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Modelling the Transmission Dynamics of Pox-like
Infections

BhunuCP and Mushayabasa S

Abstract—During the last two decades, reports on emerging fatality of 10-17%. The secondary attack rate (3%) was much
human monkey pox outbreaks in Africa and North America |ower than that of smallpox (upto 80% in non-immunized
have reminded us that beside the eradicated smallpox there are contacts). In 1996/1997 and 2001-2004 large human monkey

other poxviruses which have a great potential to cause harm . . .
to people. Here, a mathematical model for the transmission pox outbreaks were reported in the Democratic Republic of

dynamics of monkey pox is presented as a system of non-CONgo [15]. In 1996/1997 the mortality was low (1.5%),

linear differential equations. The conditions under which the but secondary attack rate was high (upto 78%). This is
disease-free equilibrium is globally asymptotically stable are explained by a reduced immunity due to the abolishment of
shown when the both basic reproduction numbers (the human mandatory smallpox vaccination [13]. This tends to suggest

and non-human) are less than unity. The Lyapunov approach that dat I inati | tributi
is employed to show the global stability of the animal (non- at mandaiory Smallpox vaccination was also contributing

human) endemic equilibrium only when the basic reproduction t0 the control of monkey pox. In 2005 the emergence of
number for the animal is greater than unity and the basic occasional human monkey pox virus infections were reported
reproduction number for the humans is less than unity. Using for the first time in Southern Sudan, an area ecological
the centre manifold theory the endemic equilibrium point — yifferent from the tropical rainforest [14]. An investigation by

where the infection exists in both the human and non-human World Health O isation f d di f K
population of the model is shown to be locally asymptotically or €a rganisation found sporadic cases of monkey

stable when the basic reproduction number for the humans POX cases in the area supporting the argument of recurrent
is greater than unity. Numerical simulations tend to suggest carryover from local animal reservoirs [12]. The outbreak of
immune status of people tends to vary the way people recover monkey pox in the USA in 2003 through rodents (monkey

following infection with the orthopox virus. pox virus infected) imported from Ghana [11] reveal that
Index Terms—Monkey pox, Centre Manifold Theory, Repro- monkey pox may show up in other parts of the world.
duction number. Currently there is not much work on mathematical mod-
elling of monkey pox. This paper provides possibly a first
|. INTRODUCTION attempt to mathematically analyse the transmission dynamics

OX Vi . f £ K of monkey pox and it is organised as follows. In the next
VIrUSes comprise ot -a group of long KNOWnsg i,y the monkey pox model is presented and conditions for
pathogens including some zoonotic members affecti

livestock animal dh Monk ) hich "Re local and global stability of the disease-free equilibrium
Ivestock animals and humans. Monkey pox virus which 15,4 oy qemic equilibrium are determined. Section 3 presents

closely related to variola virus, was first identified as thEome numerical simulations. In Section 4, the discussion is
causal agent in two outbreaks of pox infection in Cynomc’lg;ﬁesented '

monkeys that was then received from Singapore at Statens
Serum institute, Coperhagen, Denmark [1], [2]. Monkey pox
virus was first described as causes of pox like illnesses
in monkeys in the late sixties of the last century [13]. IThe model divides non-human primates and some wild
monkeys the disease is characterized by generalized skddents into susceptibles (§ infectives(7,,) and the recov-
eruptions, developing to papules on the trunk, face, palraged with permanent immunityR, ), so that the total non
and soles. Papules subsequently develop into vesicles &oehan population is given by

scabs which usually fall off after about 10 days after the rash
developed [13]. The severity of the disease varies with regard Ni(t) = Sn(t) + 1n(t) + Ra(?)- @)

to host species for example mild in cynomolgus monkeyg,,sceptibles non-human primates and some wild rodents are
but more severe in orang utans [4], [20]. Epidemiologic@bcryited through births a ratk, and are infected with the

investigations have revealed that the monkey pox virus ifonkey pox virus, a virus that causes monkey pox a Xate
endemic in squirrels in the tropical rainforest of Africa.  \yitn
_ ﬁ’l’bl I’I’L

However, in the 1970s human monkey pox was reported A\
for the first time in countries of Western and Central Africa " N,

