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Abstract—During the last two decades, reports on emerging
human monkey pox outbreaks in Africa and North America
have reminded us that beside the eradicated smallpox there are
other poxviruses which have a great potential to cause harm
to people. Here, a mathematical model for the transmission
dynamics of monkey pox is presented as a system of non-
linear differential equations. The conditions under which the
disease-free equilibrium is globally asymptotically stable are
shown when the both basic reproduction numbers (the human
and non-human) are less than unity. The Lyapunov approach
is employed to show the global stability of the animal (non-
human) endemic equilibrium only when the basic reproduction
number for the animal is greater than unity and the basic
reproduction number for the humans is less than unity. Using
the centre manifold theory the endemic equilibrium point
where the infection exists in both the human and non-human
population of the model is shown to be locally asymptotically
stable when the basic reproduction number for the humans
is greater than unity. Numerical simulations tend to suggest
immune status of people tends to vary the way people recover
following infection with the orthopox virus.

Index Terms—Monkey pox, Centre Manifold Theory, Repro-
duction number.

I. I NTRODUCTION

POX viruses comprise of a group of long known
pathogens including some zoonotic members affecting

livestock animals and humans. Monkey pox virus which is
closely related to variola virus, was first identified as the
causal agent in two outbreaks of pox infection in cynomolgus
monkeys that was then received from Singapore at Statens
Serum institute, Coperhagen, Denmark [1], [2]. Monkey pox
virus was first described as causes of pox like illnesses
in monkeys in the late sixties of the last century [13]. In
monkeys the disease is characterized by generalized skin
eruptions, developing to papules on the trunk, face, palms
and soles. Papules subsequently develop into vesicles and
scabs which usually fall off after about 10 days after the rash
developed [13]. The severity of the disease varies with regard
to host species for example mild in cynomolgus monkeys,
but more severe in orang utans [4], [20]. Epidemiological
investigations have revealed that the monkey pox virus is
endemic in squirrels in the tropical rainforest of Africa.

However, in the 1970s human monkey pox was reported
for the first time in countries of Western and Central Africa
[3]. It was discovered at a time when smallpox was already
eradicated in those regions. Investigations into the rash caus-
ing illnesses by the World Health Organisation from 1970
to 1986 showed that was the monkey pox virus with a case

Manuscript received January 04, 2011; revised April 20, 2011.
C. P. Bhunu is with the Department of Mathematics, University of

Zimbabwe, Box MP 167 Mount Pleasant, Harare, Zimbabwe e-mail: cpb-
hunu@gmail.com, cp-b@hotmail.co.uk.

S. Mushayabasa is with the Department of Applied Mathematics, National
University of Science and Technology, Bulawayo, Zimbabwe.

fatality of 10-17%. The secondary attack rate (3%) was much
lower than that of smallpox (upto 80% in non-immunized
contacts). In 1996/1997 and 2001-2004 large human monkey
pox outbreaks were reported in the Democratic Republic of
Congo [15]. In 1996/1997 the mortality was low (1.5%),
but secondary attack rate was high (upto 78%). This is
explained by a reduced immunity due to the abolishment of
mandatory smallpox vaccination [13]. This tends to suggest
that mandatory smallpox vaccination was also contributing
to the control of monkey pox. In 2005 the emergence of
occasional human monkey pox virus infections were reported
for the first time in Southern Sudan, an area ecological
different from the tropical rainforest [14]. An investigation by
World Health Organisation found sporadic cases of monkey
pox cases in the area supporting the argument of recurrent
carryover from local animal reservoirs [12]. The outbreak of
monkey pox in the USA in 2003 through rodents (monkey
pox virus infected) imported from Ghana [11] reveal that
monkey pox may show up in other parts of the world.

Currently there is not much work on mathematical mod-
elling of monkey pox. This paper provides possibly a first
attempt to mathematically analyse the transmission dynamics
of monkey pox and it is organised as follows. In the next
section the monkey pox model is presented and conditions for
the local and global stability of the disease-free equilibrium
and endemic equilibrium are determined. Section 3 presents
some numerical simulations. In Section 4, the discussion is
presented.

II. M ODEL DESCRIPTION

The model divides non-human primates and some wild
rodents into susceptibles (Sn), infectives(In) and the recov-
ered with permanent immunity(Rn), so that the total non
human population is given by

Nn(t) = Sn(t) + In(t) +Rn(t). (1)

Susceptibles non-human primates and some wild rodents are
recruited through births a rateΛn and are infected with the
monkey pox virus, a virus that causes monkey pox a rateλn

with

λn =
βn1

In

Nn

(2)

whereβn1
is the product of the effective contact rate and

probability of the non-human animal getting infected per
contact with an infectious case. Once infected, susceptibles
(Sn) progress to the infectious state(In). Animals in the
In are capable of infecting other animals they come in close
contact with, die due to disease at a ratedn and some recover
with permanent immunity at a rateρn into Rn class, the
recovered class. All non-human animals experience natural
death a rateµn which is proportional to the number of
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TABLE I
MODEL PARAMETERS.

