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Abstract—Super-spreading events for infectious diseases oc-
cur when some infected individuals infect more than the average
number of secondary cases. Several super-spreading individuals
have been identified for the 2003 outbreak of severe acute
respiratory syndrome (SARS). We develop a model for super-
spreading events of infectious diseases, which is based on
the outbreak of SARS. Using this model we describe two
methods for estimating the parameters of the model, which
we demonstrate with the small-scale SARS outbreak at the
Amoy Gardens, Hong Kong, and the large-scale outbreak in
the entire Hong Kong Special Administrative Region. One
method is based on parameters calculated for the classical
susceptible - infected - removed (SIR) disease model. The
second is based on parameter estimates found in the literature.
Using the parameters calculated for the SIR model, our model
predicts an outcome similar to that for the SIR model. On the
other hand, using parameter estimates from SARS literature
our model predicts a much more serious epidemic.

Index Terms—modeling, infectious diseases, super-spreading
events, severe acute respiratory syndrome

I. INTRODUCTION

SEVERE acute respiratory syndrome (SARS) is a highly
contagious respiratory disease which is caused by the

SARS Coronavirus. It is a serious form of pneumonia,
resulting in acute respiratory distress and sometimes death.
SARS emerged in China late 2002 and quickly spread to 32
countries causing more than 774 deaths and 8098 infections
worldwide. One of the intriguing characteristics of the SARS
epidemic was the occurrence of super-spreading events.
Super-spreading events for a specific infectious disease occur
when certain infected individuals, called super-spreaders,
infect more than the average number of secondary cases.

According to the U. S. Centers for Disease Control and
Prevention, a person is a super-spreader if they cause more
than 10 secondary infections. Such super-spreading individ-
uals have been identified in the SARS outbreak and they are
thought to have caused most of the secondary infections. For
example, in Singapore, about 80% of infections have been
attributed to only 5 super-spreading individuals ([1]). One
extreme super-spreading individual in Hong Kong caused
more than 100 secondary infections ([2]). To contrast, in Sin-
gapore, most individuals caused 0 secondary infections ([3]).

One differential equation model for super-spreading in-
dividuals was proposed before the recent SARS outbreak,
by Kemper ([4]). He presents a modified susceptible -
infected - removed (SIR) disease model to capture the
effect of the super-spreading individuals in which the in-
fected individuals are split into two different infected classes
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with different transmission rates. The super-spreaders have a
higher transmission rate, meaning more of their contacts with
susceptible individuals result in a new infection than those
of the regular infected individuals. This was the first model
designed specifically to address the effect of super-spreading
individuals on the course of infectious disease epidemics.

Due to the extreme influence of super-spreading individu-
als during the SARS outbreak, many mathematical epidemi-
ologists developed models for the spread of SARS, which
included the occurrence of the super-spreading events1. It is
interesting to note how each incorporated the super-spreading
events into their model. First are models where the super-
spreading individuals have a higher transmission rate than the
regular infected individuals, as in Kemper ([4]). For example,
Masuda, et al. ([3]) developed a contact network model
which had different transmission rates for regular infected
individuals and for super-spreading individuals. Second are
models in which parameters are taken from probability dis-
tributions, making the super-spreading individuals naturally
appear as the right-hand tail of the distributions. Lloyd-
Smith, et al. ([6]) developed a stochastic compartment model
and Fang, et al. ([7]) developed a spacial lattice combined
with a deterministic compartment model wherein the indi-
vidual reproduction numbers are drawn from a continuous
probability distribution.

The goal of this paper is to capture the effect of the super-
spreading individuals using a modification of the classical
SIR disease model. The modification is inspired by Li, et
al. ([8]) who determined that for SARS “the daily infection
rate did not correlate with the daily total number of symp-
tomatic cases but with the daily number of symptomatic
cases who were not admitted to a hospital within 4 days
of the onset of symptoms.” This means that the number of
infected individuals is closely associated with the number
of individuals who remain outside of isolation longer than
most other infected individuals. These individuals remaining
outside of isolation longer than normal are related to the
disease severity. They have more contacts with susceptible
individuals and thus more chances to spread the disease,
in other words, they are the super-spreaders. In our model,
we split the infected individuals into two classes, with two
different “removal” rates; these two rates determine how long
an infected individual remains outside of isolation.