[3]. It was discovered at a time when smallpox was alrea%’here Bn, is the product of the effective contact rate and

eradicated in those regions. Investigations into the rash CaBF‘dbability of the non-human animal getting infected per
ing illnesses by the World Health Organisation from 197 ontact with an infectious case. Once infected, susceptibles

to 1986 showed that was the monkey pox virus with a caa@n) progress to the infectious statd,). Animals in the

Manuscript received January 04, 2011; revised April 20, 2011. I,, are capable of infecting other animals they come in close
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TABLE |

MODEL PARAMETERS M
Symbol Value Source J
A, 0.029yr 1 CS0Z[7] . )
Lh 0.02yr 1 Csoz[7] s, — ], — R,
on 0.83-0.9yr 1 [13]
dn 0.1-0.17yr ! [13] l l l
An 2yr—1 Assumed H, u,+d, “,
I 1.5yr 1 Assumed
Pn 0.6yr-! Assumed
dn 0.4yr1 Assumed

By Bnys Bn  0.0027, 000252, 0.000063yt  Assumed

Ah
animals in each class. The total human population is divided J v

into three distinct subgroups that is the susceptiblgg, the

infected (I;,) and the recovered with permanent immunity s A, . , Py ®
(Rp). Thus, the total human population is given by " " '

Ni(t) = Sp(t) + In(t) + Rn(t) @) {
Susceptibles are recruited through birth and migration at a H, My +d, ,

rate A, and are infected with the monkey pox virus at rate

Ah with
n I’VI, LIL
_ b, . Brdi ’
N, Ny,

where 3,,, is the product of the effective contact rate angig. 1. Structure of model

probability of the human being getting infected per contact

with an infectious non-human animal possibly through eating

the infected carcass ang), is the product of the effective Which is positively invariant and attracting and it is suffi-
contact rate and probability of the human being gettingjent to consider solutions if2. Existence, uniqueness and
infected per contact with an infectious human case. It @ontinuation results for system (5) hold in this region and
assumed here that mortality of monkeys due to being hunte solutions starting in2 remain in there for alt > 0.

by humans is negligible and can be safely ignored. Onktence, (5) is mathematically and epidemiologically well-
infected susceptible humans(Sprogress to the infectious posed and it is sufficient to consider the dynamics of the flow
state (f). Individuals in I;, class die due to the diseasedenerated by the model system(5XInAlso, all parameters

at a rated, and recover with permanent immunity at &nd state variables for model system (5) are assumed to be
rate p,, into R, class, the recovered state. Individuals ifion-negative since it monitors human, non-human primates
each human subgroup experience natural death at aufateand some rodent populations.

which is proportional to the number in each class. Parameters

descriped will assume values in Table I. The structure of t.i;&@ Disease-free equilibrium and stability analysis

model is presented in Figure 1. Based on these assumptions ] o o

the following system of differential equations is obtained. ~ 1he disease-free equilibrium of model system (5) is given

A 4)

by
S;z(t) = An - (:“n + )‘n)Sm &= (SQ,IS,R%,SS,IS,R%)
7)
I = non n n n In7 n (
n() = Ann = (o + pn +dn) _ (A,O,O,Ah,o,o)
R.(t) = poln— R noom
n(t) = paln = pinFn, (®) Following van den Driessche and Watmough [19], the
SI(E) = A — (jtn + An)Sh, reproduction numbers of the model are
, {ROn ) RO;,, } (8)
I@t) = ApSh— (pn+ pn+dp)p,
R (4) = I — un Ry with Ry, and R, being the monkey pox induced repro-
nt) Prin = Hnith duction numbers for humans and non-humans, respectively,
All feasible solutions of model system (5) enter the regiowhich are given by
Ay Bn
Sy In, Ry, € R} i Np < —, R :717
( ) + T Mn O Un + pn + dy
Q= A (6) 5 9)
Sp,In,Rp) € R2 1 N, < =2, Ry, = —1
(S, In, Bn) LT O+ pn + dn
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The following Theorem 1 follows from Theorem 2 of vanB. Endemic equilibrium and stability analysis

den Driessche and Watmough [19] L _ They are basically three mathematically possible endemic
Theorem L The disease-free equilibriun® is locally equilibria states, the animal-only endemic equilibrium, the
asymptotically s.table whenevy, <1 andR,, <1, and human-only endemic equilibrium and the equilibrium state
unstable otherwise. where the disease co-exists. Basing on the fact that monkey-
Following Castillo-Chavez et al. [10] we now list two condipox infections are mainly transmitted from animals to hu-
tiOI’]S Wh|Ch |f met guarantee the g|0ba| asymptotiC Stab”i%anS, th|s a”ows to |eave the analysis Of human_only en-

of £°. Rewriting model system (5) as demic equilibrium as human to human monkey pox infec-
, tions rarely lead to monkey pox outbreak and as such we
X'(t) = F(X,Y) (10) take this equilibrium to be a trivial endemic equilibrium.