Symbol Value Source

Λh 0.029yr−1 CS0Z[7]

µh 0.02yr−1 CSOZ[7]

ρh 0.83-0.9yr−1 [13]

dh 0.1-0.17yr−1 [13]

Λn 2yr−1 Assumed

µn 1.5yr−1 Assumed

ρn 0.6yr−1 Assumed

dn 0.4yr−1 Assumed

βn1
, βn2

, βh 0.0027, 000252, 0.000063yr−1 Assumed

animals in each class. The total human population is divided
into three distinct subgroups that is the susceptibles(Sh), the
infected (Ih) and the recovered with permanent immunity
(Rh). Thus, the total human population is given by

Nh(t) = Sh(t) + Ih(t) +Rh(t) (3)

Susceptibles are recruited through birth and migration at a
rateΛh and are infected with the monkey pox virus at rate
λh with

λh =
βn2

In

Nn

+
βhIh

Nh

, (4)

whereβn2
is the product of the effective contact rate and

probability of the human being getting infected per contact
with an infectious non-human animal possibly through eating
the infected carcass andβh is the product of the effective
contact rate and probability of the human being getting
infected per contact with an infectious human case. It is
assumed here that mortality of monkeys due to being hunted
by humans is negligible and can be safely ignored. Once
infected susceptible humans (Sh) progress to the infectious
state (Ih). Individuals in Ih class die due to the disease
at a ratedh and recover with permanent immunity at a
rate ρh into Rh class, the recovered state. Individuals in
each human subgroup experience natural death at a rateµh

which is proportional to the number in each class. Parameters
described will assume values in Table I. The structure of the
model is presented in Figure 1. Based on these assumptions
the following system of differential equations is obtained.

S′

n(t) = Λn − (µn + λn)Sn,

I ′n(t) = λnSn − (µn + ρn + dn)In,

R′

n(t) = ρnIn − µnRn,

S′

h(t) = Λh − (µh + λh)Sh,

I ′h(t) = λhSh − (µh + ρh + dh)Ih,

R′

h(t) = ρhIh − µhRh.

(5)

All feasible solutions of model system (5) enter the region

Ω =





(Sn, In, Rn) ∈ ℜ3
+ : Nn ≤

Λn

µn

,

(Sh, Ih, Rh) ∈ ℜ3
+ : Nh ≤

Λh

µh

,

(6)

Fig. 1. Structure of model

which is positively invariant and attracting and it is suffi-
cient to consider solutions inΩ. Existence, uniqueness and
continuation results for system (5) hold in this region and
all solutions starting inΩ remain in there for allt ≥ 0.
Hence, (5) is mathematically and epidemiologically well-
posed and it is sufficient to consider the dynamics of the flow
generated by the model system(5) inΩ. Also, all parameters
and state variables for model system (5) are assumed to be
non-negative since it monitors human, non-human primates
and some rodent populations.

A. Disease-free equilibrium and stability analysis

The disease-free equilibrium of model system (5) is given
by

E0 =
(
S0
n, I

0
n, R

0
n, S

0
h, I

0
h, R

0
h

)

=

(
Λn

µn

, 0, 0,
Λh

µh

, 0, 0

)
.

(7)

Following van den Driessche and Watmough [19], the
reproduction numbers of the model are

{R0n ,R0h} (8)

with R0n andR0h being the monkey pox induced repro-
duction numbers for humans and non-humans, respectively,
which are given by

R0n =
βn1

µn + ρn + dn
,

R0h =
βh

µh + ρh + dh
.

(9)
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The following Theorem 1 follows from Theorem 2 of van
denDriessche and Watmough [19].