In this paper, we modify the classical SIR disease model
to capture the effect of a super-spreading event, using the idea
that super-spreading individuals stay out of isolation longer
than individuals who are not super-spreading. A description
of the SIPR model, the model equations, and some basic
model properties are given in Section II. We demonstrate

1Many models were developed to try and mathematically capture the
SARS outbreak. Interested readers are directed to Bauch, et al. ([5]) for an
overview of SARS models.
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the model using a small-scale and a large-scale outbreak of
SARS in Section III. Our discussion follows in Section IV.

A. Infectious Disease Modeling

One of the earliest mathematical models to study infec-
tious diseases is the Reed-Frost model developed in the early
1900s. Another early model and one of the most well known
disease models is the susceptible-infected-recovered (SIR)
model proposed and studied by Kermack and McKendrick in
the 1920s (details of this model are given in Section I-A1).
Though this later model is quite simple, it continues to
be widely used to study infectious disease outbreaks. For
example, Ching, et al. ([9]) use the classical SIR model to
study the SARS outbreak.

Since the pioneering work in mathematical modeling of
infectious diseases many SIR model modifications and new
models have been developed and studied; also, many new
techniques to study models have been developed. New mod-
els and modifications allow for the study of additional disease
outbreak details, for example, the difference in disease spread
in different age groups. The study of models has been
enhanced by new mathematical analysis techniques, as well
as new numerical techniques. For an overview of some new
models, and analytical and numerical techniques, readers are
directed to Anderson and May ([10]).

In addition to population-level infectious disease models
such as the classical SIR model, a wide variety of in-host
models have been developed to study the details of a par-
ticular disease within an individual. For example, Lo ([11])
studies the CD4-cell counts of HIV infected patients, and
Aggarwala ([12]) presents a system of four differential
equations for the in-host progression of HIV into AIDS.

The study of mathematical models has been greatly en-
hanced by the advent of and improvement in computer
technology. Improved computing power allows researchers to
perform many numerical simulations, which are practically
required if one wishes to study systems with a large number
of equations, systems of partial differential equations, agent-
based models, models with delays, and optimal control
strategies. Roy and Mondal ([13]) present an in-host modified
SIR model of an infectious disease (pathogen) and study
both delay and optimal control. Also, improved computing
power allows researchers to fit the parameters of a pro-
posed model to data using sophisticated statistical techniques
requiring many numerical simulations, as demonstrated by
Kalhori, Nasehi, and Zeng ([14]) for a model of tuberculosis
treatment.

By no means do we claim that these short paragraphs
are a comprehensive review of mathematical modeling of
infectious disease outbreaks. Interested readers will find
models of almost any variety covering any topic of their
interest related to disease outbreaks. We only wish to provide
readers a sense of the current trends in the broad domain of
infectious disease modeling.

1) The SIR model: We conclude the introduction with
a brief review of the classical SIR disease model. A more
detailed review is given in Murray ([15]), and in Ching, et
al. ([9]) and the references given there.

The classical SIR disease model splits a fixed-size pop-
ulation, N , into three distinct classes: the susceptible in-
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Fig. 1. SIPR model schematic, where S are the susceptible individuals,
I are the regular infected individuals, P are the super-spreaders, R are the
removed individuals, β is the transmission rate, b is the probability that a
new infection will be a regular infected person, 1− b is the probability that
a new infection will be a super-spreading individual, ν1 is the removal rate
for a regular infected individual, and ν2 is the removal rate for a super-
spreading individual.

dividuals, S, those do not have the disease and can be-
come infected; the infected individuals, I , those who have
the disease and can infect susceptible individuals; and the
removed individuals, R, those who have recovered, died,
or moved into isolation. Individuals in the removed class
gain permanent immunity and remain in the R class forever.
Schematically, the SIR model is

S −→ I −→ R

Individuals in the population are assumed to homogeneously
mix. Contacts between the susceptible and infected individu-
als result in a new infected individual at a rate proportional to
the number of susceptible and infected individuals. Infected
individuals are removed to class R at a rate proportional to
the number of infected individuals. The system of nonlinear
ordinary differential equations describing the SIR model is

dS

dt
= −βSI

dI

dt
= βSI − νI

dR

dt
= νI

where β is the transmission rate and ν is the removal2 rate.