Animal-only endemic equilibrium: This occurs when there
is only animal to animal infections and no human to human
infection and no animal to human infectiofi$,, = 8, = 0).

where X' = (Sy, B, Sn, Bp) and Y = (In, In) With |3 4his case the endemic equilibrium is given By —
X € R4 denoting the number of uninfected components (in- Ap
R;,S5,0,0), S; = —. The nature of S}, shows

dividuals) andt” € %3 denoting the number of infected com-(Sn: 17, i
ponents(individuals). The disease-free equilibrium is nothat Ry, < 1. We now carry out some manipulations to
denoted bye? = (X,,0) whereX, = ﬁ’()’ ﬂ’o “The find the exact values of the remaining componentsCpf

N n [k The animal-only model is standard SIR model which at
conditions(H1) and (H2) below must be met to guarantegqyijibrium we have

global asymptotic stability of®

Y'(t) = G(X,Y), G(X,0) =0

An = (/U’TL + A:)S;’
H1 For X'(t) = F(X*,0),
ASn = (bt o+ dn) I3, (13)
X* is a globally asymptotically stable
(11) puliy = paRi, Aa= S

H2 G(X,Y) =AY - G(X,Y),
Adding the first two equations of system (13) one gets

~

If (10) satisfies conditions in (11) then Theorem 2 holds Ay i+ o+ dn (14)
provided3,,, = 0 =S =—-——"",

Theorem 2: The fixed point€° is a globally asymptoti- Hn Hn
cally stable whenevep,, = 0, Ro, < 1 andRo, < 1.  Fromthe last equation in system (13) we haig = 22 1%,

Ay — 1S Adding all the equations in system (13) we have

. i = 0 A, dy
Proof: ConsiderF (X,0) = A —nSn | Ap = pnNZ 4 doIF = N = =0 /T,I:; (15)

0 n n

then,the second equation in system (13) givés= 0 or
- M d?, nq O * *
lth Brn — (pn + pn +dp)
= B, ( _ W}ﬂ)
=N é\ (X Y) /1% /1/71,

and G(X,Y)=| 2\ (16)

An - dn-[:;, )
Hn ( )

An(ﬁnl — (Mn + Pn + dn))
(Bry — dn)(pn + pn + dn) ’

(12)  Only solution with S}, I, N > 0is if 3,, > (tn + pn +
This means that where there is no transmission betweén) = Ro, > 1. This leads to Lemma 1.

non-humans and humar(g,, = 0), then G(X,Y) > 0, Lemma 1. The endemic equilibriun€} exists whenever
meaning that the disease-free equilibrium will be globall®,, > 1 andR,, < 1.

asymptotically stable. However when there is cross infectidfiow we have to check onto the stability of this endemic
from non-humans to humans which is the case with monkeyuilibrium. In order to investigate the global stability of
pox infections then the disease-free equilibrium is not necedbe endemic equilibrium, we adopt the approach by Ko-
sarily globally asymptotically stable as this is not always trubeinikov [6]. Assume thaR,, > 1, then & exists for
(G2(X,Y) > 0) everywhere if2. This actually suggests theall S,,; I,,; R,; Sn, > ¢, for somee > 0. Let \,,S,, :=
existence of multiple endemic equilibria. m g(S,;I,;R,) be a positive and monotonic function, and

Nn = I =
ﬂhIh(Nh - Sh) + BnQIn(AhﬂnNn - Sh,uhAn) n
Nh /’LhAnNn

(Advance online publication: 24 May 2011)
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define the following continuous function iiﬁfi (for more
details, see Korobeinikov, 2006). A function

Sn g(S:, I, RY)
g(7, I, Ry)

V(Sn7]7L7Rn) T

Sn_/

I
" g(S. 1%, R
- [ L2nn )
* / oS R

R
mg(Sk, I R
+Rn_/ g( n; n; )
€ g(S 7I/,L7T)

(17)

T.