Theorem 1: The disease-free equilibriumE0 is locally
asymptotically stable wheneverR0n < 1 andR0h < 1, and
unstable otherwise.
Following Castillo-Chavez et al. [10] we now list two condi-
tions which if met guarantee the global asymptotic stability
of E0. Rewriting model system (5) as

X ′(t) = F (X,Y )

Y ′(t) = G(X,Y ), G(X, 0) = 0
(10)

where X = (Sn, Rn, Sh, Rh) and Y = (In, Ih) with
X ∈ ℜ4

+ denoting the number of uninfected components (in-
dividuals) andY ∈ ℜ2

+ denoting the number of infected com-
ponents(individuals). The disease-free equilibrium is now

denoted byE0 = (X0,0) whereX0 =

(
Λn

µn

, 0,
Λh

µh

, 0

)
. The

conditions(H1) and (H2) below must be met to guarantee
global asymptotic stability ofE0

H1 For X ′(t) = F (X∗, 0),

X∗ is a globally asymptotically stable

H2 G(X,Y ) = AY − Ĝ(X,Y ),

Ĝ(X,Y ) ≥ 0 for (X,Y ) ∈ Ω.

(11)

If (10) satisfies conditions in (11) then Theorem 2 holds
providedβn2

= 0

Theorem 2: The fixed pointE0 is a globally asymptoti-
cally stable wheneverβn2

= 0, R0n < 1 and R0h < 1.

Proof: ConsiderF (X, 0) =




Λn − µnSn

0
Λh − µhSh

0


,

A =




−(µn + ρn + dn) + βn1
0

βn2
Λhµn

µhΛn

βh − (µh + ρh + dh)




and Ĝ(X,Y ) =

[
Ĝ1(X,Y )

Ĝ2(X,Y )

]

=




βn1
In(Nn − Sn)

Nn
βhIh(Nh − Sh)

Nh

+
βn2

In(ΛhµnNn − ShµhΛn)

µhΛnNn


 .

(12)
This means that where there is no transmission between

non-humans and humans(βn2
= 0), then Ĝ(X,Y ) ≥ 0,

meaning that the disease-free equilibrium will be globally
asymptotically stable. However when there is cross infection
from non-humans to humans which is the case with monkey
pox infections then the disease-free equilibrium is not neces-
sarily globally asymptotically stable as this is not always true
(Ĝ2(X,Y ) ≥ 0) everywhere inΩ. This actually suggests the
existence of multiple endemic equilibria.

B. Endemic equilibrium and stability analysis

They are basically three mathematically possible endemic
equilibria states, the animal-only endemic equilibrium, the
human-only endemic equilibrium and the equilibrium state
where the disease co-exists. Basing on the fact that monkey-
pox infections are mainly transmitted from animals to hu-
mans, this allows to leave the analysis of human-only en-
demic equilibrium as human to human monkey pox infec-
tions rarely lead to monkey pox outbreak and as such we
take this equilibrium to be a trivial endemic equilibrium.

Animal-only endemic equilibrium: This occurs when there
is only animal to animal infections and no human to human
infection and no animal to human infections(βn2

= βh = 0).
In this case the endemic equilibrium is given byE∗

1 =

(S∗

n, I
∗

n, R
∗

n, S
∗

h, 0, 0), S∗

h =
Λh

µh

. The nature ofS∗

h shows

that R0h < 1. We now carry out some manipulations to
find the exact values of the remaining components ofE∗

1 .
The animal-only model is standard SIR model which at
equilibrium we have

Λn = (µn + λ∗

n)S
∗

n,

λ∗

nS
∗

n = (µn + ρn + dn)I
∗

n,

ρnI
∗

n = µnR
∗

n, λn =
βn1

In

Nn

.

(13)

Adding the first two equations of system (13) one gets

Λn = µnS
∗

n + (µn + ρn + dn)I
∗

n

⇒ S∗

n =
Λn

µn

−
µn + ρn + dn

µn

I∗n

(14)

Fromthe last equation in system (13) we haveR∗

n =
ρn

µn

I∗n.

Adding all the equations in system (13) we have

Λn = µnN
∗

n + dnI
∗

n ⇒ N∗

n =
Λn

µn

−
dn

µn

I∗n (15)

then,the second equation in system (13) givesI∗n = 0 or

βn1
S∗

n = (µn + ρn + dn)N
∗

n,

⇒ βn1

(
Λn

µn

−
µn + ρn + dn

µn

I∗n

)

=
µn + ρn + dn

µn

(Λn − dnI
∗

n),

⇒ I∗n =
Λn(βn1

− (µn + ρn + dn))

(βn1
− dn)(µn + ρn + dn)

.

