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Abstract—An initial value problem is solved for the motion of
an incompressible conducting viscous fluid with embedded small
inert spherical particles in a channel bounded by two infinite
rigid non-conducting plates. Both the plates and the fluid are in
a state of solid-body rotation with a constant angular velocity
about an axis normal to the plates. An unsteady motion is
generated in such a fluid when the upper plate is subjected to
velocity tooth pulses in its own plane with the lower plate held
fixed. Additionally, an external magnetic field is acting on the
particulate suspension in a direction normal to the plates. It is
assumed that no electric current exists in the basic state and
the magnetic Reynolds number is very small. The method of
Fourier analysis is used to derive exact solutions for the fluid
and the particle velocities and the skin-friction on the walls. The
influence of the particles, the magnetic field and the rotation
on the components of the fluid velocity and the wall frictions
are examined quantitatively. Some known results are found to
emerge as limiting cases of the present analysis.

Index Terms—Hydromagnetic, pulsatile flow, rotating fluid-
particle system

I. I NTRODUCTION

The fluid flow generated by pulsatile motion of the
boundary is found to have immense importance in aerospace
science, nuclear fusion, astrophysics, atmospheric sciences,
cosmical gasdynamics, geophysics and physiological fluid
dynamics. The investigation in this direction was initiated
by Ghosh[1] who examined the motion of an incompressible
viscous fluid in a channel bounded by two rigid coaxial
cylinders when the inner cylinder is set in motion by
pulses of longitudinal impulses. Subsequently, Chakraborty
and Ray[2] studied the unsteady magnetohydrodynamic
Couette flow between two parallel plates when one of the
plates was subjected to random pulses. Makar[3] presented
the solution of magnetohydrodynamic flow between two
parallel plates when the upper plate was set in motion by
velocity tooth pulses and the induced magnetic field was
neglected. Bestman and Njoku[4] constructed the solution
of the same problem as that of author[3] without ignoring
the effect of induced magnetic field. Regarding the pulsatile
motion of a two-phase fluid-particle system, Datta et al.[5,6]
examined the heat transfer to pulsatile flows of a dusty fluid
in pipes and channels with a view to their applications in
the analysis of blood flow. Ghosh and Sarkar[7] considered
the hydromagnetic channel flow of a dusty fluid induced
by velocity tooth pulses and arrived at the solution by the
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method of Fourier analysis while the same problem as
that of authors[7] was studied by Ghosh and Debnath[8]
using the method of Laplace transforms. It was seen that
both the methods adopted in [7] and [8] provide the same
exact solution of the problem. Most recently, Ghosh and
Ghosh[9,10] solved the problems of hydromagnetic flow of a
two-phase fluid near a pulsating plate both in a non-rotating
and rotating system with a view to their applications
in the analysis of suspension boundary layers. On the
other hand, several authors including Yang and Healy[11],
Nag[12], Nag et al.[13], Mitra and Bhattacharyya[14,15]
and Ghosh and Debnath [16,17] discussed various aspects of
non-pulsatile flows of a two-phase fluid-particle system both
in hydrodynamic and hydromagnetic situations. Finally, it
was noticed that the solution of a boundary value problem
associated with hydromagnetic Couette flow of an Oldroyd-
B fluid in a rotating system was reported by Hayat et al.[18].
In spite of the above works, it is found that the problem
of hydromagnetic channel flow of a rotating fluid-particle
system caused by pulsatile motion of the boundary has
not yet been solved. The objective of the present paper is
to study such problem with a view to its applications in
hydromagnetic spin-up in a contained fluid[19], the motion
of the earth’s liquid core[20], the development of sunspot,
the solar cycle and the structure of the magnetic stars[21]
and in the determination of the effects of the external
magnetic field and rotation on the flow of blood in the
cardiovascular system[22].