If g(Sn, I, Ry,) is monotonic with respect to its variables
then the endemic statéf is the only extremum and the
global minimum of this function. Indeed

ov. o g(Sy. Iy Ry

9Sn B g(S’VHIT*L?R:L),

ov g(Sk, I*, RY)

9V 9P in ) 18
ol 9(S;, I, Ry,)’ (18)
oV g(SuInRY)

OR, g(Sy, I Ry)’

grow monotonically, then the functiog(S,,I., R,) has
only one stationary point. Furthermore, since

V. g(Sp, L Ry)  99(Sn, I, Ry)

952 [g(Sn, Iz, Rx]? S,

V. _ g(Sp In Ry)  9g(Sp, Ins Ry) (19)
12~ [g(S;, In, Ry,)? oI, ’

V. g(Sp Iy Ry)  9g(Sy, Iy, Rn)

OR2  [g(S;. 1. Rn))? R,

arenon-negative, then the poid§ is a minimum. That is,
V (S, In, Ry) > V(S;, Ik, R}) and henceV is a Lyapunov

function. In the case of our model system whgn = 5, =
0 (animal to animal transmission only), then

(/U'n + pn + dn)I; = g(S;kL,I;, R;)v (20)

pn‘[:; = ,U/nR:L

The Lyapunov function (17) satisfies

dv * *
A T L My [ (1%
dt gsn gin
‘R~ R In
9r,
= An_gn_,u/nsn_Angn +gngn
Sn gSn
+,Ufnsngin + gn
In
_(:un + Pn + dn)In - gng
S I
= usi(1-22) (1- I
s (1-5) (1 32)
) (21)
+95 (1 ~In _ Sn >
gsn gsn
% I, I, g:; gn
o ( I " I3 gi, gin)
I, Ry In
nR* in 1 In
Hhinh (1 Rzz) < g>
S I
= S (11— = 1- ==
Hnon < S:;) ( gsn>
)6
gsn g7n
I, In g*
o (I;i gsn) (gin >
I, Ry In
WBy (=) (1= )
hin (I:z R:a) ( g>
with g’;’kl = g(SZ,ILRZ), gn = g(SnvlnaRn)v 9s, =

9(Sn, I3, RY), 9i, = 9(S5 In, RY), v, = 9(S3, 13, Ryy).

Since & > 0, the functiong(S,,, I,,, R,,) is concave with
029(Sp, I, Ry,) dv
ZIANTM T T <« h < f
ar _O,tendt_Oor
all S, I,, R, > 0. Also, the monotonicity 0f(S,, L., R.)
with respect taS,, ensures that

respect tol,,, and

Sh g(Sy, I}, ;)
1—- = 12l ) <) 22
( S:;) ( g(Sn,f:;,R:;)) =0 @2
and
g(Sx, I* RY) 9(Sn, I, Ry)
1— nyrin n 1— <0 23
( 9(Sn, I}, Ry) 9(Sk, In, Ry) ) — (@)

holds for all S,,, I,,, R, > 0. Furthermore,

( g(Sn,In,Rn)) ( Sk N RY)

g( n) - n?
9(Sn, 135, ) ) \g(S5, In, By,)

L,

15

1) <o

(Advance online publication: 24 May 2011)
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if thenthe second equation of system (28) gives
S’I’L7In7Rn In * *
g( * *) Z T 5”2171 Bhlh Ah mp * _ *
Q(Smjann) Iy T * — = — Iy )| =mply,
Nn Nh 1223 Hh (31)
when g¢(S},1,,R;) < g(S:, I, R) and
9(55, In, By) < (S5, I3, Ry,) o i = (i + pn -+ dn).
g(STHIann) < & . 1 677,2—[;:
g(Sn, Ir,R:) — I Setz* = ——2" then(31) becomes
Hh N;:
when ¢(S*,I,,, R}) > g(S;, L, RY). A
. Bty —d) (-
holds for all S,,I,,R, > 0. Since g(S,,I.,R,) is h MO\ o

monotonic g(Sy*, I, RY) > g(Spx, I, RY) = I, > I

and g(Syx, I, B:) < g(Spx, I, RE) = I,, < . Also, - (Ah dp, I*) I
= — = Ay | 1y
I, R, 9(S5, I, R fn Hn
T E 1-— W <0 (25) (32)
~ " Rr 9(Sz. 1%, Ry = (B — dn(1 + %)) (I})?
if
R I o Br—dpzt\ o, Ajz*
n o in * Tk > * Tk * +A ( 14+2%) — ) I = O’
R;kz B I;; Wheng(Sn’IT’HRn) = g(Sn?ITNR'ﬂ) and h ( ) mp h mp
R, _ I, = (k0 +pn +d
7 < 7o Wheng(S,, I, Ra) < g(Sy, I, By). o = (ot )

