
 

  

     Abstract—Setup cost for extracting a publically owned 

nonrenewable resource may be recovered by charging a fee 

for each unit of the resource extracted. This paper derives the 

exact analytical expression of the optimal recovery fee. 

 

     Index Terms—Nonrenewable resource, optimal control, 

optimal recovery fee, setup cost 

 

 

I. INTRODUCTION 

CONOMIC literature on the setup cost in the context of 

nonrenewable resources is scant and limited. For 

examples, Kemp and Long (1986) say that setup cost may 

or may not depend on the proposed path of extraction, and 

Hartwick et al. (1986) mention that the setup cost can be 

payable recurrently instead of in one lump sum, but  both 

papers are short of  addressing how the setup cost can be 

optimally recovered. In this paper, we intend to fill the void 

by analytically deriving an optimal unit extraction fee to 

recover the setup cost within a reasonable framework.  

    There are several papers that are related to the above 

topic in a broad domain. The Herfindahl (1967) finds that 

for the optimal order of mineral extraction, the least cost 

site will be exploited first if the quality difference can be 

completely incorporated into unit extraction costs.  Lewis 

(1982) shows that in a partial equilibrium context, the 

Herfindahl principle even can be extended to the case 

where quality difference cannot be completely incorporated 

into unit extraction costs.   

     Lewis’s remark was challenged by Chakravorty and 

Krulce (1994). These two authors formulate a model in 

partial equilibrium context, specifically for oil and coal, 

which have quality difference that cannot be characterized 

independently of demand. Coal and oil have no quality 

difference when used to produce electricity but there is a 

significant quality difference if used for transportation.  

They show that there is a certain period when both 

resources are extracted simultaneously. During this phase, 

higher cost coal is extracted to generate electricity even 
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though cheaper oil is available because oil has a 

comparative advantage in transportation. Hence, it is 

optimal to conserve oil for future transportation demand 

and generate electricity with coal, although coal is more 

expensive than oil.  

     Im, Charkravorty and Roumasset (2006) show that 

discontinuous extraction of a non-renewable resource is still 

possible even without setup costs.  The model is formulated 

in a partial equilibrium context. Assuming different 

production costs for different resources and multiple 

demands, they find that there are periods in which the 

resources are simultaneously extracted. This is not a 

challenge to the Herfindahl principle, as the model assumes 

that quality difference cannot always be incorporated into 

unit extraction costs. When the quality difference can be 

characterized by unit extraction costs, the model confirms 

that the Herfindahl principle holds but leaves the setup cost 

problem unaddressed. 

     Chakravorty, Krulce, and Roumasset (2006) address a 

different issue arising in nonrenewable resources. They 

develop a model with multiple demands and find that taxes 

on a resource or on any economy’s sector may have effects 

that are quite different than in the classic models. Their 

results imply that Ricardian absolute advantage results in 

dynamic specialization while Ricardian comparative 

advantage leads to intersectoral specialization. 

     Im and Vu (2010) theoretically reconsider the validity of 

Herfindahl rule, the least-cost-first extraction, in the 

general equilibrium framework of neoclassical growth 

theory. They find that Herfindal rule is valid if and only if 

population growth rate is nonnegative.     

     In sum, most papers do not discuss the optimal recovery 

of setup costs, and none of the papers that discussed this 

issue derive an exact analytical expression of the optimal 

recovery fee. Our paper makes an attempt to fill this gap.  

Our theoretical model is derived using optimal control 

theory discussed in Chiang (1992), Akulenko (1994), and 

Cannarsa and Sinestrari (2004). 