The present problem is concerned with the analysis of
unsteady motion developed in an incompressible electrically
conducting viscous fluid containing uniformly distributed
small inert spherical particles in a channel bounded by two
infinite rigid non-conducting plates. Both the plates and the
particulate suspension are in a state of sold-body rotation
with a constant angular velocity about an axis normal to
the plates. An uniform external magnetic field is acting on
the system in a direction normal to the plates. Additionally,
the upper plate starts moving impulsively from rest relative
to the rotating fluid-particle system due to velocity tooth
pulses applied on it with the lower plate held fixed. It is
assumed that no electric current flows in the basic state and
the magnetic Reynolds number is very small. The inquiries
are made about the exact solutions for the fluid and the
particle velocities and the skin-friction on the walls. The
results are computed numerically with a view to disclose
the quantitative response of various flow parameters on the
components of fluid velocity and the wall frictions. Finally,
many known results are recovered as limiting cases of the
present analysis.
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I I . MATHEMATICAL FORMULATION

Following Saffman[23] and Ghosh and Debnath[16], the
equations of unsteady motion of an incompressible electri-
cally conducting viscous fluid with embedded identical small
inert spherical particles in a rotating coordinate system under
an external magnetic fieldB are in usual notations:

∂ u
∂ t

+ (u · ∇) u + 2 Ω× u = −1
ρ
∇ p + ν ∇2 u

+
K N

ρ
(v − u) +

1
ρ

(j × B) (1)

m[
∂ v
∂ t

+(v· ∇) v+2 Ω×v ] = K(u−v)] (2)

∇ · u = 0 and
∂N
∂ t

+ ∇ · (N v) = 0 (3)

where u = (u1, u2, u3) and v = (v1, v2, v3) represent
the velocity of the fluid and the particles respectively, p is
the modified fluid pressure including the centrifugal force
term, N is the number density of the particles which are
distributed uniformly in the fluid of densityρ and kinematic
viscosity ν, m is the mass of the particle, K is the Stokes’
resistance coefficient which for spherical particles of radius
a is 6 π µ a, j is the current density,B is the magnetic
flux density, andΩ is the angular velocity of the coordinate
system. The buoyancy force term in (2) is neglected since for
most common materialsρρp

is very very small whereρp is the
density of the material of the dust. The Maxwell equations
with usual MHD approximation are :

divB = 0, CurlB = µ0j, Curl E∗ = −∂ B
∂ t

, (4)

j = σ0(E∗ + u× B)] (5)

where the displacement currents are neglected,µ0 and σ0

are constants andE∗ is the electric field.
We now consider the unsteady hydromagnetic flow of

an incompressible electrically conducting viscous fluid with
uniformly distributed small inert spherical particles in a
channel bounded by two infinite rigid non-conducting plates
in presence of a constant magnetic fieldB0 normal to the
plates at z=0. Both the two-phase fluid and the plates are in
a state of solid-body rotation with constant angular velocity
Ω about the z-axis normal to the plates and in this situation
the upper plate sets in motion in its own plane impulsively
from rest due to velocity tooth pulses applied periodically on
it with the lower plate kept stationary. The x-axis is taken in
the direction of length of the lower plate and the y-axis is also
fixed in the plate normal to its direction of motion. The flow
configuration is shown in figure 1. We assume that no applied
or polarization voltage exists i.e.,E∗ = 0 so that no energy
is added or extracted from the fluid by the electric field.
We further assume that the magnetic Reynolds number is
very small which is plausible for most electrically conducting
fluids. This implies that the current is mainly due to induced
electric field so thatj = σ0(u × B) and the applied
magnetic field remains essentially unaltered by the electric
current flowing through the fluid. We further assume that the
induced magnetic field produced by the motion of the fluid
is negligible compared to the applied magnetic field so that
Lorentz force term in (1) becomes−σ0

ρ B2
0 u. Moreover,

the particles are uniformly distributed in the fluid and the
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Fig. 1. Geometry of the flow configuration

flow field is parallel to the x-direction. This implies that all
the physical variables are functions of z and t only and the
second equation of (3) is satisfied throughout the flow field
when N = N0 = constant. It is also evident from (1)
is that ∂p

∂z = 0. Accordingly, ∂p
∂x and ∂p

∂y have the same
value as in the free stream. We, therefore, assume that both
the quantities are zero.