(26) and this has a single positive root i, > d(1 + z*).
holds for all S,,, I, R, > 0. Since g(S,,I,,R,) is a The permanence of the disease destabilizes the disease-free
monotonic functiony(S:, I*, R,,) > ¢(S*,I*, R*) = R, > equilibrium £° since Ry, > 1 and Ry, > 1, the endemic

Ry and g(S:, I7,R,) < g(Si I R;) = R, < R;. equilibriumé&; exists.

n»-n’

Inequalities (24) and (26) will hold for any concave function Lemma 2: System (5) is uniformly persistent dn.

and are sufficient to ensure th < 0.Thus, we have Proof: Uniform persistence system of (5) implies there
established the following result: exists a constanf > 0 such that any solution of (5) which

Theorem 3: The unique endemic equilibriu; is glob- starts in
ally asymptotically stable whenever conditions (24) and (26) (52 19, RO S9. 19, Rg) Ef’), (33)
are satisfied.

Co-existence of monkey pox infections in both human and  satisfies,
non-human endemic equilibrium: This occurs when there

animal to animal, animal to human and human to human ¢ <liminf S, (¢), ¢ <liminf 1,,(2),

infections. This endemic equilibrium for the model is given

by £ where ¢ < ligglf R,(t), ¢ < ligglf Sh(t), (34)
E =S, I R, Sy, I, Ry), (27)

¢ <liminf I (t), ¢ < liminf Ry (t).
with S*, I* and R’ taking the same expressions asdh fmro0 fmro0
where they were shown to exist whenev®g, > 1. To find  pefine the following Korobeinikov-Maini [17] type Lya-
the remaining components it is necessary to consider thgnov functional

human subsystem which is given by

V(Sn7In7Rn7Sh7IhaRh) = (Sn — S;; lnSn)

Ap, = (un +X;)Sh,
‘o . I, —I*Inl,) + (R, — R* InR,
NSy = (pn + pn 4 dp)I}, (28) +( nnly) + ( nInRy) )
. . 5712[71 Bnly, + (Sh — S;: In Sh) + (Ih — I;: lIIIh)
prly = pnRp, An = N, TN
n h *
. . . . + (Rh - R; lIth).
Adding the first two equations of system (28) the following
is obtained which continuous for allz; > 0 (i = 1,2,---,5) and
An = Sy, + (pn + pn + dn) Iy satisfies g—v — (11— %) [16]. Consequently, the endemic
X 7
A d (29)  equilibriumé* is the only extremum and the global minimum
« D pntpnFdp oy .
= S, = P I. of the functionV € RS.. Also, V (S, I,, Ry, S, In, Rp,) >
) , ] 0 and V'(S,, I, Rn, Sn, In, Ry) = 0 only at £*. Thus,
Adding all the equations of system (28) we obtain V(S I, R, Sn, In, Ry) is a Lyapunov function. At equi-
o e « Ay dn o, librium, A; = A7 + ;S5 (7 = n, h), substituting this into
An = pnNy —dply = Ny = o EI’“ (30)  the time derivative oft” along the solution path of model

(Advance online publication: 24 May 2011)
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system (5), we have The Jacobian matrix of system (37)&t is given by.J(£°)
expressed below
—Hn _Bnl 0 0 0 0
0 K,y 0 0 0 0
0 On —ln 0 0 0
o . ” 0 —kn, O —pn —Bn O ’
* * * 0 k 0 0 k 0
V' = (S — 85) 2% + (In — I1) 72 + (Ry — R2) 52 na h
S I R; A
S, — ¥\ =Zh I — [\ Ry — R¥)=h _ o _ By Anpin
+(Sh h)sh + (In h)]—h + ( h h)Rh kny = Bny — (n + pn + dn), kn, = Aopin
Sh — S;)° _
< _/ih(hsih) + g(Sp, In, Ru, Sp, In, Rp). kn = Bn — (un + dn + pn).
h