 

II.  THE MODEL 

     In this paper we assumes a publically owned 

nonrenewable resource stock (Q0), say an oil field or a 

landfill, is planned to be exhausted over a given time period 

[0,T]. Further assumed is that there is a setup cost incurred 

(of t=0), and thereafter the extraction cost per unit of 

resource (c) is constant over the entire planned extraction 
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period. Under these assumptions, the optimal control 

problem would be to maximize the present value of a steam 

of social benefits from consuming the resource extracted 

over the time period: 

 

( )0 ( )
t

T

t t

rt

q
Max W e U q cq dt F= − −∫               

(1)  

 

subject to  

 

( ) ( ) /
t

Q t dQ t dt q≡ = −& ;             

(1.1) 

0
(0) ; ( ) 0Q Q Q T= = ;           

(1.2) 

0 (0, )
t

q t T≥ ∀ ∈ ; 

[
0

, , , (0, )F Q r T ∈ ∞  are all given],           

(1.3) 

 

where r is social time preference rate, qt the resource 

extraction rate at time t, U(qt) the social utility function 

characterized by the usual assumptions in economic theory:  

 
2 2

( ) / 0; ( ) / 0;
t t t t

U q q U q q∂ ∂ > ∂ ∂ <  

0
lim ( ) /
t

t tq
U q q∂ ∂ = ∞

→
  

                  for all [0, ]t T∈ ;          (2) 

 

and Q(t), the resource stock at time t, is   

 

00( ) [0, ]
t

tQ t Q q dt t T= − ∈∫ .     (3) 

 

 

     Defining a constant σ such that 

 

0

T rt
F e dtσ

−
= ∫   

or   equivalently as  

 

/ ( 1)
rT

rF eσ
−

= − ,                 (4) 

 

the objective functional W in (1) can be re-expressed as  

 

( )0 ( )
T rt

t tW e U q cq dtσ
−

= − −∫ .     (5) 

 

 

      Hence, the current-value Hamiltonian for the optimal 

control problem (1) will be  

 

( )( ) ( )c t tH U q cq t Qσ λ= − − + &  

       ( ) ( ( ))t tU q c t qλ σ= − + − .     (6) 

 

     The maximum principle conditions are:  

 

,
c

qt

Max H
τ

, subject to            

(7.1) 

( ) tQ t q= −& ;      (7.2) 

0
(0) ; ( ) 0Q Q Q T= = ;      (7.3) 

0 [0, ]tq t T≥ ∀ ∈ ;       

[ 0
, , , (0, )F Q r T ∈ ∞  are all given ].   (7.4) 

 

     F in (1) is given, hence so is σ in Hc Therefore, F has no 

bearing on the optimal paths of extraction rate 
t

q  and the 

resource stock Q(t). 

 

III. OPTIMAL RECOVERY OF SETUP COSTS 

     Instead of externally funding the setup as in Section 1, 

suppose that the setup cost F is recovered by charging a 

fixed fee, τ, for each unit of resource extracted (τ>0). Then, 

the setup cost must be equal to the definite integral of the 

present value of the setup cost recovered at t  over the 

entire extraction period  [0,T]:   

 

0 0( )
T T

t t

rt rt
F e q dt e q dtτ τ

− −
= =∫ ∫ ,     (8) 

 

where τqt measures the setup cost recovered at  [0, ]t T∈  and 

e
-rt
τqt is its present value. With the equality integral 

constraint added, the optimal control problem (1) for the 

social planner is now revised to: 

                         

( )0
,

( )
T rt

t t
qt

Max W e U q cq dt
τ

σ
−

= − −∫     (9) 

 

subject to 

 

 0

T

t

rt
F e q dtτ

−
= ∫ ;   (9.1) 

( )
t

Q t q= −& ;         (9.2) 

0
;(0) ( ) 0Q Q Q T= = ;   (9.3) 

0, 0 [0, ]
t

q t Tτ > ≥ ∀ ∈ ;       

(
0

, , , (0, )F Q r T ∈ ∞  are all given),           

(9.4) 

 

where σ is as defined in (4). 