II. THE SIPR MODEL

We describe the SIPR model, a modification of the
classical SIR model, which captures the effect of super-
spreading individuals. Schematically, the model is given in
Figure 1. While the basic SIR model has one class of
infected individuals, the SIPR model has a second class
of infected individuals, the super-spreaders, denoted by the
variable P . In the SIPR model we divide the population,
of fixed size N , into four groups, namely the susceptible
individuals, S, the regular infected individuals, I , the super-
spreaders, P , and the removed individuals, R.

2The R class is often called the recovered class containing those who
have recovered from the disease. In this situation, all individuals recover
from the disease; no individuals die or move into isolation. The parameter
ν is correspondingly called the recovery rate.
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A susceptible individual can become infected through
contact with either a regular infected individual or a super-
spreading individual. Then with probability b the new in-
fected individuals become regular infected individuals (move
to class I) and with probability 1 − b the new infected
individuals become super-spreading individuals (move to
class P ). We assume most new infections are regular infected
individuals, that is, b > 1−b. We assume that the two infected
classes, I and P , have the same transmission rate, β.

To capture the effect of the super-spreading individuals,
we use the idea that individuals who are super-spreaders stay
out of isolation longer than the regular infected individuals.
The regular infected individuals stay out of isolation (the R
class) for 1/ν1 days and the super-spreading individuals stay
out of isolation for 1/ν2 days, with 1/ν1 < 1/ν2. Therefore,
the model has two distinct removal rates namely, ν1 and
ν2, corresponding to regularly infected individuals, I , and
super-spreading events, P , respectively. When a person is
removed to the R class there is no possibility of becoming
susceptible again, but rather they recover and gain permanent
immunity, or die; in either case, they remain in the removed
compartment forever.

Based on the previous descriptions and assumptions we
formulate a system of four ordinary differential equations
for the SIPR model.

dS

dt
= −β(I + P )S

dI

dt
= bβ(I + P )S − ν1I (1)

dP

dt
= (1− b)β(I + P )S − ν2P

dR

dt
= ν1I + ν2P

subject to the following initial conditions

S(0) = N − I0 − P0 = S0,

I(0) = I0, P (0) = P0, and R(0) = 0.

The SIPR model given by the system of equations (1) has
the following properties.
• The SIPR model has a unique global solution.
• The components of the solution, S(t), I(t), P (t), and
R(t), of the SIPR model are non-negative and bounded
by N for all time, t ≥ 0.

• The SIPR model has equilibrium points (N, 0, 0, 0),
(S∗, 0, 0, R∗), for any 0 < S∗ < S0, and (0, 0, 0, N).

• The individual reproduction number is

R0 =
bβS0

ν1
+

(1− b)βS0

ν2
.

The properties of the SIPR model are, in general, the natural
modification of the corresponding properties of the classical
SIR model; proofs of these properties follow in Appendix A.
It is interesting to note that the R0 for the SIPR model is
the R0 for the corresponding SIR model for each of the two
infected classes, I and P , multiplied by the probability of a
new infected individual becoming an I or a P , respectively.

The SIPR model can be used to analyze any infectious
disease where super-spreading events have been identified.
As a particular example, super-spreading events have been
identified in one outbreak of measles as described in Paunio,
et al. ([16]).