(36) Fromequation (38) it follows that the reproduction number
g can be shown to be non-positive using Barbalat Lemnage,
[5] or by following the approach Qf McCIu;key [18]. Hence, {Ro, , Ro, }, (39)
V'(Sn, In, Ry, Sk, In, Ry) < 0 with equality only at&;.
The only invariant set inQ, the interior of Q is the set as defined earlier. IB; is taken as a bifurcation point and
consisting of the endemic equilibriugiy. Thus, all solutions iIf we consider the case wheR,, =1 and solve forj, we

of (5) which intersects% limit to and invariant set, the obtain .
singleton{&;}. Therefore, from Lyapunov-Lasalle invariance Br = By = pn + pn + da. (40)

principle, system (5) is uniformly persistent. . The linearized system of the transformed equation (37) with

- . I . By = B has a simple zero eigenvalue, hence the Centre
To analyze the stability of this equilibrium point we malfq\/lanifold Theory (1981), can be used to analyze the dynam-

use of the Centre Manifold Theory [8] as describe_d iNes of (37) nears,, = 5;. It can be shown that the Jacobian
Theorem 4.1 of Castillo-Chavez and Song [9], to establish tgg (37) at3, = B has a right eigenvector associated with

local asymptotic stability of the non smoking only endemiﬁqe zero eigenvalue given by = [wy, ws, ws, wa, ws, wg]”
equilibrium. Let us make the following change of variableg o re T e

Sp =1, In = 12, Ry = x3, Sp, = 14, I, = x5, Ry = s,

so that Wy = wy = ws = 0 w4:_52w5
Nu(t) = 32 _ @, and Ny(t) = 32 _, @i3. Using the ’ pn
vector notationX = (zy, o, 3, 4, 25)" . Model system (5) y (41)
l(Jir)\?er these conditions can be written in the form ws = ws > 0, wg = Prts
Hh

E = (f17 f27 f37 f47 f57 fﬁ)y such that
Theleft eigenvector of/ (£°) associated with the eigenvalue

at 8 = B* is given byz = [z1, 29, 23, 24, 25, 26) . Where,

1=23=24=26=0, 25 =25 >0,

ey — 6:2Ah,unz5 (42)
5= — .
: A, *  — P — d,
Lll(t) —fi=A, — ﬁn;lﬁll — 1, n/fbh(ﬁnl Hn — Pn dn)
2 n=1%n noindentln order to establish the conditions for the existence

B, won of backward bifurcations, we use Theorem 4 proven in
2h(t) = fo = " (py + o+ dy) a2, Castillo-Chavez and Song [9].

> one1%n Theorem 4: Consider the following general system of

, ordinary differential equations with a parameter
r3(t) = f3 = pnT2 — pinT3, .
X
— = f(z,¢), fR"xR->Randf € (R" x R),
T5T 1o LT

2y (t) = fa=Ap — fh54 — Lnatrata dt (43)

3
Dome1 Tm+3  Dme1 Tm (37) where 0 is an equilibrium of the system thatfi€, ¢) = 0
for all ¢ and assume

— HhT4,
) af; . . o
() = fy = fhx5x4 5§2x2x4 Al: A= D,f(0,0) = (axj(o,(?).g -|s the I|r.1ear|sat|on of
> Tmts D1 Tm system (43) around the equilibrium 0 withevaluated at
0. Zero is a simple eigenvalue of A and other eigenvalues
— (pn + pn + dp)xs, of A have negative real parts;
A2: Matrix A has a right eigenvectar and a left eigenvector
xg(t) = fo = pnrs — pnTe. v corresponding to the zero eigenvalue.