(16)

Only solution withS∗

n, I
∗

n, N
∗

n > 0 is if βn1
> (µn + ρn +

dn) ⇒ R0n > 1. This leads to Lemma 1.
Lemma 1: The endemic equilibriumE∗

1 exists whenever
R0n > 1 andR0h < 1.
Now we have to check onto the stability of this endemic
equilibrium. In order to investigate the global stability of
the endemic equilibrium, we adopt the approach by Ko-
robeinikov [6]. Assume thatR0n > 1, then E∗

1 exists for
all Sn; In; Rn; Sh > ǫ, for someǫ > 0. Let λnSn :=
g(Sn; In;Rn) be a positive and monotonic function, and
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define the following continuous function inℜ3
+ (for more

details, see Korobeinikov, 2006). A function

V (Sn, In, Rn) = Sn −

∫ Sn

ǫ

g(S∗

n, I
∗

n, R
∗

n)

g(τ, I∗n, R
∗

n)
dτ

+In −

∫ In

ǫ

g(S∗

n, I
∗

n, R
∗

n)

g(S∗

n, τ, R
∗

n)
dτ

+Rn −

∫ Rn

ǫ

g(S∗

n, I
∗

n, R
∗

n)

g(S∗, I∗n, τ)
dτ.

(17)

If g(Sn, In, Rn) is monotonic with respect to its variables,
then the endemic stateE∗

1 is the only extremum and the
global minimum of this function. Indeed

∂V

∂Sn

= 1−
g(S∗

n, I
∗

n, R
∗

n)

g(Sn, I∗n, R
∗

n)
,

∂V

∂In
= 1−

g(S∗

n, I
∗

n, R
∗

n)

g(S∗

n, In, R
∗

n)
,

∂V

∂Rn

= 1−
g(S∗

n, I
∗

n, R
∗

n)

g(S∗

n, I
∗

n, Rn)
,

(18)

grow monotonically, then the functiong(Sn, In, Rn) has
only one stationary point. Furthermore, since

∂2V

∂S2
n

=
g(S∗

n, I
∗

n, R
∗

n)

[g(Sn, I∗n, R
∗

n]
2
·
∂g(Sn, I

∗

n, R
∗

n)

∂Sn

,

∂2V

∂I2n
=

g(S∗

n, I
∗

n, R
∗

n)

[g(S∗

n, In, R
∗

n)]
2
·
∂g(S∗

n, In, R
∗

n)

∂In
,

∂2V

∂R2
n

=
g(S∗

n, I
∗

n, R
∗

n)

[g(S∗

n, I
∗

n, Rn)]2
·
∂g(S∗

n, I
∗

n, Rn)

∂Rn

,

(19)

arenon-negative, then the pointE∗

1 is a minimum. That is,
V (Sn, In, Rn) ≥ V (S∗

n, I
∗

n, R
∗

n) and hence,V is a Lyapunov
function. In the case of our model system whenβn2

= βh =
0 (animal to animal transmission only), then

Λn = g(S∗

n, I
∗

n, R
∗

n) + µnS
∗

n,

(µn + ρn + dn)I
∗

n = g(S∗

n, I
∗

n, R
∗

n),

ρnI
∗

n = µnR
∗

n.

(20)

The Lyapunov function (17) satisfies

dV

dt
= S′

n − S′

n

g∗n
gsn

+ I ′n − I ′n
g∗n
gin

+R′

n −R′

n

g∗n
grn

= Λn − gn − µnSn − Λn

g∗n
gsn

+ gn
g∗n
gsn

+µnSn

g∗n
gsn

+ gn

−(µn + ρn + dn)In − gn
g∗n
gin

+(µn + ρn + dn)In
g∗n
gin

+ ρnIn − µRn

= µnS
∗

n

(
1−

Sn

S∗

n

)(
1−

g∗n
gsn

)

+g∗n

(
1−

g∗n
gsn

−
gn

gsn

)

+g∗n

(
−
In

I∗n
+

In

I∗n

g∗n
gin

−
gn

gin

)

+µnR
∗

n

(
In

I∗n
−

Rn

R∗

n

)(
1−

g∗n
grn

)

= µnS
∗

n

(
1−

Sn

S∗

n

)(
1−

g∗n
gsn

)

+g∗n

(
1−

g∗n
gsn

)(
1−

gsn
gin

)

+g∗n

(
In

I∗n
−

gn

gsn

)(
g∗n
gin

− 1

)

+µnR
∗

n

(
In

I∗n
−

Rn

R∗

n

)(
1−

g∗n
grn

)
,

(21)

with g∗n = g(S∗

n, I
∗

n, R
∗

n), gn = g(Sn, In, Rn), gsn =
g(Sn, I

∗

n, R
∗

n), gin = g(S∗

n, In, R
∗

n), grn = g(S∗

n, I
∗

n, Rn).
SinceE∗

1 > 0, the functiong(Sn, In, Rn) is concave with

respect toIn, and
∂2g(Sn, In, Rn)