TABLE I
ESTIMATED PARAMETERS FOR THE SIR MODEL AND THE SARS

OUTBREAK IN THE AMOY GARDENS, HONG KONG (FROM ([9])), AND
IN THE HONG KONG SPECIAL ADMINISTRATIVE REGION FOR BOTH
FEBRUARY 21 - MARCH 21, 2003 AND MARCH 29 - JUNE 12, 2003.

Parameter Amoy Gardens Hong Kong Hong Kong
Feb 21 - Mar 21 Mar 29 - Jun 12

β 1.4850/N 0.2586/N 0.1351/N
ν 0.9750 0.0821 0.1923
R0 1.5154 3.1511 0.7025

III. THE SARS EPIDEMIC

We use the SIPR model to study the spread of SARS
on a small scale, in the Amoy Gardens apartment complex
in Hong Kong, and on a large scale, in the entire Hong
Kong Special Administrative Region. In both cases, we fit the
model to the data using two parameter estimation methods.
We begin with a description of the estimation procedures.

The general parameter estimation procedure was as fol-
lows. The SIPR system of equations (1) was solved repeat-
edly with parameter sets taken from the allowable range of
possible parameters, and the least squares error between the
cumulative number of cases of the solution and the actual
data was computed. The least squares error was minimized.
All computations were done with MATLAB using the func-
tion fminsearchbnd.

In parameter estimation Method 1, we used the parameters
estimated with a fit of the classical SIR model to the data.
For the data on the entire Hong Kong Special Administrative
Region, we were unable to find SIR parameters. Therefore,
we began with fitting the classical SIR model to the data. A
summary of the SIR model parameters is given in Table I.
We use the transmission rate of the SIR model as the
transmission rate of the SIPR model. The transmission
rate, the removal rate, and the initial number of susceptible
individuals are used to determine the basic reproduction
number R0. We estimate parameters b, ν1, and ν2 so that
together they have R0 as calculated, and they satisfy b > 1−b
and ν1 > ν2.

In parameter estimation Method 2, bounds for the param-
eters in the SIPR model were determined from the litera-
ture. Then, using these bounds, we estimate the parameters
that give the best fit to the data. Details and references
for these bounds are given in the next paragraph and in
Subsections III-A and III-B.

For estimation Method 2, we make some assumptions
regarding the parameters that apply to both the small- and
large-scale outbreaks. In situations with super-spreading in-
dividuals, it is assumed that most infected individuals are not
super-spreaders, which is the case for the spread of SARS.
In fact, Masuda, et al. ([3]) state that for the SARS outbreak
in Singapore 80% of infected individuals infected no one
else. This leads us to set a lower bound on the probability of
becoming a regular infected individual of 0.8, and we have
0.8 < b < 1. For SARS, after the onset of symptoms regular
infected individuals stayed out of isolation between 3 and 5
days ([17]); we assume the average and set ν1 = 1/4. We
assume that on average super-spreading individuals moved
into isolation 10 days after they became infectious, that is,
ν2 = 1/10. Finally, many researchers have shown that the
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individual reproduction number, R0, for the SARS outbreak
is between 1.5 and 4 ([5]). We assume this region for R0,
which gives a constraint on the parameters β, b, ν1, and ν2.

A. The SARS epidemic - small scale

We use the SIPR model to study the spread of SARS at
the high rise apartment building Amoy Gardens, Block E,
in Hong Kong. We assume that the cumulative number of
confirmed cases of SARS in the Amoy Gardens, summarized
in Table II, are all from Block E, and that Block E contains
a total of 792 individuals, as in Ching, et al. ([9]).

For parameter estimation Method 1, we use the parameters
determined by Ching, et al. ([9]). The fixed and estimated
parameters of the SIPR model are given in Table III. The
resulting number of confirmed cases of SARS are presented
in Table II.

For parameter estimation Method 2, we survey literature
to determine appropriate bounds on all of the SIPR model
equations. We assume that the total number of infected
individuals at t = 0 is 4, as in Ching, et al. ([9]). We
conservatively assume 0 < β < 0.01. The bounds and
constraints for each parameter as well as the estimated
parameter values are given in Table III. The resulting number
of confirmed cases of SARS are presented in Table II.