On the basis of the assumptions made above, the unsteady
motion of a two-phase fluid-particle system occupying the
space between the plates at a distance h apart is governed
by the equations:

∂q

∂t
+ 2 i Ω q = ν

∂2q

∂z2
+

k

τ
(r − q)− n q (6)

and
∂r

∂t
+ 2 i Ω r =

1
τ

(q − r) (7)

whereq = u1 + iu2 is the complex fluid velocity, andr =
v1 + iv2 is the complex particle velocity,k = m N0

ρ is the
ratio of the mass density of the particles and the fluid density,
usually called, the mass concentration of the particles,τ =
m
K is the relaxation time of the particles andn = σ0

ρ B2
0 is

the hydromagnetic parameter.
Introducing the non-dimensional variables

(q′, r′) =
(q, r)

U
, z′ =

z

h
and (t′, λ) =

ν(t, τ)
h2

(8)

and the non-dimensional flow parameters

E =
Ω h2

ν
, M2 =

n h2

ν
(9)

in equations(6) and (7) and dropping the primes, we get the
non-dimensional equations of motion in the form

∂q

∂t
+ 2 i E q =

∂2q

∂z2
+

k

λ
(r − q)−M2 q (10)

and
∂r

∂t
+ 2 i E r =

1
λ

(q − r) (11)

where M2 = σ h2 B2
0

ρ ν is the Hartman Number.
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Theproblemnow reduces to solving (10) and (11) subject
to the boundary and initial conditions given by

q(z, t) = f( t ) at z = 1, t > 0 , (12)

(q, r) −→ (0, 0) at z = 0, t > 0 , (13)

(q, r) = (0, 0) at t ≤ 0 for all z (14)

where f(t) represents the tooth pulses which is an even
periodic function of time with period 2T and strengthE1 T.

III. SOLUTION OF THE PROBLEM

Eliminating r from (10) and (11), we get

(1 + 2iEλ + λ
∂

∂t
)

∂q

∂t
+ 2iE(1 + 2iEλ + λ

∂

∂t
)q

= (1 + 2iEλ + λ
∂

∂t
)
∂2q

∂z2
− k(

∂

∂t
+ 2iE)q

−M2(1 + 2iEλ + λ
∂

∂t
)q. (15)

To solve this equation one more initial condition is needed
on q in addition to that given in (14). Without loss of
generality we assume that

∂q

∂t
= 0 at t ≤ 0, 0 ≤ z ≤ 1. (16)

According to the nature of f(t) mentioned above the
mathematical form of q(1,t) may be written as

q(1, t) =
E1

T
{ t H(t)

+2
∞∑

p=1

(−1)p (t− p T ) H(t− p T ) } (17)

where H(t) is the Heaviside step function defined
as

H(t− T ) = 0, t < T and H(t− T ) = 1, t ≥ T.

Using half-range Fourier series the condition (17) may also
be expressed as

q(1, t) =
E1

2
− 4 E1

π2
Σ∞p=0

cos [ (2p + 1) π t/T ]
(2p + 1)2

. (18)

By virtue of the equation (18), we assume the solution of
(15) as

q(z, t) = qs(z) +
1
2

∞∑
p=1

[q2p+1(z) exp (i
(2p + 1) π t

T
)

+ q̄2p+1(z) exp (− i
(2p + 1) πt

T
)]

+
∞∑

n=1

Wn(t)sin n π z (19)

where q̄ is the conjugate of q.

Substituting (19) in (15), we have the following equations
with appropriate conditions as

d2qs

dz2
− L2qs = 0 (20)

with qs = 0 on z=0,qs = E1
2 on z=1,

d2q2p+1

dz2
− L2

pq2p+1 = 0 (21)

with q2p+1 = 0 on z = 0,

q2p+1 = −4E1
(2p+1)2 π2 on z = 1,

λ
d2Wn

dt2
+ [1 + k + λ(N2 + 4iE)]

dWn

dt
+[(1 + 2iEλ)(N2 + 2iE) + 2iEk]Wn = 0 (22)

with Wn(t) = Wn(0) at t = 0,

W ′
n(t) = W ′

n(0) at t = 0

whereWn(0) andW ′
n(0) are to be determined.