 

     Since the optimal control problem (9) is a standard 

isoperimetric optimization problem, we define an artificial 

state variable as usual (e.g., Chiang, p. 280): 

  

( ) ( )t J tτΓ = − ,   (10) 

 

where ( )J t is defined for notational economy as 
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( )0( ) ( )
t rt rt

t t
J t e q dt J t e q

− −
= ⇒ =∫ & .   (11) 

 

     Then, from (10) derive 

 

(0) (0) 0; ( )J T FτΓ = − = Γ = − ;   (12) 

  

     Also, 

 

( ) ( )
rt

t
t J t e qτ τ

−
Γ = − = −& & .   (13)  

 

    Hence, the optimal control problem (9) can be restated 

as: 

  

( )0
,

( )
T rt

t t
qt

Max W e U q cq dt
τ

σ
−

= − −∫    (14)  

 

subject to  

 

( )
t

Q t q= −& ;         (14.1) 

( ) ( )
rt

tt J t e qτ τ
−

Γ = − = −& & ;         (14.2) 

0
;(0) ( ) 0Q Q Q T= = ;          (14.3) 

(0) 0; ( )T FΓ = Γ = − ;          (14.4) 

0, 0 [0, ]tq t Tτ > ≥ ∀ ∈ ;         

[ 0, , , (0, )F Q r T ∈ ∞  are all given].          (14.5) 

 

     The Hamiltonian for (14) will be 

 

( )( ) ( ) ( ) ( ) ( )c t tH U q cq t Q t t tσ λ µ= − + + + Γ& &  

  

  

  

( )( ) ( ) ( )
t t

U q c t t qµ τ λ σ= − + + −                    

(15)      

    

     The maximum principle conditions for the optimal 

control problem (14) follow as: 

 

,
c

qt

Max H
τ

  for all [0, ]t T∈          (16.1) 

 

subject to 

  

( ) /
c

Q t H qλ= ∂ ∂ = −& ;         (16.2) 

( ) ( / ) ( ) ( )
c

t H Q r t r tλ λ λ= − ∂ ∂ + =&  

                                     ( ) (0)
rt

t eλ λ⇒ = ;         (16.3) 

/( )
c t

t H qµ τΓ = ∂ ∂ = −& ;         (16.4) 

/( ) ( ) ( ) ( )
c

t H r t r tµ µ µ= − ∂ ∂Γ + =&  

                                ( ) (0)
rt

t eµ µ⇒ = ;         (16.5) 

 

0; 0; ( ) 0 [0, ]
t

q Q t t Tτ > ≥ ≥ ∀ ∈           (16.6) 

0
;(0) ( ) 0Q Q Q T= = ;         (16.7) 

(0) 0; ( )T FΓ = Γ = − .         (16.8) 

 

     The necessary conditions (16.1) to (16.8) are also 

sufficient for the global maximization of W in light of 

Mangasarian theorem on the ground that U(qt) is 

differentiable and strictly concave in qt as assumed in (2), 

and both ( )Q t& , and ( )tΓ&  in (16.2) and (16.4) are linear in 

qt.  

 

IV. DERIVATION OF OPTIMAL RECOVERY FEE 

     We can derive the optimal τ from the first-order 

conditions for maximizing Hc with respect to the control 

variables in (161.).  However, the transversality condition 

( )T FΓ = −  in (16.8) can be alternatively expressed as F 

( )F J Tτ= −  in view of (10), which is an obvious 

constraint onτ . Therefore, we can incorporate the 

transversality condition into the Hamiltonian in (15), 

forming the Lagrangean Hamiltonian for optimization:   

 

( )( , , ) ( ) ( ) ( )
t t

L q U q c t t qtθ τ µ τ λ σ= − + + −  

        ( )( )F J Tτθ −+ ,  (17) 

 

where θ  denotes Lagrangian multiplier. The first order 

conditions for maximizing L follow: 

 

/ 0L θ∂ ∂ = ;     

(17.1) 

/ 0L τ∂ ∂ = ;         (17.2) 

/ 0; 0; / 0t t t tL q q L q q∂ ∂ ≤ ≥ ∂ ∂ =      

(nonnegativity conditions for 
tq ).         (17.3) 

 

 

     However, / 0
t

L q∂ ∂ ≤ in (17.3) cannot hold for 0tq =  

at any [0, ]t T∈  in view of 0lim ( ) /
t

q t tU q q→ ∂ ∂ = ∞  

assumed in (2): 