B. SARS epidemic - large scale

We use the SIPR model to study the spread of SARS
in the entire Hong Kong Special Administrative Region. We
use the cumulative number of confirmed cases of SARS in
Hong Kong as reported by the World Health Organization3

(WHO). The first case of SARS in Hong Kong appeared on
February 21, 2003. The WHO began daily reporting of SARS
cases on March 17, 2003, and June 12, 2003 shows the last
additional confirmed case, to a total of 1755 confirmed cases.
In the parameter estimations, we use all of this data, and we
summarize the data in Table IV.

To begin, we identify three distinct time periods of the
SARS epidemic in Hong Kong. The first time period is
February 21 – March 21, 2003, the second is March 22 –
March 28, 2003, and the third is March 29 – June 12, 2003.
The first reported case of SARS in Hong Kong occurred on
February 21, 2003, when a SARS infected doctor arrived
from China. From this date until March 21, 2003, very little
was known regarding SARS and few precautions were taken
by individuals to prevent the spread of infection. On March
21, Hong Kong officials decided to begin daily reports to
the public regarding the threat of SARS infection. As a
result of these warnings people began to protect themselves
from infection and the dynamics of the disease transmission
changed. Due to the continued spread of SARS and the
increasing awareness of the seriousness of infection, on
March 29, all Hong Kong schools were suspended, again
changing the disease dynamics. Classes resumed for all
students by May 19 and the last reported case of SARS in
Hong Kong occurred on June 12, 20034.

3The WHO numbers were accessed on September 29, 2010, on-line at
http://www.who.int/csr/sars/country/en/index.html.

4A chronology of the SARS epidemic in Hong Kong can be found in
Appendix III of the final report by the SARS Expert Committee of the
Hong Kong Special Administrative Region, accessed on October 15, 2010,
on-line at http://www.sars-expertcom.gov.hk/

We examine the first and third periods only, using the
SIPR model. The first time period corresponds to quick
spreading of the disease and we show this region has an R0

value above 1. The third period corresponds to the end of
the disease and correspondingly has an R0 value below 1.

In 2003, the Hong Kong area had a total population of
6.803 million people. The number of susceptible individuals
in Hong Kong during the SARS epidemic is not the entire
population; the number of susceptible individuals must be
approximated. Katriel and Stone ([18]) give a formula to
estimate the percent of the population that is susceptible
during an epidemic. The number who are susceptible can
be computed using the R0 value and the percent of the
population who became infected. Riley, et al. ([2]) determine
the R0 value specifically for the SARS outbreak in Hong
Kong is in the region 2.2 – 3.7. Using this, we compute
that the number of susceptible individuals falls in the range
1.8 million – 3.1 million, where the smaller population
correspond to larger R0 values. We assume a large R0 value,
and, therefore we use the lower value, N = 1.8 million.

For parameter estimation Method 1, we use the parameters
determined by fitting the data sets to the classical SIR
model. The fixed and estimated parameters of the SIPR
model are given in Tables V and VI, corresponding to time
period one and three, respectively. The resulting number of
confirmed cases of SARS are presented in Table IV.

For parameter estimation Method 2, we survey literature
to determine appropriate bounds on all of the SIPR model
equations. We assume that the total number of infected
individuals at t = 0 is 1 for time period one, corresponding to
the index case, and 470 for time period three5, corresponding
to the number of confirmed cases on March 29, 2003. The
bounds and constraints for each parameter as well as the
estimated parameter values are given in Tables V and VI. The
resulting number of confirmed cases of SARS are presented
in Table IV.

C. Summary Results

We summarize the infections for each of the data sets and
their fitted parameters in Table VII. Specifically, the table
contains the total number of individuals who became in-
fected, the total number who became infected through contact
with a regular infected (I) and super-spreading individuals
(P ), the total number of regular infected (I) and super-
spreading individuals (P ), and the individual reproduction
numbers for the I and P classes (as SIR models).