In the above,

N2 = M2 + n2π2, βp =
(2p + 1)π

T
,

L2 = M2 + 2i E +
2i E k

1 + 2i E λ
,

L2
p = M2 + i (2E + βp) [1 +

k

1 + i λ(2 E + βp)
].

The solutions of equations (20) to (22) are

qs(z) =
E1

2
sinh Lz

sinh L
, (23)

q2p+1(z) = −4 E1

π2

1
(2p + 1)2

sinh Lpz

sinh Lp
, (24)

Wn(t) = W ′
n(0)

exp(m1t)− exp(m2t)
m1 −m2

+Wn(0)
m1 exp(m2t)−m2 exp(m1t)

m1 −m2
(25)

where

2 λ m1, 2λ m2 = −[〈1 + k + λ(N2 + 4iE)〉
∓{〈1 + k + λ (N2 + 4iE)〉2 − 4λ

〈(1 + 2iE)(N2 + 2iE) + 2iEk〉}1/2]. (26)

The initial conditions (14) and (16) provide

Wn(0)
E1

= (−1)n n π [
1

L2 + n2 π2

− 8
π2

ReΣ∞p=0

1
(2p + 1)2(L2

p + n2π2)
], (27)

W ′
n(0)
E1

=
8 n (−1)n

π
ImΣ∞p=0

βp

(2p + 1)2(L2
p + n2π2)

(28)

where Re andIm stand respectively for the real and the
imaginary parts of the above expressions.

It is to be noted here that the p-series in (27) and (28)
are of ordersβ−3

p and β−2
p when p → ∞. The n-series is

also convergent sincem1 andm2 and(m1 −m2) are all of
order−N2 asn →∞.
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Finally, the fluid velocity takes the form

q(z, t)
E1

=
sinh Lz

2sinhL
− 4

π2
ReΣ∞p=0

exp(iβpt)
(2p + 1)2

sinh Lpz

sinh Lp

+Σ∞n=1 [
W ′

n(0)
E1

exp(m1t)− exp(m2t)
m1 −m2

+
Wn(0)

E1

m1 exp(m2t) − m2 exp(m1t)
m1 − m2

] sin nπz (29)

which is valid for all values of the particle concentration k,
the rotation E and the magnetic field M. Sincem1 and m2

are negative, the steady-state fluid velocity becomes

q(z, t)
E1

=
sinhLz

2sinhL
− 4

π2
ReΣ∞p=0

exp(iβpt)
(2p + 1)2

sinh Lpz

sinhLp
(30)

where both the steady and the harmonic part contain the
effect of dust particles which is not the case in absence of
rotation. In absence of rotation only the harmonic part of
(30) contains the effect of particles due to pulsation when
the steady condition is attained.

However, if the fluid is clean(k → 0), the expression for
the fluid velocity (29) reduces to

q(z, t)
E1

=
sinh L∗z
2sinh L∗

− 4
π2

ReΣ∞p=0

exp(iβpt)
(2p + 1)2

sinh L∗pz
sinh L∗p

+Σ∞n=1

W ∗
n(0)
E1

e−(N2+2iE)tsin nπz (31)

where

L∗ =
√

M2 + 2iE, L∗p =
√

M2 + i(2E + βp)

and
W ∗

n(0)
E1

= (−1)n n π [
1

(L∗)2 + n2 π2

− 8
π2

Re Σ∞p=0

1
(2 p + 1)2 ((L∗p)2 + n2 π2)

].

It is to be noted here that when E=0 the results (29) and
(31) coincides exactly with those of authors [7] and the
result (31) is identical to that of authors[4].

Further, ifE1 = 2 andT → 0, the result (29) provides the
solution of hydromagnetic Couette flow of a two-phase fluid
in a rotating system. In this case, the solution (29) yields

q(z, t) =
sinh Lz

sinh L

+Σ∞n=1[W
′
n(0)

exp(m1t)− exp(m2t)
m1 −m2

+Wn(0)
m1exp(m2t)−m2exp(m1t)

m1 −m2
]sin nπz (32)

which, for the case of clean fluid(k → 0), takes the form

q(z, t) =
sinh

√
M2 + 2iE z

sinh
√

M2 + 2iE

+2π
∞∑

n=1

n(−1)n e−(N2 + 2iE)t

N2 + 2iE
sin nπz. (33)

The result (33), when E = 0, agrees with the limiting
solution of Hayat et al.[24] and provides the classical
hydrodynamic solution when E = 0 and M = 0.