(Advance online publication: 24 May 2011)
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4% 10°
Let f;, be thek!” componenbf f and
Y O fi =2
0T D i 00 e ;
| (44) _ ‘
S O R (oalfy 0
b= Z 2wwi (0,0). () )
kyi=1 15X 10
The local dynamics of (43) around O are totally governed
by a andb. - 10
i. a>0,b>0.When¢ < 0 with |¢| << 1, 0 is locally — !
asymptotically stable, and there exists a positive unstable — O
equilibrium; when0 < ¢ << 1, 0 is unstable and there ‘ ‘
exists a negative and locally asymptotically stable % Ti ?T% ( m)n%%s) 150
equilibrium: (b)
ii. a<0,b<0.Wheng <0 with |¢| << 1, O unstable; 15X 10*
when0 < ¢ << 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; — 10
iil. a >0, b<0.When¢ < 0 with |¢| << 1, 0 is unstable, — Y
and there exists a locally asymptotically stable negative @~ S
equilibrium; when0 < ¢ << 1, 0 is stable, and ‘ ‘
a positive unstable equilibrium appears; Cb T %% 150
iv. « < 0, b > 0. When¢ changes from negative to positive,  (C) ime (nmonths)
0 changes its stability from stable to unstable. 2 oX 10°
Correspondingly a negative unstable equilibrium becomes )
positive and locally asymptotically stable. —~
Computations of ¢ and b: Z 2
For system (37), the non-zero partial derivativesFoisso- Ui
ciated withb are, 1 % ‘ ‘ ‘
' . 50 100 150
% fo — D, d*fs _ DiAppn  O*fs _ %) Tinme ( m:)nt?']s)
0x203; " 0x40B; Dalppn’ 0x50085 45) 6000
It follows from (45) that ~ 4000
b= zsws > 0. (46) ~ 2000
Sincew; = ws = w3 = 0 then for system (37), the non-zero ‘ : ‘
partial derivatives of” associated witlu at the disease-free e) OO Ti r5rg ( m)nthhOS) 150
equilibrium are 10°
X
Pl _Wim P B 2
Ox? Ap 7 Or50xs Ap -
It follows from (47) that EC 1
2 2 y 13
_ 2t on)Bipn o g (48) % | | |
pon Tipe (nonths) M0
So,a < 0 andb > 0. Using Theorem 4 item (iv) we establish ()
Theorem 5. Fig. 2. Simulations of model system (5) showing plots of

. ; ; TSR Sny, In, Rn, Sp, In and Ry with varying 3,, among non human
Theorem 5: The unique endemic equnlbrlu@ IS IocaIIy primates and rodents. The direction of the arrow shows an increa$g, in

asymptotically stable foR,, > 1 but close to 1 an@Ro, >  among non-humans from 2.0 with a step size of 0.5. Parameters values used
1. are as in Table I.

IIl. NUMERICAL SIMULATIONS

The fourth-order Runge-Kutta numerical scheme coded lieasonable estimates. The model parameters and the values
C++ programming language is used to approximate progréley assume are listed in Table I. Two of the parameter
sion through the disease Complete data on monkeypox &edues are provided courtesy of the Central Statistics Office
almost unavailable and hard to obtain due to the rematéZimbabwe (CSOZ) as reported in [7]. Figure 2 is graphical
geographical regions where outbreaks have occured in tlepresentation showing the effect of varying the infection rate
past, but, for the purpose of illustration, we use a set wfich are represented kg, . Figures 2 (a), (b) and (c) show

(Advance online publication: 24 May 2011)



TAENG International Journal of Applied Mathematics, 41:2, [JAM 41 2 09

2 X 10° infections in humans.
- 2 IV. DISCUSSION
~ 1.5 A mathematical model which looks into the transmission
U) .

dynamics of the orthopox virus which causes monkey pox
is presented and analyzed. Stability analysis of the en-
demic equilibria were carried using the Lyapunov functions
and centre manifold theory. Using the Lyapunov function
conditions where the animal-only endemic equilibrium is
. globally asymptotically stable were shown wh&y, > 1
+— and Rp, < 1. The endemic equilibrium where monkey
' pox infections exist in both the human and non-human
populations was shown using the centre manifold theory to
‘ be locally asymptotically stable wheR,, > 1, but close to
150 1. Effects of poor nutrition and general human well being
were captured using numerical simulations by varying the
rate of recovery. General poverty turns to force people in
Central and West Africa to hunt monkeys and rodents for
- 2 their meat-resulting in an increase of monkey pox cases in
— people. Poor malnourished individuals recover at slower rate
r-1 when suffering from monkey pox as their immune system
00 ‘ ‘ ‘ will be weak. Perhaps it may be necessary to re-introduce
Ti 5|’IQE ( nanLRg) 150 chicken pox vaccination in monkey pox endemic regions as
(€) chicken pox vaccination was known to have some positive
Fig. 3. Simulations of model system (5) showing plotsSaf, I;, andR;,  impact in curtailing the spread of monkey pox. Since in West
with varying p,, among non human primates and rodents. The direction efnq Central Africa non-human and rodents are taken as food
the arrow shows an increase jn, among non-humans from 0.25 with a . .
step size of 0.25. Parameters values used are as in Table I. source (relish) by humans-possibly the source of orhopox
virus infection it may be best for the governments and non
governmental organisations to intensively campaign to stop
eating of rodents and monkeys as this spreads monkey pox
as increase of transmission rate among monkeys result in thfzctions from non-humans to humans.
depletion of the susceptible monkey population, increase of
the infected monkeys, and increase of the recovered monkeys ACKNOWLEDGMENT