 

0 0
lim / lim ( ) / ( ( )
t t

t t
q q

L q U q q c tt µ τ∂ ∂ = ∂ ∂ − +
→ →

  

                            ( )) 0
rT

t Teλ θτ
−

+ − = ∞ ≤ ,           (18) 

 

which is impossible. Therefore, on the optimal path 0qt >  

at each [0, ]t T∈ , which implies / 0L qt∂ ∂ =  in light of  

the complementary slackness condition  in (17.1). As a 

result, the first order conditions (17.1) to (17.3) are all 

equalities: 

 

/ ( ) 0L F J Tθ τ∂ ∂ = − = ;         (19.1) 

/ ( ) ( ) 0tL t q J Tτ µ θ∂ ∂ = − − = ;         (19.2) 

( )( ) ( )( ) ( )( )t t t tU q cq t q t qσ λ µ τ= − − + − + −
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( )[ ]( ) ( )/ ( ) /t t t c t tL q U q q µ τ λ+ +∂ ∂ = ∂ ∂ −  

                   )( ( ) / 0tJ T qθτ− ∂ ∂ = ,         (19.3) 

in which 

  

( )0 0/( ) /
T T

t t t

rt rt
J T q e q dt q e dt

− −
∂ ∂ = ∂ ∂ =∫ ∫  

             (1 ) /
rT

e r
−

= − ,            

(20) 

 

where ( )J T is ( )J t , defined in (11),  for t T= . 

 

 

     Substituting ( )J T  from (19.1) into (19.2), then 

substituting θ  from (19.2) into (19.3), then substituting 

(20) and ( ) (0)
rt

t eµ µ=  from (16.5) into (19.3), and then 

dividing through (19.3) by ,rt
e  we obtain a quadratic 

function ofτ as 

 

( )2
(0)(1 ) (0)

rT
e q rFtµ τ µ τ

−
− −     

          ( )( ) / ( ) 0
rt

t t
e rF U q q c tλ

−
+ ∂ ∂ − − =   ,             

(21) 

 

where (0) 0µ >  (See Appendix C for proof).  

 

 

     Taking the definite integral of (21) over [0, ]T  yields 

 

( )2

0 0(0)(1 ) (0)
T T

t

rT
e q dt rF dtµ τ µ τ

−
− −∫ ∫ 

 
 

        ( )0 ( ) / ( ) 0
T rt

t te rF U q q c t dtλ
−

+ ∂ ∂ − − =∫    .      

(22) 

 

 

     Moving all the factors independent of time variable t  

outside of the integrals gives 

 

( ) ( )2

0 0(0)(1 ) (0)
T TrT

e q dt rF dttµ τ µ τ
−

− −∫ ∫  

        ( )0 ( ) / ( ) 0
T rt

t t
rF e U q q c t dtλ

−
+ ∂ ∂ − − =∫   .      (23) 

 

     Since 0 0 0
( )

T

t
q dt Q Q T Q= − =∫  in view of (3) and 

(9.3), and 0

T
dt T=∫ , (23) can be re-expressed as 

 

( )2

0
(0)(1 ) (0)

rT
e Q rFTµ τ µ τ

−
− −    

        ( )0 ( ) / ( ) 0
T rt

t trF e U q q c t dtλ
−

+ ∂ ∂ − − =∫ ,          

(24) 

 

or simply  

 

2
0ατ βτ γ+ + = ,  (25) 

   

where 

 

0(0)(1 ) ; (0) ;
rT

e Q rFTα µ β µ
−

≡ − ≡ −  

( )0 ( ) / ( )
T rt

rF e U q q c t dtt tγ λ
−

≡ ∂ ∂ − −∫ .    (26) 

 

     Hence, the solution of (24) for τ  denoted by τ* is 

obtained as 

 

( ) ( )2
/ 2* 4 ατ β β αγ= − ± − .  (27) 

 