∂I2n
≤ 0, then

dV

dt
≤ 0 for

all Sn, In, Rn > 0. Also, the monotonicity ofg(Sn, In, Rn)
with respect toSn ensures that

(
1−

Sn

S∗

n

)(
1−

g(S∗

n, I
∗

n, R
∗

n)

g(Sn, I∗n, R
∗

n)

)
≤ 0 (22)

and
(
1−

g(S∗

n, I
∗

n, R
∗

n)

g(Sn, I∗n, R
∗

n)

)(
1−

g(Sn, In, Rn)

g(S∗

n, In, R
∗

n)

)
≤ 0 (23)

holds for allSn, In, Rn > 0. Furthermore,
(
In

I∗n
−

g(Sn, In, Rn)

g(Sn, I∗n, R
∗

n)

)(
g(S∗

n, I
∗

n, R
∗

n)

g(S∗

n, In, R
∗

n)
− 1

)
≤ 0
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if

g(Sn, In, Rn)

g(Sn, I∗n, R
∗

n)
≥

In

I∗n

when g(S∗

n, In, R
∗

n) ≤ g(S∗

n, I
∗

n, R
∗

n) and

g(Sn, In, Rn)

g(Sn, I∗n, R
∗

n)
≤

In

I∗n

when g(S∗, In, R
∗

n) ≥ g(S∗

n, I
∗

n, R
∗

n).

(24)

holds for all Sn, In, Rn > 0. Since g(Sn, In, Rn) is
monotonicg(Sn∗, In, R

∗

n) ≥ g(Sn∗, I
∗

n, R
∗

n) ⇒ In ≥ I∗n
andg(Sn∗, In, R

∗

n) ≤ g(Sn∗, I
∗

n, R
∗

n) ⇒ In ≤ I∗n. Also,
(
In

I∗n
−

Rn

R∗

n

)(
1−

g(S∗

n, I
∗

n, R
∗

n)

g(S∗

n, I
∗

n, Rn)

)
≤ 0 (25)

if

Rn

R∗

n

≥
In

I∗n
wheng(S∗

n, I
∗

n, Rn) ≥ g(S∗

n, I
∗

n, R
∗

n) and

Rn

R∗

n

≤
In

I∗n
wheng(S∗

n, I
∗

n, Rn) ≤ g(S∗

n, I
∗

n, R
∗

n).

(26)
holds for all Sn, In, Rn > 0. Since g(Sn, In, Rn) is a

monotonic functiong(S∗

n, I
∗

n, Rn) ≥ g(S∗

n, I
∗

n, R
∗

n) ⇒ Rn ≥
R∗

n and g(S∗

n, I
∗

n, Rn) ≤ g(S∗

n, I
∗

n, R
∗

n) ⇒ Rn ≤ R∗

n.
Inequalities (24) and (26) will hold for any concave function

and are sufficient to ensure that
dV

dt
≤ 0.Thus, we have

established the following result:
Theorem 3: The unique endemic equilibriumE∗

1 is glob-
ally asymptotically stable whenever conditions (24) and (26)
are satisfied.

Co-existence of monkey pox infections in both human and
non-human endemic equilibrium: This occurs when there
animal to animal, animal to human and human to human
infections. This endemic equilibrium for the model is given
by E∗

2 where

E∗

2 = (S∗

n, I
∗

n, R
∗

n, S
∗

h, I
∗

h, R
∗

h), (27)

with S∗

n, I
∗

n andR∗

n taking the same expressions as inE∗

1

where they were shown to exist wheneverR0n > 1. To find
the remaining components it is necessary to consider the
human subsystem which is given by

Λh = (µh + λ∗

h)S
∗

h,

λ∗

hS
∗

h = (µh + ρh + dh)I
∗

h,

ρhI
∗

h = µhR
∗

h, λh =
βn2

In

Nn

+
βhIh

Nh

.

(28)

Adding the first two equations of system (28) the following
is obtained

Λh = µhS
∗

h + (µh + ρh + dh)I
∗

h

⇒ S∗

h =
Λh

µh

−
µh + ρh + dh

µh

I∗h.

(29)

Adding all the equations of system (28) we obtain

Λh = µhN
∗

h − d∗hI
∗

h ⇒ N∗

h =
Λh

µh

−
dh

µh

I∗h, (30)

then the second equation of system (28) gives

(
βn2

I∗n
N∗

n

+
βhI

∗

h

N∗

h

)(
Λh

µh

−
mh

µh

I∗h

)
= mhI

∗

h,

mh = (µh + ρh + dh).