IV. DISCUSSION

We have presented a modification of the classical SIR
disease model that captures the effect of super-spreading
individuals on an infectious disease epidemic. Using an idea
from the progression of the SARS outbreak, we distinguish
the regular infected individuals from the super-spreading
individuals by how long they remain outside of isolation; the
super-spreading individuals spend longer outside of isolation
than most infected individuals. The model was fit to data

5Some of these 470 confirmed cases would have already been removed
from the disease transmission dynamics via recovery, death, or removal to
isolation.
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TABLE II
CUMULATIVE CONFIRMED CASES OF SARS IN AMOY GARDENS, BLOCK E, MARCH 2003 (FROM CHING, ET AL. ([9])). PREDICTED CASES BASED

ON PARAMETER ESTIMATION METHODS 1 AND 2.

Day March 26 March 27 March 28 March 29 March 30

Confirmed 7 22 56 78 114
Method 1 12.2 26.2 48.2 80.3 123.8
Method 2 9.1 19.1 37.4 69.7 122.3

TABLE III
ESTIMATED PARAMETERS FOR THE SIPR MODEL AND THE SARS OUTBREAK IN THE AMOY GARDENS, HONG KONG, MARCH 2003, USING

METHODS 1 AND 2. FIXED PARAMETERS WERE FOUND IN CHING ET AL. ([9]).

Parameter Dimension Method 1 Fixed or Estimated Method 2 Bound or Constraint

S0 people 788 Fixed 788 S0=788
I0 people 0.4 Estimated 0.0 I0 + P0 = 4

P0 people 3.6 Fixed by I0 4.0 I0 + P0 = 4

β days−1× people−1 1.4850/N Fixed 0.8728/N 0 < β < 0.01

b 0.9315 Estimated 0.9994 0.8 < b < 1

ν1 days−1 0.9997 Estimated 0.2500 ν1 = 0.25

ν2 days−1 0.7294 Fixed by b, ν1, and R0 0.1000 ν2 = 0.1

R0 1.5154 Fixed 3.4765 1.5 < R0 < 4

TABLE IV
CUMULATIVE CONFIRMED CASES OF SARS IN HONG KONG. PREDICTED CASES BASED ON PARAMETER ESTIMATION FOR THE CLASSICAL SIR

MODEL, AND THE SIPR MODEL USING METHODS 1 AND 2.

Day Feb 21 Mar 17 19 21 29 Apr 12 26 May 10 24 Jun 6 20

Confirmed 1 95 150 203 470 1108 1527 1674 1724 1750 1755
SIR 1 100.9 143.8 204.9 470.0 1081.5 1355.8 1478.9 1534.0 1557.6 1569.3

Method 1 1 100.3 142.9 203.6 470.0 776.1 983.6 1124.8 1221.0 1282.6 1328.4
Method 2 1 103.8 144.9 202.2 470.0 1156.5 1486.1 1644.4 1720.5 1755.1 1773.6

TABLE V
ESTIMATED PARAMETERS FOR THE SIPR MODEL AND THE SARS OUTBREAK FOR FEBRUARY 21 - MARCH 21, 2003, IN HONG KONG, USING

METHODS 1 AND 2.

Parameter Dimension Method 1 Fixed or Estimated Method 2 Bound or Constraint

S0 people 1,799,999 Fixed 1,799,999 S0=N-1
I0 people 1.0 Estimated 1.0 I0 + P0 = 1

P0 people 0.0 Fixed by I0 0.0 I0 + P0 = 1

β days−1× people−1 0.2586/N Fixed 0.3738/N 0 < β < 1/N

b 0.6489 Estimated 0.8000 0.8 < b < 1

ν1 days−1 0.0836 Estimated 0.2500 ν1 = .25

ν2 days−1 0.0794 Fixed by b, ν1, and R0 0.1000 ν2 = .1

R0 3.1511 Fixed 1.9438 1.5 < R0 < 4

TABLE VI
ESTIMATED PARAMETERS FOR THE SIPR MODEL AND THE SARS OUTBREAK FOR MARCH 29 - JUNE 20, 2003 IN HONG KONG, USING METHODS 1

AND 2.