Following [7] and employing the method of Laplace
transform, the equivalent form of (29) can be written as

q(z, t)
E1

=
sinh Lz

2sinh L
− 4

π2
ReΣ∞p=0

exp(iβp t)
(2p + 1)2

sinh Lpz

sinh Lp

−2π

T
Σ∞n=1 n(−1)n B sin nπz (34)

where B = B1 + B2,

Bj = exp(mjt)

m2
j

tanh (mj T
2 )×

[ 1 +
k (1 + iEλ)

1 + λ (mj + 2iE)2
]−1, j = 1, 2,

2 λ m1, 2 λ m2 = − [〈 1 + k + λ (N2 + 4 i E)〉

∓ {〈 1 + k + λ (N2 + 4 i E)〉2

− 4 λ 〈 (1 + 2 i E) (N2 + 2 i E) + 2 i E k〉}1/2].

The result (34) clearly agrees with that of author [3]
when E = 0 , k = 0 and the non-oscillatory result of Mitra
and Bhattacharyya [14] appears when E = 0,E1 = 2V
andT → 0.

The particle velocity, in the general case, as obtained from
(11) and (29) gives

r(z, t) =
1− exp[−(1 + 2iEλ)t/λ]

1 + 2iEλ
qs

+Re
∞∑

p=0

exp[iβpt]− exp[−(1 + 2iEλ)t/λ]
1 + 2iλ(2E + βp)

q2p+1

+
∞∑

n=1

[
W ′

n(0)
m1 −m2

{exp[m1t]− exp[−(1 + 2iEλ)t/λ]
1 + m1λ + 2iEλ

−exp[m2t]− exp[−(1 + 2iEλ)t/λ]
1 + m2λ + 2iEλ

}

+
Wn(0)

m1 −m2
{ m1

1 + m2λ + 2iEλ
(exp[m2t]

− exp[−(1 + 2iEλ)t/λ])− m2

1 + m1λ + 2iEλ
×

(exp[m1t]− exp[−(1 + 2iEλ)t/λ])}]sin nπz (35)

which in the steady-state (t−→∞) yields

r(z, t) =
qs

1 + 4E2λ2
e−iφ1

+ Re
∞∑

p=0

ei(βp−θp)

1 + 4 λ2(2E + βp)2
q2p+1 (36)

where tanφ1 = 2Eλ, tanθp = 2λ(2E+βp) .

It follows from (30) and (36) that the particles in the
steady-state are unable to attain the actual fluid velocity
due to the presence of rotation and pulsation. But in the
limit T → 0, E1 = 2 and E = 0, we haveu1 = v1. This
shows that, in absence of pulsation and rotation,the particles
attain the fluid velocity in the steady motion generated by
impulsively moved plate. This result is also known from
Michael and Miller’s[25] analysis.
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Finally, the skin-friction on the walls are given by

τ0

E1
=

L

2sinhL
− 4

π2
Re

∞∑
p=0

1
(2p + 1)2

Lp

sinhLp
eiβpt

+
∞∑

n=1

n π [
W

′
n(0)
E1

em1t − em2t

m1 − m2

+
Wn(0)

E1

m1e
m2t − m2e

m1t

m1 − m2
], (37)

τ1

E1
=

LcoshL

2sinhL
− 4

π2
Re

∞∑
p=0

1
(2p + 1)2

LpcoshLp

sinhLp
eiβpt

+
∞∑

n=1

(−1)n n π [
W

′
n(0)
E1

em1t − em2t

m1 − m2

+
Wn(0)

E1

m1e
m2t − m2e

m1t

m1 − m2
]. (38)

Many known results can also be retrieved from (37) and (38)
including the classical results.

