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On HydromagneticChannel Flow of a Rotating
Two-Phase Fluid Induced by Tooth Pulses

Sanchita Ghosh, A. K. Ghosh and S.Debnath

Abstract—An initial value problem is solved for the motion of method of Fourier analysis while the same problem as

an incompressible conducting viscous fluid with embedded small that of authors[7] was studied by Ghosh and Debnath[8]
inert spherical particles in a channel bounded by two infinite using the method of Laplace transforms. It was seen that
rigid non-conducting plates. Both the plates and the fluid are in . ’ .
a state of solid-body rotation with a constant angular velocity both the m_ethods adopted in [7] and [8] provide the same
about an axis normal to the plates. An unsteady motion is €Xact solution of the problem. Most recently, Ghosh and
generated in such a fluid when the upper plate is subjected to Ghosh[9,10] solved the problems of hydromagnetic flow of a
velocity tooth pulses in its own plane with the lower plate held two-phase fluid near a pulsating plate both in a non-rotating
fixed. Additionally, an external magnetic field is acting on the and rotating system with a view to their applications

particulate suspension in a direction normal to the plates. Itis . th VS f . b d | on th
assumed that no electric current exists in the basic state and ' "€ analysis ol SUSpension boundary layers. ©n ihe

the magnetic Reynolds number is very small. The method of Other hand, several authors including Yang and Healy[11],
Fourier analysis is used to derive exact solutions for the fluid Nag[12], Nag et al.[13], Mitra and Bhattacharyya[14,15]
and the particle velocities and the skin-friction on the walls. The  and Ghosh and Debnath [16,17] discussed various aspects of
influence of the particles, the magnetic field and the rotation o, isatile flows of a two-phase fluid-particle system both
on the components of the fluid velocity and the wall frictions . . S ) . .
are examined quantitatively. Some known results are found to " hydrqdynamlc and hyd_romagnetlc situations. Finally, it
emerge as limiting cases of the present analysis. was noticed that the solution of a boundary value problem
associated with hydromagnetic Couette flow of an Oldroyd-
B fluid in a rotating system was reported by Hayat et al.[18].
In spite of the above works, it is found that the problem
of hydromagnetic channel flow of a rotating fluid-particle
|. INTRODUCTION system caused by pulsatile motion of the boundary has

The fluid flow generated by pulsatile motion of thdot yet been solved. The objective of the present paper is

boundary is found to have immense importance in aerospaeStudy such problem with a view to its applications in
science, nuclear fusion, astrophysics, atmospheric sciend®romagnetic spin-up in a contained fluid[19], the motion
cosmical gasdynamics, geophysics and physiological flued the earth’s liquid core[20], the development qf sunspot,
dynamics. The investigation in this direction was initiatef1® solar cycle and the structure of the magnetic stars[21]
by Ghosh[1] who examined the motion of an incompressibf'd in the determination of the effects of the external
viscous fluid in a channel bounded by two rigid coaxidn@gnetic field and rotation on the flow of blood in the
cylinders when the inner cylinder is set in motion byardiovascular system[22]. ' _
pulses of longitudinal impulses. Subsequently, Chakraborty "€ Present problem is concerned with the analysis of
and Ray[2] studied the unsteady magnetohydrodynanHBStead)/ motion develqped in a_n_mcompressmle _ele_ctrlcally
Couette flow between two parallel plates when one of ti@nducting viscous fluid containing uniformly distributed
plates was subjected to random pulses. Makar[3] presen?éﬂa_” inert spherical part_lcles in a channel bounded by two
the solution of magnetohydrodynamic flow between twkgmn_ne rigid non—cor}ductlng _plates. Both the plates and the
parallel plates when the upper plate was set in motion Wrtlculate suspension are in a state of sold—pody rotation
velocity tooth pulses and the induced magnetic field w¥4th @ constant angular velocity about an axis normal to
neglected. Bestman and Njoku[4] constructed the solutid®€ Plates. An uniform external magnetic field is acting on
of the same problem as that of author[3] without ignorinlfge system in a direction n.orm.al to the plates. Addmona!ly,
the effect of induced magnetic field. Regarding the pulsatifg® UpPer plate starts moving impulsively from rest relative
motion of a two-phase fluid-particle system, Datta et al.[5,&p the rotating fluid-particle system due to velocity tooth
examined the heat transfer to pulsatile flows of a dusty fluRH!Ses applied on it with the lower plate held fixed. It is
in pipes and channels with a view to their applications igssumed th_at no electric current_flows in the basic §tate_ _and
the analysis of blood flow. Ghosh and Sarkar[7] considerdd® magnetic Reynolds number is very small. The inquiries
the hydromagnetic channel flow of a dusty fluid induce@f® made about the exact solutions for the fluid and the