as well, respectively. The increase in infected monkeysyhe authors thank the editor and the anonymous review-
results also increase of humans getting infected with monkgys tor their valuable suggestions. CPB acknowledges with
pox as it results in increased chances of humans gettipg ks the support in part of the Schlumberger Foundation
infected monkeys when they hunt. Thus, increase of infecta@ican Scientist Visiting Fellowship at Clare Hall, Univer-
humans result in a decrease of susceptible human populag@[g} of Cambridge (UK).
and increase of the recovered human population given the
high levels of recovery for the monkey pox infected individ-
uals. Here, it is worth noting deforestation and urbanisatio _
. . . . Jf] Von Magnus P, Andersen EK, Petersen KB, Birch-Anderson A. A pox
turns to S_h”nk the habitat of monk?ys Increasing the Cor?ta > like disease in cynomolgus monkeys:ta Pathol Microbiol Scand 46:
between infected monkeys and uninfected ones as making it 156-176, 1959. _ o
easier for them to be hunted by humans. All this result if2] Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkey-
. . . pox virus in Basankusu Territory, Democratic Republic of the Congo.
an increase monkey pox related infections among monkeys g i world Health Organ 46:593597, 1972.
and humans. Figure 3 shows the effect of increasing thig] Jezek A, Marennikova SS, Mutumbo M, Nakano JH, Paluku KM,
recovery rate among non humans, translate to increase in the Szczeniowski M. Human monkeypox: a study of 2510 contacts of
h tibles and a corresponding decrease of hu n214 patientsJournal of Infectious Diseases 154:551-555, 1986.
: uma'n suscepl p g n]@j Arita |, Gispen R, Kalter SS, Wah LT, Marennikova SS, Netter R,
infectives. This tends to suggest decrease of deforestation Tagaya I. Outbreaks of monkey pox and serological surveys in non-
and other human activities causing the shrinking of non_ human primatesBull. WHO 46: 625, 1972. S
. . HS Barbalat |, Systme déquation diférentielle d'Oscillation,
humans shelter and foraging areas will be able to keep the' Nonjincaires, Rev. Roumain Math. Pures Appl. 4: 267-270, 1959.
infections at bay. Increasing, suggests a situation where the[6] Korobeinikov A. Lyapunov functions and global stability for SIR and
population (non-human) is well fed and as such its immune SIRS eplde_mlolo_glcal models with non-linear transmissiBulletin
t ill be competent to fend of some infections. Thi of Mathematical Biology 68(3):615-626, 2006. ; ;
_Sys em W'_ p LS. §7] Bhunu CP, Garira W and Magombedze G: Mathematical analysis
is typical in places where the forests are still virgin where  of a two strain HIV/AIDS model with antiretroviral treatmerfcta
animals have enough to eat. General poverty turns to forcg Biotheor 2009,57:361-381. _ :
. . . H}] Carr J. Applications Centre Manifold theory. Springer-Verlag, New
people in Africa to hunt and destroy habitats of monkeys ant” v, 19s1.
rodents for their meat leading to an increase in human-animgl Castillo-Chavez C, Song B. Dynamical models of tuberculosis and

contact rate and consequently an increase in the number of their applicationsMath. Biosci. Engr. 1(2): 361-404, 2004.
k lated sick If poverty can be aIIeviate%O] Castillo-Chavez C, Feng Z, Huang W. On the computation of RO
monkeypox related SICKNESS. p y » and its role on global stability. math.la.asu.edu/chavez/2002/JB276.pdf,

then less contact will likely be translated into less monkeypox 2002.
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