ergodic theorem of Oseledec is at the

basis of this paper. More precisely, we focus our attention
on the almost periodic Hamiltonian systems. We present
here an algorithm for computing the Lyapunov exponents
of almost periodic Hamiltonian systems. This algorithm has
four major steps. First, we linearize the differential equation
2 = JH'(z) near an almost periodic solution (we suppose
that such solution exists). Second, we apply the Iwasawa
decomposition of the fundamental matrix of the linearized
equation. Later we enlarge the phase space by considering
the manifold X = R*" x (Sp(n,R) N O (2n,R)) on which
we built the linear differential equation ¥ = A (t,z,u)Y
where the fundamental matrix of this equation is the matri-
cial cocycle R (t,x,u), the upper triangular matrix of the
Iwasawa decomposition. In the last step, we prove that the
cocycles R (t,z) and R (¢, z,u) have the same Lyapunov
spectra which is the mean value in time of the diagonal
elements of A (¢,z,u).
The paper has been organized as follows. In section 2 and
section 3, we present the theory of Lyapunov exponents for
the case of diffeomorphisms of Riemannian manifold and
for the case of Hamiltonian systems respectively. In section
4, we give Theorem 2 which is the heart of this paper and
we establish the existence of Lyapunov exponents for the
almost periodic Hamiltonian flow and we give a theoretical
algorithm for the computation of all of the Lyapunov expo-
nents. Section 5 is devoted to the proof of the main result.
One can remark that we obtain the existence of Lyapunov
exponents every where in the phase space without using the
Oseledec’s assumption nor the ergodic theory.

II. THE OSELEDEC THEORY AND LYAPUNOV EXPONENTS

As starting point we consider the n—dimensional au-
tonomous dynamical system:

&= f(x) M

where = denotes a point in an n—dimensional phase space
C R"™, f(x) is an n—dimensional continuously differentiable
vector field and the overdot denotes the derivate with respect
to time t. The solution of this dynamical system for a
fixed initial value zq is given by the trajectories ' () (or
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¢ (x0,t)). We refer to ¢ as a flow. Assume there exists a
compact subset M/ C R™ such that:

@' (M) C M, for all t > 0.

We study the flow on M. For x € M, we denote ®,, (-, ) the
scalar product on the tangent space 7, M and corresponding
norm ||| . Let TM = U T, M the tangent bundle of M.

FoerManthRT( Yy = T (¢" (z)) denotes the
tangent map of (! at the point z. Furthermore, we have:
T.M — Type )M
1 \
Torr@M  — Typr(p @M

This diagram express the notion of Oseledec’s cocycle i.e.:

Ty (07°) = Too () (¢) 0 Ti (¢°) -

For x € M, we denote L, (M) the set of all ordained basis
of the tangent space 7, M. Let

= {J L.M.
zeM
Let us consider the map:
Im:L(M) — M

such that the fiber of « in M under II is L, M. Let S(M)
be set of C'*° sections of L(M) i.e.:

s:M — L(M)
such that for all x € M :

s () = (s1(2), s2(2), -+, sn(2))

is a basis of T, (M) . Hence, for s € S (M), x € M and
t,s € R, we can construct a matricial cocycle from T}, (¢!)
by the relation :

R(t,x) = s (y) T, (¢") s(z) € GL, (R). (2)

where y = ¢’ (z) and GL,, (R) the set of invertible matrices
of order n.

Otherwise, if z(t) = ¢’ (z) is a solution of (2.
linearize near z obtaining the linear system

g =f'(¢" (2)y 3)

Consequently the fundamental matrix of (3) is a matricial
cocycle i.e. forx € M and t,s € R

= R(t>50s (x))R(va) “4)

To see this is enough to prove that the both sides of the
above equality are solutions of (2.3) with the same initial
condition. We denote (H) the Oseledec’s assumption:

1), we can

R(t+ s, x)

/ sup In* ||Tm<p9 ()| du(z) < +o0 (5)
—1<6<1

where In™ = sup (In, 0) and p is a measure on M satisfying
w(M)=1.