by velocity tooth pulses and arrived at the solution by tHearticle velocities and the skin-friction on the walls. The
results are computed numerically with a view to disclose
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Il. MATHEMATICAL FORMULATION ‘
Following Saffman[23] and Ghosh and Debnath[16], the
equations of unsteady motion of an incompressible electri- e
cally conducting viscous fluid with embedded identical small
inert spherical particles in a rotating coordinate system under o) ——
an external magnetic fiel are in usual notations:
0 1
98 4 (u-V)u +2Qxu=--Vp+vViu
ot p v
KN 1 :
+ == (v-w+-(G x B) (1) "2
p p
a v uq,v
m[m—k(v V)v+2Qxv]=K(u-v) 2 11
X

o

V-u=0 anda—N V- (Nv)=0 3)
whereu = (u1,us,us) (erfd: (v1,v2,v3) represent T T T T T T T T T T T T T T T T

the velocity of the fluid and the particles respectively, p % By B, By By Bo By ByB, By, B, By BoBy B, B,
the modified fluid pressure including the centrifugal force
term, N is the number density of the particles which ameg. 1. Geometry of the flow configuration
distributed uniformly in the fluid of density and kinematic
viscosity v, m is the mass of the particle, K is the Stokes’
resistance coefficient which for spherical particles of radidow field is parallel to the x-direction. This implies that all
ais6 m p a, jis the current densityB is the magnetic the physical variables are functions of z and t only and the
flux density, and is the angular velocity of the coordinatesecond equation of (3) is satisfied throughout the flow field
system. The buoyancy force term in (2) is neglected since fohen N = Ny = constant. It is also evident from (1)
; ; ; i op _ i op op
most common material$- is very very small wherg, is the is that 32 = 0. Accordingly, 22 and 3y have the same
density of the material of the dust. The Maxwell equationglue as in the free stream. We, therefore, assume that both
with usual MHD approximation are : the quantities are zero.
9B On the basis of the assumptions made above, the unsteady
divB =0, CuriB = ugj, Curl E* = e (4) motion of a two-phase fluid-particle system occupying the
space between the plates at a distance h apart is governed
Jj = 0o(E" + ux B)] ()  py the equations:
where the displacement currents are neglectgdgnd og dq _ 24
are constants anB* is the electric field. o T 2iQq=v 922 +
We now consider the unsteady hydromagnetic flow of
an incompressible electrically conducting viscous fluid with and or +2iQr= l(q -7 @)
uniformly distributed small inert spherical particles in a ot T
channel bounded by two infinite rigid non-conducting plateghereq = u; + iuy is the complex fluid velocity, and- =
in presence of a constant magnetic fighd normal to the v, +iv, is the complex particle velocity; = 2o s the
plates at z=0. Both the two-phase fluid and the plates areritio of the mass density of the particles and the fluid density,
a state of solid-body rotation with constant angular velocitysually called, the mass concentration of the partictes;
(2 about the z-axis normal to the plates and in this situatiop is the relaxation time of the particles and= <> B is
the upper plate sets in motion in its own plane impulsivelfhe hydromagnetic parameter.
from rest due to velocity tooth pulses applied periodically on Introducing the non-dimensional variables
it with the lower plate kept stationary. The x-axis is taken in