Parameter Dimension Method 1 Fixed or Estimated Method 2 Bound or Constraint

S0 people 1,799,530 Fixed 1,799,530 S0=N-470
I0 people 277.2 Estimated 311.6 I0 + P0 = 470

P0 people 192.8 Fixed by I0 158.4 I0 + P0 = 470

β days−1× people−1 0.1351/N Fixed 0.1473/N 0 < β < 1/N

b 0.5237 Estimated 0.8910 0.8 < b < 1

ν1 days−1 25.6988 Estimated 0.2500 ν1 = .25

ν2 days−1 0.0920 Fixed by b, ν1, and R0 0.1000 ν2 = .1

R0 0.7025 Fixed 0.6851 0 < R0 < 1
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TABLE VII
SUMMARY OF THE OUTBREAKS FOR EACH OF THE DATA SETS AND THEIR FITTED PARAMETERS: THE TOTAL NUMBER OF INDIVIDUALS WHO BECAME

INFECTED; THE TOTAL NUMBER WHO BECAME INFECTED THROUGH CONTACT WITH A REGULAR INFECTED (I ) AND SUPER-SPREADING
INDIVIDUALS (P ); THE TOTAL NUMBER OF REGULAR INFECTED (I ) AND SUPER-SPREADING INDIVIDUALS (P ); AND THE INDIVIDUAL

REPRODUCTION NUMBERS FOR THE I AND P CLASSES (AS SIR MODELS).

Amoy Gardens HK Period 1 HK Period 3
SIR M 1 M 2 SIR M 1 M 2 SIR M 1 M 2

Total Infected 477.3 479.1 765.8 1,709,770 1,709,769 1,405,410 1578.9 1426.1 1791.5
Contact with I 473.3 426.1 742.1 1,709,769 1,097,524 912,542 1108.9 4.1 876.6
Contact with P 49.0 19.7 612,244 492,867 952.0 444.9
Total I 477.3 443.0 761.4 1,709,770 1,109,516 1,124,365 1578.9 777.9 1489.2
Total P 36.1 4.4 600,253 281,045 648.2 302.3
R0 for I 1.5154 1.4779 3.4735 3.1511 3.0944 1.4953 0.7025 0.0053 0.5889
R0 for P 2.0255 8.6838 3.2560 3.7382 1.4691 1.4721

from the SARS epidemic, using two different parameter
estimation methods.

Parameter estimation Method 1, used parameters estimated
for the classical SIR model. The resulting parameters show
only a slight super-spreading behavior in all cases studied.
For Amoy Gardens and the short-term outbreak in Hong
Kong, the I and P classes are not distinguished by how
long each stays outside of isolation. They are also not
distinguished by their individual reproduction numbers. In
each case, the two recovery rates are similar to each other,
and similar to the recovery rate of the SIR model estimated
parameters. It is not surprising, therefore, that the final
number of infected individuals, given by the final number
of individuals in the removed class, in the two models are
within just a few individuals.

The fitted parameters for the long-term outbreak in Hong
Kong using parameter estimation Method 1 indicate that
regular infected individuals move so quickly into isolation
that we can disregard their influence on the disease spread.
As evidence, over the entire course of the disease, they
collectively only infect a total of 4.4 individuals. Due to
the incredibly short time spent in the infected class, the
individual reproductive number in this case is very low.

Though the outbreak in the entire Hong Kong Special
Administrative Region was split into three time periods
corresponding to three different disease dynamics, the fit
parameters do not match the third time period data set as
well as one might hope. This is noticed for the classical
SIR model, and, since the SIR parameters are used for
estimation Method 1, we also see this in the fit parameters
for Method 1. One possible fix for this problem is to split
the third time period into other periods in which the outbreak
has common dynamics.

Parameter estimation Method 2, used research to set a
priori bounds on the parameters of the SIPR model. In every
case, the resulting parameters show super-spreading behav-
ior, for example, the two infected classes are distinguished by
their individual reproduction rates. All three cases show that,
on average, each regular infected individual infects less than
1 other individual, while each super-spreading individual
infects more than 1 other individual.