There are many incarnations of Oseledec’s Multiplicative
Ergodic Theorem for various types of dynamical systems.
For the case of diffeomorphisms of Riemannian manifold,
its general form is:

Theorem 1 (OSELEDEC) [/3] Let ' : M — M be

a Cl—diffeomorphism of a compact manifold of dimension
n and let p an p'—invariant measure satisfying (5). Then
one can find:

i. real numbers :

X1 > X2 > > Xk, Where k< n

such that there exists;

ii. positive integers ni,No, - -+ , Ny such that:

n=mni+ng+---+ng
that invoke;
iii. a measurable splitting
T.M=E.®E2® - @ E¥

with dim (E;) = n; and Tyt (E ) = F? ot () such
that for p —a.ex € M

S % In {|Teie"v]| = xi(w,v) (©)
where | is a unique integer satisfying:
vEELQOFE2®--- 0 E,
and:
v¢EloE2e-- @ EL L

Remark 1 We will call the numbers y(z,v) the Lya-
punov exponents for the measure . Furthermore, we will
call the set of points for which the Oseledec’s Multiplicative
Ergodic Theorem hold for a particular measure p, y—regular.

Remark 2 From relation (2) we can deduce that the
condition (H)

/ sup ln+HTm<p‘9

()] du(z) < +o0
—1<6<1
M

is equivalent to:

/ sup InT ||R(6,z)| du(z) < +oc. (7
—1<6<1

Hence we can give the Oseledec’s Multiplicative Ergodic
Theorem for matricial cocycles.

III. THE ALMOST PERIODIC AND HAMILTONIAN CASE

It is well known, that for periodic systems the Lyapunov
exponents are the real part of Floquet exponents [6]. We turn
our attention on the almost periodic Hamiltonian systems. Let
us consider a Hamiltonian function:

HeC?(R*™R), (neN¥) (8)
and the Hamiltonian system:
(SH) : ,1<i<n
By setting:
Z(t) = (l‘(t),p(t)) = (.'L']_, s Ty Py 7pn>
and if we define:
OH OH OH OH
—VH = S
(axl Oxy Op1 3pn)
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the gradient vector of H en z for the standard inner product
of R?", then the Hamiltonian system (Sp) can be written
as a Hamiltonian vector equation:

2= JH'(z) (€))

where J is the standard symplectic matrix:

0o I,
J =
_In

with I,, being the n x n identity matrix. We denote {¢'},
the Hamiltonian flow of (9), and =z the initial point.
Throughout this section, we suppose that for any solution
z(t) = (z(t),p(t)) of (9) is defined for all t € R, so that
the Hamiltonian flow {¢'}, is well defined and is of class
C'. The surface of constant energy of the Hamiltonian H:

Z ={zeR*™ /| H(z)=e},

is {¢'} —invariant. Furthermore, we suppose:

ZH is non empty and compact (10)
!

Vz € ZH, H'(z) #0 (11)

H is strictly convex on R*" (12)

According to the assumption (11), Y, is a C* submanifold
of R?" of codimension 1. The standard inner product of
R?" induced on ), a Riemannian submanifold structure.
It is well-known that for all ¢ € R, H o o' = H and we
can define a canonical Liouville measure pron ), which

is ¢'— invariant on ), and given by the formula:
1 do
Mo ] vA]

where o is the Lebesgue measure on ), and « is a
normalization constant (see for example [11]). Hence for this
measure, conditions (5) and (7) are automatically satisfied.

Throughout the rest of this paper, we suppose that the
hypothesis (8 ), (10), (11) and (12) are satisfied. If z (t) =
(¢! (x)) is an almost periodic solution of (9), (we suppose
that such solution exists as the case of Hénon-Heiles system)
one can linearize (9) near z obtaining the almost periodic
linear Hamiltonian system:

y=JH"(¢" ())y. (13)

Let us denote R(t,x) the fundamental matrix of (13). Let
Sp(n, R) the symplectic group and sp(n, R) his Lie algebra
ie.:

Sp(n,R) = {A € SL(2n,R),AJA = J}

where SL£(2n,R) denotes the group of 2n x 2n matrices
with unit determinant, and:

sp(mR) = {A€M(2n,R),exp(tA) € Sp(n,R)}
= {AeM(@2n,R)' AT+ JA=0}.
By applying the Oseledec’s Multiplicative Ergodic Theorem
we obtain for p1,, —a.e.x € M:
X1 (z) > x2 () > -+ > xan (7)),

and due to the symplectic properties we get (see for example

[1D:

Xen—i+1 (z) = —xi(2), 1<i<n.