5(7’*(])* nq (6)

the direction of length of the lower plate and the y-axis is also (¢'r) = (@r) . _z . (' 2) = v(t,7) ®)
fixed in the plate normal to its direction of motion. The flow ’ U’ h ’ h?
configuration is shown in figure 1. We assume that no appliggd the non-dimensional flow parameters

or polarization voltage exists i.d* = 0 so that no energy

is added or extracted from the fluid by the electric field. gl hQ, Az ©)

We further assume that the magnetic Reynolds number is v v

very small which is plausible for most electrically conductingnh equationg6) and (7) and dropping the primes, we get the
fluids. This implies that the current is mainly due to induceflon-dimensional equations of motion in the form

electric field so thatj = oo(u x B) and the applied

magnetic field remains essentially unaltered by the electric 9% +2iEq= aiq + k (r—q)—M2?q (10)
current flowing through the fluid. We further assume that the ot 922 A

induced magnetic field produced by the motion of the fluid or . 1

is negligible compared to the applied magnetic field so that and G T2iEr=y(@-r (1)
Lorentz force term in (1) becomes-2¢ B3 u. Moreover, -

the particles are uniformly distributed in the fluid and thehere M? = ‘7271,30 is the Hartman Number.

(Advance online publication: 10 February 2011)
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The problemnow reduces to solving (10) and (11) subjeatith ¢, =0 on z=0,¢, = £+ on z=1,

2
to the boundary and initial conditions given by

d? 42p+1
gz, t)=f(t) at z=1, t >0, (12 T~ Lyapr =0 (21)

with Q2p+1 = 0 on z=0,

(g,m) — (0,0) at z =0, t >0, (13)
(g,r) = (0,0) att <0 for all z (14) Q2p+1 = ﬁ on z=1,

where f(t) represents the tooth pulses which is an even 2W,

periodic function of time with period 2T and strength T A e + 1+ k+AMN?+4iE)] d?;

+[(1 + 20EN)(N? + 2iE) + 2iEK]W,, = 0 (22)

I1l. SOLUTION OF THE PROBLEM with  Wy(t) = W,(0) at t=0,
Eliminating r from (10) and (11), we get W (t) = W.(0) at t=0

0,9 2E(1+21E)\+)\8

at)
o 9% 0
= (L+ 2B+ A7) 55 — k(o

a )
~M2(1 + 2iEN + A= )q. T
ot 2i Bk
. . . LP=M?*+2% B4+ ———
To solve this equation one more initial condition is needed 142 E X

on g in addition to that given in (14). Without loss of i
enerality we assume that L?=M?+1i (2FE 1
g % P +Z( +ﬁp)[ +1+Z')\(2E+ﬁp)

0
8—;] =0 at t <0, 0 <z < 1. (16) The solutions of equations (20) to (22) are
According to the nature of f(t) mentioned above the By sinh Lz

mathematical form of q(1,t) may be written as qs(z2) = ————, (23)
2 sinh L
Ey

g(L,t) = -+ {t H(t) AB, 1  sinh Lz

Q2pr1(2) = — :
+2Z (t—pT)H{t—pT)} (17) ™ (2p+1)2 sinh L,

)q whereW,,(0) and W, (0) are to be determined.
ot In the above,

+2iE)q

(I1+2EX+ A

2p+ 1)
N2 :M2+TL27T2, 51) _

(15)

]

(24)

)iy €xp(mit) — exp(mat)
where H(t) is the Heaviside step function defined Wa(t) = W, (0) my — mo
as LW (0) m1 exp(mat) — mo exp(mat)
Ht-T)=0,t <Tand Ht-T) = 1,t > T. mi—ma
where
Using half-range Fourier series the condition (17) may also
be expressed as 2 A my,2A me = —[(1+k + A(N? + 4iE))