IV. N UMERICAL RESULTS

The nature of pulses subjected on the upper plate produces
developing (increasing) and the retarding (decreasing) flows
in the fluid. To investigate the effect of various flow
parameters on the fluid velocity corresponding to developing
flows at t=1.25 and t=25.0 and the retarding flow at
t=3.75, the exact solutions (29) is evaluated for the cases
E = 0, E = 0.1 and E = 1.0 when T = 2.0 andλ = 0.1.The
non-zero values of the flow parameters are chosen arbitrarily
within their range of validity. The changing nature of the
velocity components are incorporated in figures 2 to 21 for
different values of the particle concentration k, the magnetic
field M and the rotation E. It is observed from figures 2-3,
that in absence of rotation (E = 0) and for fixed values
of the magnetic field M, the particles decrease the fluid
velocity u1 when the flow is developing and increase the
same when the flow is retarding. Such a result is expected
because of inertia of the particles playing a vital role to
resist the fluid motion. Thus a particulate fluid neither grow
nor decay as fast as a clean viscous fluid.
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Fig. 2. Fluid velocity profiles in a non-rotating system (E=0.0) when T
= 2.0, λ = 0.1 and M = 0.0.

It is further noticed that the effect of k onu1 whether
decreasing or increasing reduces with the increase of

the magnetic field M so that the fluid velocity becomes
independent of k when M is very large. On the other hand,
when E = 0 and k is fixed, the magnetic field M produces
a damping effect on the flow whether it is increasing or
decreasing. This effect also reduces with the increase of k
and is illustrated in figures 4-5. The above observations are
true even when the steady-state is reached where the effect
of k persists only in presence of pulsation.
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Fig. 3. Fluid velocity profiles in a non-rotating system (E=0.0) when T =
2.0, λ = 0.1 and M = 5.0.
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Fig. 4. Fluid velocity profiles in a non-rotating system (E=0.0) when T =
2.0, λ = 0.1 and k = 0.0.
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Fig. 5. Fluid velocity profiles in a non-rotating system (E=0.0) when T =
2.0, λ = 0.1 and k = 0.9.

However, in presence of rotation, the velocity component
u1 varies in a manner similar to that of non-rotating case
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excepting a significant diminution in its magnitude with
the increase of rotation when the flow is developing. For
retarding flows, the velocity componentu1 increases with
rotation E and the particles k but decreases with the magn-
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Fig. 6. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and M = 0.0.
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Fig. 7. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and M = 0.0.
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Fig. 8. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and M = 5.0.

etic field M. In this situation, the increasing effect of k on
u1 reduces with the increase of M when E is small and
enhances when E is large. Additionally, the damping effect
of M on u1 enhances with the increase of k when E is small
and reduces when E is large. The observations made above
on u1 in presence of rotation, both for the developing and

retarding motions, are shown in the figures 6, 8, 10, 12, 14,
16, 18, 20.

It is noticed that the lateral component of fluid velocity
u2 appears in a contained fluid only in presence of rotation.
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Fig. 9. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and M = 5.0.
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Fig. 10. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and k = 0.0.
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Fig. 11. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and k = 0.0.

In the developing flow,the magnitude ofu2 increases with
rotation E and the particles k but decreases with the magnetic
field M. Moreover, in this case, for all values of E, the
increasing effect of k onu2 enhances with the increase of
M and the diminishing effect of M on it reduces with the
increase of k. On the other hand, in the retarding motion of
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thefluid, the magnitude ofu2 also increases with E and k but
decreases with M. In this situation, the increasing effect of
k on the magnitude ofu2 enhances with M and the damping
effect of M on it reduces with k for all values of rotation.
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Fig. 12. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and k = 0.9.
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Fig. 13. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=0.1) when T = 2.0,λ = 0.1 and k = 0.9.
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Fig. 14. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and M = 0.0.