IV. THE MAIN RESULT
Since the Lie group Sp(n,R) is semisimple the Iwasawa
decomposition (see for example [10] and/or [12] ) tells us
that:
Sp(n,R) — KAN
S — KAN

is an analytic diffeomorphism where X to be the orthogonal
matrices, A to be the positive diagonal matrices, and N to
be the unipotent subgroup of Sp(n,R) consisting of upper
triangular matrices with 1s on the diagonal. Now, let u €
Sp(n,R) N O (2n,R). By the Iwasawa decomposition we
obtain the following: 3!A (¢, z,u) € Sp(n,R) N O (2n,R)
and 3R (¢, x,u) an upper triangular matrix satisfying:
R(t,z)u = A(t,z,u)R (t,z,u) .
We consider the manifold X given by:
X=3 x(Sp(n,R)NO(2n,R))

One can see that:

Umn) — Spn,R)YNO (2n,R)

A -B
B A
is an isomorphism of Lie groups, where:

n)={AeGLm,C),'AA=1,}.

A+iB (

Hence the manifold:

Xy, x

can be identified to the analytic manifold
X~ ZH xU(n)

and can be seen as a “complexification” of ), . Define the
-) on X by taking:

(¢ (x), At z,u))
On the manifold X we define the matrix A by:

(Sp(n,R)NO (2n,R))

function ¢? (-,

ot (z,u) =

- . -1
Alt,z,u) = (A(t,x,u)) A(t,z,u)
+A(t z,u) At z) (At z,u) 7
where:
A(t,a) = JH" (9" (2))
and
A(t,z,u) = % (A(t,x,u)).

We built the linear differential equation:
Y =A(t,z,u)Y. (14)

The main result of this paper is the following:

Theorem 2 Suppose that the conditions (8), (10), (11)
and (12) are satisfied and t — ' () is an almost periodic
function then the Lyapunov exponents of (13) exist for all x
€ >y Furthermore:

{X (E(t,x,u),v) 1V € RQ"}
= {M{ai (t,z,u)},,1 <i<2n}
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where ag; (s,z,u) are the diagonal elements of A(t,x,u)

and:
t—+o0o t /f

lim

MAf} =

Before proving our main result we have several remarks. A
basic property of the multiplicative cocycles R(t, x) is their
regularity, since Theorem 1 guarantees the existence and the
finiteness of Lyapunov exponents for regular multiplicative
cocycles. Thus, it is important to determine specific condi-
tions that multiplicative cocycles should fulfill in order to
be regular. In particular, we have to assume the Oseledec’s
assumption:

/ sup InT||R(,z)| du(z) < +oo .
AR

Since our presentation is mainly focused on autonomous
almost periodic Hamiltonian systems we will also state the
Multiplicative Ergodic Theorem for the symplectic cocycle
R(t,z) and hence we do not consider the assumption above.
Second, with our approach and due to almost periodicity
we obtain the existence of Lyapunov exponents every where
in surface ), of constant energy of the Hamiltonian H
without using ergodic theory.

V. THE PROOF OF THE MAIN RESULT
In order to prove Theorem 2, we need some preliminary

observations:

Lemma 1 For x € ), andt € R :

R(t,z) € Sp(n, R).

Proof It is clear that:

59 [*R(t,z)JR(t, x)]
3}
ot

[ R(t, z)} JR(t,x)

+'R(t, x) J 0 R(t, )
= '(JH (¢ (t,z)) JR(t, x)
+R(t a:)JJH (ac)) (t,x)
= 'R(t,x) H (¢' (= ))tJ JR(t,x)
—'R(t,x) H (¢' (2))R(t, )
= 0.
Thus:
t— 'R(t,z) JR(t,x)
is constant. Since for ¢ = 0 one has:

'R(0,2)JR(0,z) = J,

and the result follows.

Lemma 2 Let x € ) ,,u € Sp(n,R) N O (2n,R)
andt € R. Then :

A(t,z,u) = A0, 0" () ,u).

Proof From Iwasawa decomposition [10], we obtain respec-
tively:

R(t,x)u = A(t,z,u)R (t,x,u)
and:
R(0,¢" (z))u = A0, 6" (), )R (0, (x) ,u) .

Since R(t,x) and R(0, ¢" (x)) solve the same differential
equation with the same initial condition:

R(t,z)u = R(0,¢" (z))u.