E, 4E [(2p +1) 7 t/T ] F{1+k+ X (N? +4iE))* — 4X
a(l ) = 71 a 7r21 2o = (22; + 1)7; - (18) (1 4+ 2iE)(N? + 2iE) + 2iEk)}1/2]. (26)

(25)

By virtue of the equation (18), we assume the solution of The initial conditions (14) and (16) provide
(15) as W,(0) o 1
> C(2p+ 1) 7wt Ey L? 4+ n? 72

L 5 Ress 1 L@

p=1 T2 E=0 19 T N2 (12 4 n2n2)
i(2p+1)7rt)] ™ (2p + 1)2(L2 4 n?n?)
N g Wal0) _8n(=1)" o 5, 28)
+ Z Wy(t)sin n m z (19) Ey 0 TEP=0(2p + 1)2 (L2 + n?n?)

_ _ where Re andl,, stand respectively for the real and the
whereq is the conjugate of g. imaginary parts of the above expressions.

q(z,t) )+

N |

+ Gapta(2) exp (=

Substituting (19) in (15), we have the following equations |t is to be noted here that the p-series in (27) and (28)

with appropriate conditions as are of orders3, and 3,2 whenp — oo. The n-series is
also convergent sincer; andmsy and (m; — mgy) are all of
d2q, order—N? asn — .
a2 qs =0 (20)
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Finally, the fluid velocity takes the form Following [7] and employing the method of Laplace
g(z,t)  sinh Lz 4 . eap(ifyt) sinh Lyz transform, the equivalent form of (29) can be written as
- 3 - 5 =0 3
£y 2sinhL P=N(2p+1)? sinh Ly q(z,t) sinh Lz 4 o370 exp(ifp t) sinh Lyz
! e _
+300 | Wa(0) exp(mat) — exp(mat) Ey 2sinh L 72 P=0(2p +1)2 sinh L,
" Ey my — ms 21 . ‘
W,(0) mq exp(mat) — mo exp(mat) —— Ity n(=1)" B sin nmz (34)

] sin nmz (29) T

L . . . where B = B B
which is valid for all values of the particle concentration k, 1+ B2,

the rotation E and the magnetic field M. Sinee; and mo

Jr
Ky mp — My

- _ exp(myt) m; T

are negative, the steady-state fluid velocity becomes B; = m?J tanh (Z57) x
q(z,t) _ sir.LhLz B %RGE;O:O ewp(iﬁptz) si@h Lyz B0) 1+ k (1+4iEN) 1 =19

Eq 2sinhL  w (2p +1)2 sinhL, 1+ A (m; + 2iE)2 %
where both the steady and the harmonic part contain the ) )
effect of dust particles which is not the case in absence df 1, 2Am2 = —[(1+k+ A (N +4i E))
rotation. In absence of rotation only the harmonic part of ) ’ )
(30) contains the effect of particles due to pulsation when FUL+ &+ AN + 4iE))

the steady condition is attained. , ) ’ . o
However, if the fluid is clearik — 0), the expression for — 4 A ( (1 + 20 E) (N* + 20 E) + 24 E k)}'/?].

the fluid velocity (29) reduces to )
The result (34) clearly agrees with that of author [3]