(31)

Setx∗ =
1

µh

βn2
I∗n

N∗

n

then(31) becomes

(βhI
∗

h + x∗(Λh − dhI
∗

h))

(
Λh

µh

−
mh

µh

I∗h

)

= mh

(
Λh

µh

−
dh

µh

I∗h

)
I∗h

⇒ (βh − dh(1 + x∗)) (I∗h)
2

+Λh

(
(1 + x∗)−

βh − dhx
∗

mh

)
I∗h −

Λ2
hx

∗

mh

= 0,

mh = (µh + ρh + dh)

(32)

and this has a single positive root ifβh > dh(1 + x∗).
The permanence of the disease destabilizes the disease-free
equilibrium E0 sinceR0h > 1 andR0n > 1, the endemic
equilibrium E∗

2 exists.
Lemma 2: System (5) is uniformly persistent onΩ.

Proof: Uniform persistence system of (5) implies there
exists a constantζ > 0 such that any solution of (5) which
starts in

(
S0
n, I

0
n, R

0
n, S

0
h, I

0
h, R

0
h

)
∈

◦

Ω, (33)

satisfies,

ζ ≤ lim inf
t→∞

Sn(t), ζ ≤ lim inf
t→∞

In(t),

ζ ≤ lim inf
t→∞

Rn(t), ζ ≤ lim inf
t→∞

Sh(t),

ζ ≤ lim inf
t→∞

Ih(t), ζ ≤ lim inf
t→∞

Rh(t).

(34)

Define the following Korobeinikov-Maini [17] type Lya-
punov functional

V (Sn, In, Rn, Sh, Ih, Rh) = (Sn − S∗

n lnSn)

+ (In − I∗n ln In) + (Rn −R∗

n lnRn)

+ (Sh − S∗

h lnSh) + (Ih − I∗h ln Ih)

+ (Rh −R∗

h lnRh).

(35)

which continuous for allxi > 0 (i = 1, 2, · · · , 5) and

satisfies
∂V

∂xi

=

(
1−

x∗

i

xi

)
[16]. Consequently, the endemic

equilibriumE∗ is the only extremum and the global minimum
of the functionV ∈ ℜ6

+. Also, V (Sn, In, Rn, Sh, Ih, Rh) >
0 and V ′(Sn, In, Rn, Sh, Ih, Rh) = 0 only at E∗. Thus,
V (Sn, In, Rn, Sh, Ih, Rh) is a Lyapunov function. At equi-
librium, Λj = λ∗

jS
∗

j +µjS
∗

j (j = n, h), substituting this into
the time derivative ofV along the solution path of model
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system (5), we have

V ′ = (Sn − S∗

n)
S′

n

Sn

+ (In − I∗n)
I ′n
In

+ (Rn −R∗

n)
R′

n

Rn

+(Sh − S∗

h)
S′

h

Sh

+ (Ih − I∗h)
I ′h
Ih

+ (Rh −R∗

h)
R′

h

Rh

≤ −µh

(Sh − S∗

h)
2

Sh

+ g(Sn, In, Rn, Sh, Ih, Rh).

(36)
g can be shown to be non-positive using Barbalat Lemma

[5] or by following the approach of McCluskey [18]. Hence,
V ′(Sn, In, Rn, Sh, Ih, Rh) ≤ 0 with equality only atE∗

2 .

The only invariant set in
◦

Ω, the interior of Ω is the set
consisting of the endemic equilibriumE∗

2 . Thus, all solutions

of (5) which intersect
◦

Ω limit to and invariant set, the
singleton{E∗

2 }. Therefore, from Lyapunov-Lasalle invariance
principle, system (5) is uniformly persistent.

To analyze the stability of this equilibrium point we make
use of the Centre Manifold Theory [8] as described in
Theorem 4.1 of Castillo-Chavez and Song [9], to establish the
local asymptotic stability of the non smoking only endemic
equilibrium. Let us make the following change of variables
Sn = x1, In = x2, Rn = x3, Sh = x4, Ih = x5, Rh = x6,
so that
Nn(t) =

∑3

n=1
xn and Nh(t) =

∑3

m=1
xm+3. Using the

vector notationX = (x1, x2, x3, x4, x5)
T . Model system (5)

under these conditions can be written in the form
dX

dt
= (f1, f2, f3, f4, f5, f6), such that

x′

1(t) = f1 = Λn −
βn1

x2x1∑3

n=1
xn

− µnx1,

x′

2(t) = f2 =
βn1

x2x1∑3

n=1
xn

− (µn + ρn + dn)x2,

x′

3(t) = f3 = ρnx2 − µnx3,

x′

4(t) = f4 = Λh −
βhx5x4∑3

m=1
xm+3

−
βn2

x2x4∑3

m=1
xm

− µhx4,

x′

5(t) = f5 =
βhx5x4∑3

m=1
xm+3

+
βn2

x2x4∑3

m=1
xm

− (µh + ρh + dh)x5,

x′

6(t) = f6 = ρhx5 − µhx6.