Hence the result follows from the fact that the Iwasawa
decomposition is a diffeomorphism.

Lemma 3 Let z € ) ,,u € Sp(n,R) N O (2n,R)
and t € R. Then the function:

t— — (A(t,z,u))

ot (
is almost periodic.

Proof Clearly the function:

t — R(t,x)

is C' on R. Since the Iwasawa decomposition is a diffeo-
morphism, the function:

(t,x,u) — A(t,z,u)
is also C' on RxX. Let I be the function defined by:
T (¢ (2) = A0, ¢" () ,u).
Ir(et@) = oW

A0, ¢ (2),u) <‘9‘/’(;f‘””)) .

It is clear that A (0, ' (z),u) is continuous from Y
onto £ (3, M(2n, R)), also:

t— A0, "

(x),w)

is almost periodic. Then the function:

. (agA(O, @' (), u), (W(;t(x)))

is almost periodic since each of components (vectorial) is
almost periodic [4]. Finally, the function:

B:L (ZH,M(Qn,R)) x> — M(2n,R)
defined by B (L,v) :=

L(v) is bilinear and continuous. Then

we have:
0 _ 0 ‘
a (A(t»xvu)) - EF (90 (.’E))
t
= B (82A(O,gat (z),u), ¢ (m)) .
ot
Therefore:

t— %F (4,0 (w))

is almost periodic as the composition of an uniformly
continuous function and an almost periodic function [5].
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Lemma 4 Let x € ) ,,u € Sp(n,R) N O (2n,R)
and t € R. Then:

A(t,z,u) € Sp(n,R)
and there exists a symmetric matrix B (t,z,u) such that:
A(t,z,u) = JB(t,z,u).
Proof First, we have to prove that:
t (Zx(t,x,u)) J+ JA(t,z,u) = 0.
Let us introduce the matrices:

B(t,z,u) := (A(t,ﬂc,u))i1 At,x,u)

and:
C(t,x,u) = A(t,z,u)JH (p
Then we obtain:

() (At )~

JB(t,z,u) +' B(t,z,u).J
. —1
= J(A(t,x,u)) A(t, z,u)
+ (At u)” 1(A<t,x,u> J

= R(t,x) H' (o (x))tJJR(t,a;
—'R(t,z) H (&' (x))R(t, )
= 0.
In a similar manner we obtain:
JC(t,z,u) +' C(t,z,u)J =0

Since

g(t,x,u) = B(t,x,u) + C(t,z,u)

the equality holds. We set: .
B (t,z,u)=J (A(t,x,u)) Alt,z,u)

+IA(t @, u) At @) (At z,u)
then B (t,x,u) is symmetric and:
A(t,z,u) = JB(t,z,u).
Lemma 5 {&} is a flow on the manifold X.
t

Proof. For t,s € R, one get:
o (3, )
("7 (2), Atz 1))

Clearly, if we replace s by —¢, we deduce that:
— o\ —1
ot = (sot) :
Lemma 6 Let x € 4, u € Sp(n,R) N O(2n,R)

and t € R then R(t,x,u) is multiplicative cocycle on X
related to the dynamical systems {got} and R(t,z,u) is

the fundamental matrix of (14)

Proof. Let py the projection defined by:

p: X — Sp(n,R)NO(2n,R)
(z,u) +— u
Hence:
R(t+s,z,u) = (Alt,z,u) " R(t+s,z)u
—1
= D (w**g ) R(t+s,z)u
—1
= po x,u) R(t
x R(s ) (x,u)

= p2(<P o p* wU) 1R
xpa (@ (x, 1)) p2 (° (x, U)) '
>:R(s7 x)p2 (z, g)

= R(t,¢° (z),u)R(s,z,u),

which proves that E(t, x,u) is multiplicative cocycle on X

related to the flow {&

Now, we have to prove that E(t,x,u) is the fundamental
matrix of (14). First, we have:

E(O,x,u) = po (& (z, u)) R(0,z)u
= p2((z,w) " R0, 2)u
= IQn~

On the other hand:

(A(t,x,u)) R(t, z)u

+ (A(t,z,u) " R(t, z)u

(A(t, x, u)) B R(t, z)u

+ (A(t,z,u)) " A(t, 2)R(t, z)u

- (A(t,x7u))_1A(t,x,u) (A(t,z,u)) "

X R(t,z)u + (A(t,z,u)) " A(t, z)

xA(t, z, u) At z, u)R(t, x)u

_ ((A(t,x,u)>_1+Al(t,x,u)A(t,x))
XR(t,x)u

= Z(t,x,u)}?(t,x,u),

E(t,m,u) =

which proves that R(t,x,u) is the fundamental matrix of
(14) and consequently proves lemma 6.