q(z,t) _ sinh L'z 4 o exp(ifyt) sinh Lz when E = 0, k = 0 and the non-oscillatory result of Mitra
E, 2sinh L* w2 P7 (2p+ 1)? sinh Lj and Bhattacharyya [14] appears when E =H), = 2V
00 W,:(O) —(N2+2iE)t . and7 — 0.
AR E; € sin nmz (31) The particle velocity, in the general case, as obtained from
where (11) and (29) gives
L* = V/M? + 2E, L) = /M2 + i2E + £3,) _ 1 —eap[=(1+ 2ENL/A]
p \/ p T(th) 1+ 2EN qs
and ) . .
X x t] — —(1+ 24BNt/
Wi e ! sreys S CO 2RI,
E; (L*)2 + n? m2 s 1 p
8 . 1 n i W/ (0) explmit] —exp[—(1+ 2iEN)t/)
T Sy T I T ) = ma Lk + 2N
It is to be noted here that when E=0 the results (29) and _ eaplmat] — exp[-(1 TQZE)‘)t//\]}
(31) coincides exactly with those of authors [7] and the W.0) L+ moA +2iEX
result (31) is identical to that of authors[4]. n m ¢
+m1 —mo 1+ mo\+21E)\ (Giﬂp[mg ]
Further, if E; = 2 andT — 0, the result (29) provides the — eap[— (1 + 2iEANE/N]) — — 2«
solution of hydromagnetic Couette flow of a two-phase fluid 1 + miA + 2“?)‘
in a rotating system. In this case, the solution (29) yields (explmat] — exp[—(1 + 2iEN)t/A])}]sin nwz  (35)
q(z,t) = Siﬁh Lz which in the steady-state {t— o) yields
sinh L
o , - exp(mt) — exp(mat) . 9s —iy
L Wa(0)——— — = et = e
myexp(mat) — moexp(mit), . > e'(Bp—0p)
W, (0 32 R 36
+W,(0) p—— |sin nmz  (32) + Re ;1_’_4 N(2E 1 5,)° Q2p+1 (36)
which, for the case of clean fluik — 0), takes the form
where tang; = 2EX, tanf, = 2A(2E+53,) .
(1) sinhvM? + 2iE =
Z? = . . . .
1 sinhv/M? + 2iFE It follows from (30) and (36) that the particles in the
e e~ (N? + 2iE)t steady-state are unable to attain the actual fluid velocity

+2m Z n(=1)" NZ 4 o CMMTE (33)  due to the presence of rotation and pulsation. But in the
n=1 limit T — 0, E; =2 and E = 0, we haveu; = v;. This
The result (33), when E = 0, agrees with the limitingghows that, in absence of pulsation and rotation,the particles
solution of Hayat et al.[24] and provides the classicalttain the fluid velocity in the steady motion generated by
hydrodynamic solution when E = 0 and M = 0. impulsively moved plate. This result is also known from
Michael and Miller's[25] analysis.

(Advance online publication: 10 February 2011)
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Finally, the skin-friction on the walls are given by the magnetic field M so that the fluid velocity becomes

0o independent of k when M is very large. On the other hand,

To _ L __ iReZ 1 Ly eiPt when E = 0 and k is fixed, the magnetic field M produces

Ev 2sinhl w0 = (2p +1)% sinhLy, a damping effect on the flow whether it is increasing or
o0 W (0) emt — gmat decreasing. This effect also reduces with the increase of k

+ Z n| g and is illustrated in figures 4-5. The above observations are
n=1 Lo e true even when the steady-state is reached where the effect

n W, (0) mpe™2t — mzemlt] (37) of k persists only in presence of pulsation.
E1 m; — Mo ’

51 LcoshL 4 S 1 LycoshL, it
_ ciPp
D

E,  2sinhL w2 = 2p+1)2 sinhL, a0 od E-00 s koo
/ S ol t=1.25k=0.4
+ i (-D)"nm [W"(O) et et X 1-1.25,k=0.9
— By mp — mg T esl
W, (0) mye™?t — mge™? 0.2}
. 38
+ El m; — Mo ] ( ) 0.1f

Many known results can also be retrieved from (37) and (38)
including the classical results.