     However,  the bordered Hessian for the Lagrangian 

Hamiltonian in (17) satisfies the condition for  a unique 

global maximum as shown in Appendix A,  therefore τ*  in 

(17) should have one solution, which requires 
2

4 0β αγ− =  in (27) so that 

 

0* / 2 / 2 (1 )
rT

rFT Q eτ β α
−

= − = −    .    (28) 

 

     The optimal extraction fee τ*  in (28) explicitly shows 

the determinants of the optimal unit fee and their respective 

effects on 
*τ  are: 

*
/ 0Fτ∂ ∂ > , * / 0oQτ∂ ∂ < , 

*
/ 0rτ∂ ∂ > , and 

*
/ 0Tτ∂ ∂ >  as shown in Appendix B. 

 

V. INTERNALIZED SETUP COSTS 

     Replacing τ in (8) with *τ , we obtain: 

 

0* .
T

t

rt
F e q dtτ

−
= ∫                                                           

(29) (29) 

 

     Substituting F  from (29) into the initial objective 

functional (1), we find that it is reduced to a simple optimal 

control problem with one control variable 
t

q  and one state 

variable ( )Q t : 

 

[ ]0 ( ) ( *)*
T rt

t t
qt

Max W e U q c q dtτ
−

= − +∫   (30) 

  

subject to  

 

( ) tQ t q= −&  ;     

(30.1)      

0(0) , ( ) 0Q Q Q T= =   (30.2)

     

0tq >     for every  [0, ]t T∈           (30.3) 

[ 0
, , (0, )Q r T ∈ ∞  are given ] .                               

    

     Then, the Hamiltonian becomes  
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*
( ) ( * ( ))t tc

H U q c t qτ λ= − + + , 

 

and the maximum principle conditions are: 

 

( )* ( )
*

( )c t t
qt

c tMax H U q qτ λ+ += −    

                       for all [0, ]t T∈   (31.1) 

 

subject to 

 

/
c

Q H qλ= ∂ ∂ = −& ;  (31.2) 

( ) / ( ) ( )
c

t H Q r t r tλ λ λ= −∂ ∂ + =& ;  (31.3) 

0(0) ; ( ) 0Q Q Q T= = ;  

0 [0, ]
t

q t T≥ ∀ ∈ ; 

[
0, , , (0, )F Q r T ∈ ∞  are all given].  

 

     In the optimal control problem (30), the setup cost has 

been absorbed or internalized as an additional unit 

extraction cost.  

VI. CONCLUSION 

     We have derived the optimal unit extraction fee to 

recover the setup costs for nonrenewable resource 

extraction. The analytical results show that the optimal 

extraction fee is completely free of the social utility 

function, solely depending on given parameters, which may 

be counterintuitive. The analytical procedure used in this 

paper may be useful in determining optimal recovery fees 

such as optimal toll at tollgates to recover the construction 

cost of a highway and a fee for each unit of waste dumped 

into a landfill to recover its setup cost. 

 

APPENDIXES 

 

 Appendix A 

 

     The second partial derivatives of ( , , )L L qtθ τ=  in (17) 

are:  

 

 
2 2

/ 0L θ∂ ∂ = ;   (A.1) 
2 2

/ 0L τ∂ ∂ = ;   (A.2) 
2 2 2 2

/ ( ) /t t tL q U q q∂ ∂ = ∂ ∂ ;   (A.3) 

2 2
/ / ( )L L J Tθ τ τ θ∂ ∂ ∂ = ∂ ∂ ∂ = − ;   (A.4) 

2 2
/ / (1 ) /

rt

t tL q L q e rθ θ τ
−

∂ ∂ ∂ = ∂ ∂ ∂ = − − ;   (A.5) 

2 2
/ /t tL q L qτ τ∂ ∂ ∂ = ∂ ∂ ∂   

                     [ ]}( ){ (1 ) / ( ) 1
rT

tt e r J T qµ
−

= − − .   (A.6) 

 

  Therefore, the bordered Hessian for L  is positive: 

 
2 2 2 2

2 2 2 2

2 2 2 2

/ / /

/ / /

/ / /

t

t t t

L L L q

L L L qt

L q L q L q

θ θ τ θ

τ θ τ τ

θ τ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

Η = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

     

 

   ( )
2 2 2

( ) ( / ) 0 ( , , )
t t

J T U q qθ τ= − ∂ ∂ > ∀ ,   (A.7) 

 

 note that 
2 2

/ 0tU q∂ ∂ <   as assumed in (2) .  