Lemma 7 Let x € ) ,u € Sp(n,R) N O (2n,R)
and t € R then the cocycles R(t,z,u) and R(t,x) have the
same Lyapunov exponents.

Proof. By Iwasawa decomposition we get:

Alt, z, u)ﬁ(t, xu)u
po (z, A(t,Nx, u)) ﬁ(t7 z,u) (p2 (x,
= A(t,z,u)R(t,x,u) (A(O,x,u))_l

R(t,z) =

)~
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Let (v1,v2, - ,V2,) an orthonormal basis of R2". Then for
every 1 <i < 2n, since A(t,z,u) is an isometry, one has:

IR il = Az w)RE 2, u0) (AO2,u) " v

Hé(t, 2, 1) (A0, z,u)) " g

! transforms the
. Thus:

In other respects, the matrix (A(0,z,u))”
orthonormal basis (v;), to the orthonormal basis (h;);

In |[R(t, )oil] = In | Rt @, uphs

which imply for all 1 <7 < 2n :

1 1 ~
lim —In||R(¢x)v]| = lim flnHR(Lx,u)
t—+oo ¢ t—+oo t

Now; we are able to achieve the proof of theorem 2. Proof.
By lemma 6, R(t,z,u) is the fundamental matrix of (4.1).
Let’s denote a;; (¢, ,u), 1 <i < 2n, the diagonal elements
of the matricial cocycle R(t,x,u). Then one has

t
a;; (tyx,u) = exp/aii (s,z,u)ds
0

where a;; (8,2, u) are the diagonal elements of Z(t,x,u).
Furthermore, the matrix:

A(t,z) = JH' (¢ (2))
is almost periodic. Otherwise, by lemma 2:
Alt,z,u) = A0, o' (z),u),

thus A(t, z,u) and (A(t, z,u))” "have almost periodic coef-
ficients in £. On the other hand, by lemma 3, the function:
0

o (At z,w)

is almost periodic. Consequently,

t— —

t —> A(t,x,u) is an almost periodic function,
and so:
t — ay; (t,z,u) is an almost periodic function,

which imply that for all 1 <17 < 2n:
t

) 1
t—l)HJpoo n /aii (s,z,u)ds € R.
0

MAag; (L, z,u)} =

Finally, let (e;), ., 5, the canonical basis of R?" then one
has: o

{ ( (t,z,u), )/UERQ"}
= {hm flnHRtxu) 1§i§2n.}
t—+oo t
= {hmbup In|a;; (t, z,u)],1 <i< Zn}
t—+oc0
t
= {hmsup ai; (s,z,u)ds, 1 <i<2n
t——+o0
.1 )
= lm = [ ay(s,z,u)ds, 1 <i<2n
t—+oo t

0
= {M{ai (t,z,u)},,1 <i<2n}.

and our theorem holds.

VI. CONCLUSION

The key feature of our approach is the use of the Iwasawa
decomposition of the semi-simple Lie group Sp(n, R). This
factorization is an analytic diffeomorphism of the Lie group
Sp(n,R) onto the manifold KAN where K to be the
orthogonal matrices, A to be the positive diagonal matrices,
and NV to be the unipotent subgroup of Sp(n,R) consisting
of upper triangular matrices with 1s on the diagonal. The
algorithm presented here is different from [1] and [7] since
the factors in [1] and in the QR factorization are not
symplectic, in general. On the other hand, to obtain Lyapunov
exponents from observed data, Eckmann and Ruelle [8] and
[9] proposed a method based on non parametric regression
which is known as the Jacobian method.

Hence, with our approach we obtain the existence of
Lyapunov exponents every where in surface of constant
energy of the Hamiltonian H without using the Oseledec’s
assumption nor the ergodic theory. Finally, the computa-
tion of the Iwasawa decomposition of a symplectic matrix
R (t,z,u) can be done by an algorithm given by Benzi and
Razouk [3].
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