-y

IV. NUMERICAL RESULTS

j9.3. Fluid velocity profiles in a non-rotating system (E=0.0) when T =

The nature of pulses subjected on the upper plate produg N=01andM=50.

developing (increasing) and the retarding (decreasing) flows
in the fluid. To investigate the effect of various flow
parameters on the fluid velocity corresponding to developing
flows at t=1.25 and t=25.0 and the retarding flow at ©°¢
t=3.75, the exact solutions (29) is evaluated for the cases |, E- 00 t-1.25 Ms5.0
E=0,E=0.1and E=1.0when T=20 and=0.1.The Y t=1.25 M0.5
non-zero values of the flow parameters are chosen arbitraril§ o4 t=1.25, M0, 0-—-———
within their range of validity. The changing nature of the T ,,
velocity components are incorporated in figures 2 to 21 for
different values of the particle concentration k, the magnetic
field M and the rotation E. It is observed from figures 2-3, o g 5
that in absence of rotation (E = 0) and for fixed values =3.75,M:5.0

of the magnetic field M, the particles decrease the fluid 0.2 0.4 0.6 0.8 L

velocity u; when the flow is developing and increase the -o: Sy

same when the flow is retarding. Such a result is expected

bec_ause of _mema_ of the pamdes playing _a Vlt_al role teig. 4. Fluid velocity profiles in a non-rotating system (E=0.0) when T =
resist the fluid motion. Thus a particulate fluid neither growo, » = 0.1 and k = 0.0.

nor decay as fast as a clean viscous fluid.

0.6
o 0.5 E=0.0 o
w t-1.25,k=0.0 -
S 0.4 t=1.25,k=0.4 — 5
t=1.25,k=0.9 - - t=25,k=0.0 T
T 0.3 t =25, k=0. 4
,,,,, t-25,k=0.9
0.2
1 t=3.75,k=0.9
0.1} t=3.75,k=0.4
7 t=3.75,k=0.0
0.2 0.4 0.6 0.8 1 0.2 04 06 ) 1
01k — Yy -0.1¢ .y

Fig. 2. Fluid velocity profiles in a non-rotating system (E=0.0) when TFig. 5. Fluid velocity profiles in a non-rotating system (E=0.0) when T =
=20,A=0.1and M =0.0. 2.0,A=0.1and k =0.9.

It is further noticed that the effect of k on; whether However, in presence of rotation, the velocity component
decreasing or increasing reduces with the increase 0of varies in a manner similar to that of non-rotating case

(Advance online publication: 10 February 2011)
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excepting a significant diminution in its magnitude withretarding motions, are shown in the figures 6, 8, 10, 12, 14,
the increase of rotation when the flow is developing. Fd6, 18, 20.

retarding flows, the velocity component increases with It is noticed that the lateral component of fluid velocity
rotation E and the particles k but decreases with the magm- appears in a contained fluid only in presence of rotation.

0.6 — Y
o 0.5 E =0.1 —0‘. 2 0.‘2 0.‘4 0.‘6 0.‘8
Lu - —
= t-1.25,k=0.0 ~0.0002 | t-1.25,k=0.0
S 0.4p t=1.25,k=0.4  1-3.75 K-0.0
t=1.25,k=0.9 - " t=25,k=0.0 0.000a | « -t =25,k=0.0
f 0.3 - t=25,k=0.4 T t=1.25, k=0. 43>
t =25, k=0.9 N
0.2 S' -0.0006 | t=3.75,k=0.4--- N\
' L t=3.75,k=0.9 l t =25, k=0. 4
TNy t-3.75,k=0.4 -0-0008 ¢
375 k0.0 _0.001 | E .01 t=1.25k=0.9-
02 o4 0-6 0.8 1 {-3.75,k=0.9 -
_o.1f —y -0.0012 t =25, k=0. 9-
-0.0014 |

Fig. 6. Distribution of the fluid velocity componer(;/E1) in a rotat-
ing system (E=0.1) when T = 2.0, = 0.1 and M = 0.0. Fig. 9. Distribution of the fluid velocity componer{tz2/E1) in a rotat-
ing system (E=0.1) when T = 2.0, = 0.1 and M = 5.0.