 

0Η > ( , , )qtθ τ∀ in (A.7) is the necessary and sufficient 

condition for Hc subject to ( )F J tτ= −  to have the global 

maximum (See Chiang (1984, p. 385). 

 

 

Appendix B 

 

From (28) 

 

0* / 2 (1 )
rT

rFT Q eτ
−

= −   . 

 

     Differentiating τ* partially with respect to each of the 

parameters ( , , , 0F Q r To >  as assumed) yields 

 

0* / / 2 (1 ) 0
rT

F rT Q eτ
−

∂ ∂ = − >   ;   (B.1) 

2

0 0* / / 2 (1 ) 0
rT

Q rFT Q eτ
−

∂ ∂ = − − <   ;   (B.2) 

( )
2

0 ) ) /* / ( / 2 (1 1
rT rT rT

r FT Q e rTe eτ
− − −

∂ ∂ = − − − 
  

 

         [ ]0 )/ (2 0 ( 0)y FT Q y≡ > >Q ;     (B.3) 

[ ]0 )* / / (2 0T y rF Qτ∂ ∂ = > .                                     

(B.4) 

 

     Proof for  

          
2

) )(1 / (1 / 0
rT rT rT

y e rTe e a b
− − −

= − − − ≡ > : 

 

     Let x rT= . Then, 0 ( , 0)x r T> >Q .    

     Since 1 0
x x

a e xe
− −

= − − = for 0x = , 

          and / 0
x

da dx xe
−

= >  for all 0x > ,    

          0a >  for all 0x > .  

     Also 
2

(1 ) 0
x

b e
−

= − >  for all 0x > .  

     Therefore, 0y > . 

 

    Appendix C 

 

    To definitize (0)µ , substitute , ,α β γ  defined  in (26) 

into 
2

4 0β αγ− = :   
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( )
2

(0) 4 (0)(1 )
rT

rFT e Qoµ µ
−

− −    

         [ ]{ }0 ( ) / ( ) 0
T rT

t trF e U q q c t dtλ
−

⋅ ∂ ∂ − − =∫ .   (C.1) 

  

   From (C.1) follows the nontrivial solution for (0)µ  as 

 
2

0
(0) 4 (1 ) /

rT
Q e rFTµ

−
= −     

             ( )0 ( ) / ( )
T rT

t te U q q c t dtλ
−

⋅ ∂ ∂ − −∫ .   (C.2) 

 

    In addition, (31.1) implies that for qt  maximizing 
*
cH  

 

( )* ( )( ) / 0t t tc tU q q qτ λ+ +∂ ∂ − = .   (C.3) 

 

    Therefore, using (28), (32), and (C.3), we can express 

(0)µ  in (C.2) as 

 

0
(0) (2 / ) 2 (1 ) /

rT
T Q e rFTµ

−
= −    

             ( )0 ( ) / ( )
T rt

t te U q q c t dtλ
−

⋅ ∂ ∂ − −∫  

( )0) ((2 / 1 / *) ( ) / ( )
T rt

t tT e U q q c t dtτ λ
−

= ∂ ∂ − −∫  

  )2 / ( *Tτ=  

              ( )[ ]{ }0 * ( )( ) / *
T rt

t t c te U q q dtτ λ τ
−

+ +⋅ ∂ ∂ − +∫  

02 / ( *) *
T rt

T e dtτ τ
−

= ∫  

02/( *)* T
T rt

e dtττ   
−

= ∫  

0(2 / )
T rt

T e dt
−

= ∫  

2(1 ) / ( ) 0 ( , 0)
rT

e rT r T
−

= − > >Q .   (C.4) 
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