The variation of the fluid velocity componentu2 for different
values of the flow parameters and time is illustrated graphi-
cally in figures 7, 9, 11, 13, 15, 17, 19, 21.
Further enquiry shows that (i) for all values of E,k and M
the magnitude ofu2 rises sharply near the lower plate, goes
to a maximum, then decreases continuously until it becomes
zero at the upper plate, (ii) for all E and k, the maximum of

|u2| is shifting more and more towards the upper plate with
the increase of M, (iii) for small values of E, the effects of k
and M onu2 becomes independent of time t excepting when
k large and M small, (iv) for large values of E the effects of
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Fig. 15. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and M = 0.0.
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Fig. 16. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and M = 5.0.
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Fig. 17. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and M = 5.0.

k and M on u2 remain always independent of time t. To
investigate the effects of various flow parameters on the
components of skin-friction on the plates, the results (37)
and (38) are evaluated numerically for the cases E = 0.1 and
E = 1.0 when T = 2.0 andλ = 0.1. These are presented in
figures 22, 23 and 24, 25. It is observed that the longitudinal
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componentof skin-friction on both the plates fluctuate in a
manner similar to that of pulses imparted in the fluid. On
the lower plate, the increase of rotation E and the particles
k decrease the magnitude of the longitudinal component of
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Fig. 18. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and k = 0.0.
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Fig. 19. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and k = 0.0.
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Fig. 20. Distribution of the fluid velocity component(u1/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and k = 0.9.

the skin-friction for small values of the magnetic field M
when the flow is developing while a reverse effect is found
when the flow is retarding. However, for large values of M,
the magnitude of the longitudinal component of the skin-
friction on the lower plate diminishes greatly and becomes
independent of E and k irrespective of the nature of the flow.

The behaviour of the longitudinal component of the skin-
friction on the upper plate is exactly opposite to that observed
at the lower plate. The magnitude of the lateral component
of skin-friction on both the walls increase at small rapidly
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Fig. 21. Distribution of the fluid velocity component(u2/E1) in a rotat-
ing system (E=1.0) when T = 2.0,λ = 0.1 and k = 0.9.
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Fig. 22. Distribution of longitudinal component of skin-friction on z = 0
for different values of k, M and E when T = 2.0,λ = 0.1
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Fig. 23. Distribution of lateral component of skin-friction on z = 0 for
different values of k, M and E when T = 2.0,λ = 0.1

values of time until they maintain a constant value after-
wards. It is also significant to notice that, for all values of
the flow parameters, the lateral component of skin-friction
becomes negative at the lower plate and positive at the upper
plate. Such a result is expected in a flow situation described
in the present problem.
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V. CONCLUSION

An exact solution of the problem concerning the motion
of a conducting viscous fluid with embedded small inert
spherical particles in a channel bounded by two infinite rigid
non-conducting parallel plates is found. Both the particulate
fluid and the plates are in a state of solid body rotation
in presence of an uniform magnetic field. Additionally, an
unsteady motion is generated in such a fluid when the upper
plate is subjected to velocity tooth pulses and the lower
plate is held fixed.
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Fig. 24. Distribution of longitudinal component of skin-friction on z = 1
for different values of k, M and E when T = 2.0,λ = 0.1
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Fig. 25. Distribution of lateral component of skin-friction on z = 1 for
different values of k, M and E when T = 2.0,λ = 0.1

The problem, although idealized, bears a good resem-
blance with the fluid motion contained between two layers
of the Earth particularly at the time of earthquake when
one of the layers executes periodic motion in the form of
tooth pulses. In this situation, the flow field, as evidenced
by equations (29) and (34), consists of three distinct parts.
Namely, the steady, harmonic and the transient parts. It is
found that, at large time, the first two parts represent the
steady-state solution for the velocity field, while the third
part confirms the existence of the inertial oscillations of
frequency2 Ω which decay exponentially within the ultimate
flow due to the presence of the magnetic field. In other
words, the steady state is established in the fluid through
inertial oscillations of frequency2 Ω. Such a phenomenon
does not appear in a non-rotating fluid. Finally, we find that
the rotation plays an important role to increase the spin-
up motion in a contained fluid and modifying the influence

of other parameters on the flow and the wall frictions. The
present study is more general compared to investigations
made by earlier researchers and provides analytical solutions
useful for describing many physical flow situations taking
place in a rotating system.

VI. SUMMARY

A closed form solution of the problem of hydromagnetic
channel flow of a rotating two-Phase fluid induced by tooth
pulses has been obtained by the method of Fourier analysis.
The influence of the particles, the magnetic field and the
rotation on the components of the fluid velocity and the wall
frictions are examined quantitatively.
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