— y
-o‘.z o.‘z 0.‘4 0.‘6 0.‘8 : 0.6
t=1.25, M5.0
-0.002 | <« t=1.25,k=0.0 t =25, k=0.0- — [ _
E-o01 0 0.5 E=0.1
~ t=1.25 M0.5 y
-0.004 - 5' 0.4
u‘j -- t=3.75,k=0.0 T t=1.25, M=0. 0-————————
~
S -0.006 0.3 t =25, M=0. 0-————_
«t=1.25,k=0.4
! t =25, k=0. 4~ o2l
-0.008 1 t=3.75,k=0.4 VR —
0.1
-0.01 -t=1.25,k=0.9
t=3.75,k=0.9---
t =25, k=0. 9- = = 0.‘6 o -
-0.012 -
-0.1 Sy

Fig. 7. Distribution of the fluid velocity componer(2/E1) in a rotat-
ing system (E=0.1) when T = 2.0, = 0.1 and M = 0.0. Fig. 10. Distribution of the fluid velocity componerft:; /E1) in a rotat-
ing system (E=0.1) when T = 2.0, = 0.1 and k = 0.0.

0.6 —y
o125, k=00 oo 0.2 oft 1.25 Ika; X 05
w £-ot t=1.25k=0.4 C T8, 75, M O o wes 0T
-0.001
= t=1.25k=0.9 -
S o0.4af
T t =25, k=0. 0 _, -0.002f
ul
0.3+ wl
S -o.003f
0.2 l
“0.004] E=0.1 t=1.25, M0.5
o t=3.75,M0.5
-0.005 [ £ -1, 25, MO, 0N t =25, M=0. 5
0.2 1 t=3.75, M=0. 0-—-->
t-25, M-0. 0
-0.006
-0.1+ N y

Fig. 8. Distribution of the fluid velocity componer(t:; /E1) in a rotat- Fig. 11. Distribution of the fluid velocity componerftz2/E1) in a rotat-
ing system (E=0.1) when T = 2.0, = 0.1 and M = 5.0. ing system (E=0.1) when T = 2.0, = 0.1 and k = 0.0.

etic field M. In this situation, the increasing effect of k orin the developing flow,the magnitude af increases with

uy reduces with the increase of M when E is small andtation E and the particles k but decreases with the magnetic
enhances when E is large. Additionally, the damping effefield M. Moreover, in this case, for all values of E, the
of M on u; enhances with the increase of k when E is smalcreasing effect of k oni; enhances with the increase of
and reduces when E is large. The observations made abdend the diminishing effect of M on it reduces with the
on u; in presence of rotation, both for the developing anithcrease of k. On the other hand, in the retarding motion of
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thefluid, the magnitude ofi; also increases with E and k but|us| is shifting more and more towards the upper plate with
decreases with M. In this situation, the increasing effect tie increase of M, (iii) for small values of E, the effects of k
k on the magnitude ofi; enhances with M and the dampingand M onu, becomes independent of time t excepting when
effect of M on it reduces with k for all values of rotation. k large and M small, (iv) for large values of E the effects of
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Fig. 12. Distribution of the fluid velocity componer{t:1 /E1) in a rotat-

ing system (E=0.1) when T = 2.0,= 0.1 and k = 0.9. Fig. 15. Distribution of the fluid velocity componerftus /1) in a rotat-

ing system (E=1.0) when T = 2.0, = 0.1 and M = 0.0.
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Fig. 13. Distribution of the fluid velocity componerfti2/E1) in a rotat-

ing system (E=0.1) when T = 2.0, = 0.1 and k = 0.9. Fig. 16. Distribution of the fluid velocity componerft:; /E1) in a rotat-

ing system (E=1.0) when T = 2.0, = 0.1 and M = 5.0.
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Fig. 14. Distribution of the fluid velocity componer{t:; /E1) in a rotat-
ing system (E=1.0) when T = 2.0, = 0.1 and M = 0.0. Fig. 17. Distribution of the fluid velocity componerft:.2/E1) in a rotat-

ing system (E=1.0) when T = 2.0, = 0.1 and M = 5.0.