Considering the specific case of the outbreak at the
Amoy Gardens apartment complex, Method 2 predicts that,
without any other intervention, almost all of the residents
of Block E, will become infected. In this case, both the

regular infected and super-spreading individuals have basic
reproduction numbers larger than 1. It is clear from the dire
outcome predicted for the residents of the Amoy Gardens,
Block E, that super-spreading individuals must be brought
into isolation as quickly as possible.

For the long-term outbreak in Hong Kong (in the third time
period), the overall individual reproductive number is less
than 1, which matches the notion that individuals were taking
precautions to protect themselves, and the disease spread was
slowing down. Using the SIPR model, we see that the reg-
ular infected individuals do have an individual reproductive
number less than 1, however, the super-spreading individuals
have a reproductive number larger than 1. Again, we see
that it is imperative that the super-spreading individuals be
brought into isolation as quickly as possible.

Finally, it is evident from the short-term outbreak in
Hong Kong (in the first time period), that without any
control measures the spread of SARS in Hong Kong would
have been extreme. The model predicts that more than 1.7
million residents would have been infected over the course
of the disease outbreak. Correspondingly, they would have
experienced a large disease related mortality. The death rate
for SARS is estimated to be around 10%, and so, Hong
Kong would have lost an estimated 170,000 residents. Noting
that the final death toll in Hong Kong was (though tragic)
only 299 people, the control measures put in place by the
government of Hong Kong saved thousands of lives.

The SIPR model is versatile; it can be used to examine
an outbreak of any disease known to have super-spreading
individuals, measles for example (see ([16])). On the other
hand, the model was built using the idea that super-spreading
individuals stay out of isolation longer than regular infected
individuals, as during the SARS epidemic. (There are doc-
umented cases of SARS infected individuals violating strict
isolation mandates6.) For diseases where the super-spreading
behavior is a result of differing transmission rates, one should
use the Kemper model ([4]).

Super-spreading individuals for infectious diseases pose
a serious threat to public health. The SIPR model clearly
demonstrates that infectious individuals must be removed
from interactions with the susceptible individuals as quickly
as possible to decrease the seriousness of an infectious
disease epidemic.

6See for example “SARS Epidemic Worsens in Taiwan”, by Shu Shin
Luh, in the Washington Post, May 15, 2003.

IAENG International Journal of Applied Mathematics, 41:2, IJAM_41_2_01

(Advance online publication: 24 May 2011)

 
______________________________________________________________________________________ 



APPENDIX A
PROPERTIES OF THE SIPR MODEL

We give a brief justification for each of the properties of
the SIPR model. As mentioned in Section II, each of these
properties is analogous to that of the classical SIR model.
Therefore, details of the proofs follow exactly as for the SIR
model.

1) Continuity and (partial) differentiability of the equations
in the system of differential equations, along with the fact
that each of the solutions is bounded, guarantees a unique
global solution.

2) Since
dR

dt
> 0 for all t, the number of removed indi-

viduals will be non-negative. Since
dS

dt
= 0 when S = 0,

the number of susceptible individuals will be non-negative.
To verify that the number of regular infected individuals

is always positive, consider the boundary case when I = 0,
and all of the other populations are non-negative. In this case
dI

dt
= bβPS ≥ 0; that is, the number of regular infected indi-

viduals will not decrease to become negative. The verification
for the number of super-spreading individuals is similar.

When the four equations are added together we see that the
total change in the population size is 0, and so the population
is constant, say N . Therefore, since each population is non-
negative, we see that each is bounded between 0 and N .

3) Setting each of the equations in the system of differen-
tial equations equal to zero and solving for the values of S,
I , P , and R gives the family of equilibrium points.

4) To determine the individual reproductive number R0,
one may compute the largest eigenvalue of the next genera-
tion matrix 

bβS0

ν1

bβS0

ν2

(1− b)βS0

ν1

(1− b)βS0

ν2
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