(37)

The Jacobian matrix of system (37) atE0 is given byJ(E0)
expressed below




−µn −βn1
0 0 0 0

0 kn1
0 0 0 0

0 ρn −µn 0 0 0
0 −kn2

0 −µh −βh 0
0 kn2

0 0 kh 0
0 0 0 0 ρh −µh



,

kn1
= βn1

− (µn + ρn + dn), kn2
=

βn2
Λhµn

Λnµh

,

kh = βh − (µh + dh + ρh).

(38)

From equation (38) it follows that the reproduction number
are,

{R0n ,R0h}, (39)

as defined earlier. Ifβh is taken as a bifurcation point and
if we consider the case whenR0h = 1 and solve forβh we
obtain

βh = β∗

h = µh + ρh + dh. (40)

The linearized system of the transformed equation (37) with
βh = β∗

h has a simple zero eigenvalue, hence the Centre
Manifold Theory (1981), can be used to analyze the dynam-
ics of (37) nearβh = β∗

h. It can be shown that the Jacobian
of (37) atβh = β∗

h has a right eigenvector associated with
the zero eigenvalue given byw = [w1, w2, w3, w4, w5, w6]

T

where,

w1 = w2 = w3 = 0, w4 = −
β∗

hw5

µh

,

w5 = w5 > 0, w6 =
ρhw5

µh

.

(41)

Theleft eigenvector ofJ(E0) associated with the eigenvalue
at β = β∗ is given byz = [z1, z2, z3, z4, z5, z6]

T where,

z1 = z3 = z4 = z6 = 0, z5 = z5 > 0,

z2 = −
β∗

n2
Λhµnz5

Λnµh(β∗

n1
− µn − ρn − dn)

.
(42)

noindentIn order to establish the conditions for the existence
of backward bifurcations, we use Theorem 4 proven in
Castillo-Chavez and Song [9].

Theorem 4: Consider the following general system of
ordinary differential equations with a parameterφ

dx

dt
= f(x, φ), f : ℜn ×ℜ → ℜ andf ∈ (ℜn ×ℜ),

(43)
where 0 is an equilibrium of the system that isf(0, φ) = 0

for all φ and assume

A1: A = Dxf(0, 0) =

(
∂fi

∂xj

(0, 0)

)
is the linearisation of

system (43) around the equilibrium 0 withφ evaluated at
0. Zero is a simple eigenvalue of A and other eigenvalues
of A have negative real parts;

A2: Matrix A has a right eigenvectoru and a left eigenvector
v corresponding to the zero eigenvalue.
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Let fk be thekth componentof f and

a =

n∑

k,i,j=1

zkwiwj

∂2fk

∂xi∂xj

(0, 0),

b =

n∑

k,i=1

zkwi

∂2fk

∂xi∂φ
(0, 0).

(44)

The local dynamics of (43) around 0 are totally governed
by a andb.
i. a > 0, b > 0. Whenφ < 0 with |φ| << 1, 0 is locally

asymptotically stable, and there exists a positive unstable
equilibrium; when0 < φ << 1, 0 is unstable and there
exists a negative and locally asymptotically stable
equilibrium;

ii. a < 0, b < 0. Whenφ < 0 with |φ| << 1, 0 unstable;
when0 < φ << 1, 0 is locally asymptotically stable, and
there exists a positive unstable equilibrium;

iii. a > 0, b < 0. Whenφ < 0 with |φ| << 1, 0 is unstable,
and there exists a locally asymptotically stable negative
equilibrium; when0 < φ << 1, 0 is stable, and
a positive unstable equilibrium appears;

iv. a < 0, b > 0. Whenφ changes from negative to positive,
0 changes its stability from stable to unstable.
Correspondingly a negative unstable equilibrium becomes
positive and locally asymptotically stable.

Computations of a and b:
For system (37), the non-zero partial derivatives ofF asso-
ciated withb are,

∂2f2

∂x2∂β
∗

h

= D1,
∂2f5

∂x4∂β
∗

h

=
D1Λhµn

D2Λnµh

,
∂2f5

∂x5∂β
∗

h

= 1.