The variation of the fluid velocity componeun for different

values of the flow parameters and time is illustrated grapti-and M onus; remain always independent of time t. To
cally in figures 7, 9, 11, 13, 15, 17, 19, 21. investigate the effects of various flow parameters on the
Further enquiry shows that (i) for all values of E,k and Momponents of skin-friction on the plates, the results (37)
the magnitude ofi; rises sharply near the lower plate, goeand (38) are evaluated numerically for the cases E = 0.1 and
to a maximum, then decreases continuously until it becomEs= 1.0 when T = 2.0 and = 0.1. These are presented in
zero at the upper plate, (ii) for all E and k, the maximum digures 22, 23 and 24, 25. It is observed that the longitudinal
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componentof skin-friction on both the plates fluctuate in aThe behaviour of the longitudinal component of the skin-
manner similar to that of pulses imparted in the fluid. Ofriction on the upper plate is exactly opposite to that observed
the lower plate, the increase of rotation E and the particlas the lower plate. The magnitude of the lateral component
k decrease the magnitude of the longitudinal component aff skin-friction on both the walls increase at small rapidly
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Fig. 18. Distribution of the fluid velocity componer{t:1 /E1) in a rotat-

ing system (E=1.0) when T = 2.0, = 0.1 and k = 0.0.
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Fig. 19. Distribution of the fluid velocity componerftu2/E7) in a rotat-

ing system (E=1.0) when T = 2.0, = 0.1 and k = 0.0.
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Fig. 20. Distribution of the fluid velocity componerft:1 /E1) in a rotat-

ing system (E=1.0) when T = 2.0, = 0.1 and k = 0.9.

Fig. 21. Distribution of the fluid velocity componerftu2/E1) in a rotat-
ing system (E=1.0) when T = 2.0, = 0.1 and k = 0.9.
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Fig. 22. Distribution of longitudinal component of skin-friction on z = 0
for different values of k, M and E when T = 2.0,= 0.1
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Fig. 23. Distribution of lateral component of skin-friction on z = 0 for
different values of k, M and E when T = 2.0,= 0.1

the skin-friction for small values of the magnetic field Mvalues of time until they maintain a constant value after-
when the flow is developing while a reverse effect is foungards. It is also significant to notice that, for all values of
when the flow is retarding. However, for large values of Mhe flow parameters, the lateral component of skin-friction
the magnitude of the longitudinal component of the skirbecomes negative at the lower plate and positive at the upper
friction on the lower plate diminishes greatly and becomegsate. Such a result is expected in a flow situation described
independent of E and k irrespective of the nature of the flom the present problem.
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V. CONCLUSION of other parameters on the flow and the wall frictions. The

An exact solution of the problem concerning the motioRresent study is more general compared to investigations
of a conducting viscous fluid with embedded small inefhade by earlier researchers and provides analytical solutions
spherical particles in a channel bounded by two infinite rigigSeful for describing many physical flow situations taking
non-conducting parallel plates is found. Both the particulafd@ce in a rotating system.
fluid and the plates are in a state of solid body rotation
in presence of an uniform magnetic field. Additionally, an VI. SUMMARY
unsteady motion is generated in such a fluid when the uppe closed form solution of the problem of hydromagnetic
plate is subjected to velocity tooth pulses and the lowehannel flow of a rotating two-Phase fluid induced by tooth
plate is held fixed. pulses has been obtained by the method of Fourier analysis.
The influence of the particles, the magnetic field and the
rotation on the components of the fluid velocity and the wall
frictions are examined quantitatively.
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