(45)
It follows from (45) that

b = z5w5 > 0. (46)

Sincew1 = w2 = w3 = 0 then for system (37), the non-zero
partial derivatives ofF associated witha at the disease-free
equilibrium are

∂2f5

∂x2
5

= −
2β∗

hµh

Λh

,
∂2f5

∂x5∂x5

= −
β∗

hµh

Λh

. (47)

It follows from (47) that

a = −
2(µh + ρh)β

∗

hµh

µhΛh

z5w
2
5 < 0. (48)

So,a < 0 andb > 0. Using Theorem 4 item (iv) we establish
Theorem 5.

Theorem 5: The unique endemic equilibriumE∗

2 is locally
asymptotically stable forR0h > 1 but close to 1 andR0n >

1.

III. N UMERICAL SIMULATIONS

The fourth-order Runge-Kutta numerical scheme coded in
C++ programming language is used to approximate progres-
sion through the disease Complete data on monkeypox are
almost unavailable and hard to obtain due to the remote
geographical regions where outbreaks have occured in the
past, but, for the purpose of illustration, we use a set of
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Fig. 2. Simulations of model system (5) showing plots of
Sn, In, Rn, Sh, Ih and Rh with varying βn1

among non human
primates and rodents. The direction of the arrow shows an increase inβn1

among non-humans from 2.0 with a step size of 0.5. Parameters values used
are as in Table I.

reasonable estimates. The model parameters and the values
they assume are listed in Table I. Two of the parameter
values are provided courtesy of the Central Statistics Office
of Zimbabwe (CSOZ) as reported in [7]. Figure 2 is graphical
representation showing the effect of varying the infection rate
which are represented byβn1

. Figures 2 (a), (b) and (c) show
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Fig. 3. Simulations of model system (5) showing plots ofSh, Ih andRh

with varying ρn among non human primates and rodents. The direction of
the arrow shows an increase inρn among non-humans from 0.25 with a
step size of 0.25. Parameters values used are as in Table I.

as increase of transmission rate among monkeys result in the
depletion of the susceptible monkey population, increase of
the infected monkeys, and increase of the recovered monkeys
as well, respectively. The increase in infected monkeys
results also increase of humans getting infected with monkey
pox as it results in increased chances of humans getting
infected monkeys when they hunt. Thus, increase of infected
humans result in a decrease of susceptible human population
and increase of the recovered human population given the
high levels of recovery for the monkey pox infected individ-
uals. Here, it is worth noting deforestation and urbanisation
turns to shrink the habitat of monkeys increasing the contact
between infected monkeys and uninfected ones as making it
easier for them to be hunted by humans. All this result in
an increase monkey pox related infections among monkeys
and humans. Figure 3 shows the effect of increasing the
recovery rate among non humans, translate to increase in the
human susceptibles and a corresponding decrease of human
infectives. This tends to suggest decrease of deforestation
and other human activities causing the shrinking of non
humans shelter and foraging areas will be able to keep the
infections at bay. Increasingρn suggests a situation where the
population (non-human) is well fed and as such its immune
system will be competent to fend of some infections. This
is typical in places where the forests are still virgin where
animals have enough to eat. General poverty turns to force
people in Africa to hunt and destroy habitats of monkeys and
rodents for their meat leading to an increase in human-animal
contact rate and consequently an increase in the number of
monkeypox related sickness. If poverty can be alleviated,
then less contact will likely be translated into less monkeypox

infections in humans.

IV. D ISCUSSION

A mathematical model which looks into the transmission
dynamics of the orthopox virus which causes monkey pox
is presented and analyzed. Stability analysis of the en-
demic equilibria were carried using the Lyapunov functions
and centre manifold theory. Using the Lyapunov function
conditions where the animal-only endemic equilibrium is
globally asymptotically stable were shown whenR0n > 1
and R0h < 1. The endemic equilibrium where monkey
pox infections exist in both the human and non-human
populations was shown using the centre manifold theory to
be locally asymptotically stable whenR0h > 1, but close to
1. Effects of poor nutrition and general human well being
were captured using numerical simulations by varying the
rate of recovery. General poverty turns to force people in
Central and West Africa to hunt monkeys and rodents for
their meat-resulting in an increase of monkey pox cases in
people. Poor malnourished individuals recover at slower rate
when suffering from monkey pox as their immune system
will be weak. Perhaps it may be necessary to re-introduce
chicken pox vaccination in monkey pox endemic regions as
chicken pox vaccination was known to have some positive
impact in curtailing the spread of monkey pox. Since in West
and Central Africa non-human and rodents are taken as food
source (relish) by humans-possibly the source of orhopox
virus infection it may be best for the governments and non
governmental organisations to intensively campaign to stop
eating of rodents and monkeys as this spreads monkey pox
infections from non-humans to humans.
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