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Abstract—In this paper we extend a repairable system model
that incorporates both time trend and repair history to include
a time dependent covariate. We calculated the bias, standard
error and RMSE of the parameter estimates of this model at
different sample sizes using simulated data. Following that, we
studied the Wald method of constructing confidence interval
estimates for the parameters of this model. Finally the model
is fit to real data from the pipeline network failure.

Index Terms—repairable, covariate, Wald.

I. I NTRODUCTION

A System is said to be repairable when it can be restored
back to functionality by some repair process or main-

tenance action after a failure has occurred in the system.
The “repair time” which is the period where the system is
unable to function is assumed to be negligible. In most cases
a repair action can only bring the system back to the state it
was prior to the failure, also known as “as-bad-as-old”. This
type of repair action is also referred to as minimal, imperfect
or general repair. Thus, modeling these types of repair has
received a lot of attention recently. The general repair model
for repairable systems by using the idea of the virtual age
process of the system was developed by [1].

Lawless and Thiagarajah [2] introduced a proportional in-
tensity model that incorporates both time trends and renewal
type behavior. Guo et al. [3] later proposed a new general
repair model based on the expected cumulative number of
failures to capture the repair history. Other literatures on the
repairable system models and recurrent events are [4], [5],
[6], [7], [8], [9], [10] and [11].

Most repairable system models do not take into account
other factors that affect repair times, more popularly known
as covariates or concomitant variables. In some analysis
involving repairable systems, covariates can be very useful
in indicating the cause of failures. Røstum [12] showed how
the use of covariates such as length or diameter of pipes,
age and presence of clay can be very useful in analyzing
pipe failures in water networks. It is rather common in any
analysis to find covariates that do not remain at a fixed
value over time. These types of covariates are known as
time dependent covariates, for example, age, level of erosion,
water pressure and velocity.

II. T HE MODELS

Lawless & Thiagarajah [13] introduced a proportional in-
tensity model where the failure intensity function conditional
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on the history up to timet, Ht is λ(t,Ht) = eθ
′
x(t), where

x(t) = (x1(t), ..., xp(t))
′ is a vector of functions that may

depend on botht andHt andθ = (θ1, ..., θp)
′ is the vector of

unknown parameters. This idea was later extended by [3] to
obtain a parametric model based on the expected cumulative
number of repairs (failures). In this research, we extend this
model to include a time dependent covariate.

For the proportional intensity model the effect of a time
dependent covariate can be added to the model in different
ways depending on the nature of the covariate. Letz be
the value of a time dependent covariate at the time the study
started andz(t) its value at timet. Then, the failure intensity
function is,

λ(t) = λ0(t) exp(γµ(t) + βz(t)), (1)

where,
λ0(t) = ea+bt. (2)

and a, b, γ andβ are the parameters of the model.µ(t) is
the expected cumulative number of failures up to timet.

In this work we assume that the system is a network
consisting of smaller components. Suppose we have a series
of i = 1, 2, . . . , n events triggered by different compenents
with covariate valuezi at start of study andz(ti) at the
ith failure. Let us consider a model withz(ti) = zi + ti,
where the cumulative number of failures up to timeti is
(i − 1). , If hi = e(a+bti−1+γ(i−1)+β(zi+ti−1)) and wi =
e(a+bti+γ(i−1)+β(zi+ti)), the conditional pdf of theith failure
is,

f(ti|ti−1) = exp
(
a+ bti + γ(i− 1) + β(zi + ti)

+
hi + wi

b+ β

)
.

(3)

Following that the corresponding log-likelihood function
for observed data ofn events is,

l(a, b, β, γ) =

n∑

i=1

a+ bti + γ(i− 1) + β(zi + ti)

+
hi + wi

b+ β
(4)

Then,the first and second derivatives of the log-likelihood
function would be as follows,

∂l

∂a
=

n∑

i=1

1 +
hi − wi

b+ β

∂l

∂b
=

n∑

i=1

ti +
ti−1hi − tiwi

b+ β
+

−hi + wi

(b+ β)2
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∂l

∂β
=

n∑

i=1

zi + ti +
(zi − ti−1)hi + (zi + ti)wi

b+ β

+
−hi + wi

(b+ β)2

∂l

∂γ
=

n∑

i=1

i− 1 +
(i− 1)hi − (i− 1)wi

b+ β

∂2l

∂a2
=

n∑

i=1

hi − wi

b+ β

∂2l

∂a∂b
=

n∑

i=1

ti−1hi − tiwi

b+ β
+

−hi + wi

(b+ β)2

∂2l

∂a∂β
=

n∑

i=1

(zi + ti−1)hi − (zi + ti)wi

b+ β
+

−hi + wi

(b+ β)2

∂2l

∂a∂γ
=

n∑

i=1

(i− 1)hi − (i− 1)wi

b+ β

∂2l

∂b2
=

n∑

i=1

t2i−1hi + t2iwi

b+ β
−

2(−ti−1hi + tiwi)

(b+ β)2

−
2(−hi + wi))

(b+ β)3

∂l

∂b∂β
=

n∑

i=1

ti−1(zi + ti−1)hi − ti(zi + ti)wi

b+ β
+

−ti−1hi + tiwi

(b+ β)2
+

−(zi + ti−1)hi + (zi + ti)wi

(b+ β)2

−
2(−hi + wi)

(b+ β)3

∂l

∂b∂γ
=

n∑

i=1

ti−1(i− 1)hi − ti(i− 1)wi

b+ β

+
−(i− 1)hi + (i− 1)wi

(b+ β)2

∂l

∂β2
=

n∑

i=1

(zi + ti−1)
2hi − (zi + ti)

2wi

b+ β

+
2(−(zi + ti−1)hi + (zi + ti)wi)

(b+ β)2
−

2(−hi + wi)

(b+ β)3

∂l

∂β∂γ
=

n∑

i=1

(zi + ti−1)(i− 1)hi − (zi + ti)(i− 1)wi

b+ β

+
−(i− 1)hi + (i− 1)wi)

(b+ β)2

∂2l

∂γ2
=

n∑

i=1

(i− 1)2hi − (i− 1)2wi

b+ β

A. Simulation Study

A simulation study using 1000 samples of sizesn =
50, 80, 100, 150 and 200 was conducted with one time de-
pendent covariate. The covariate values were simulated from
the standard normal distribution. The values of -2.6, 0.008,
0.0005 and -0.07 were chosen as the parameter values of
a, b, β andγ. These particular values of the parameters were
chosen to give us failure times that are similar to those
found in pipeline failures where a common time dependent
covariate is the age of the pipes.

TABLE I
BIAS, STANDARD ERROR ANDRMSE OF THE PARAMETER ESTIMATES

n â b̂ β̂ γ̂

50 -0.29991 0.00926 0.00869 -0.16431

80 -0.27372 0.00599 0.00443 -0.09086

Bias 100 -0.25182 0.00594 0.00194 -0.06732

150 -0.19407 0.00767 -0.00255 -0.04303

200 -0.15992 0.00394 -0.00016 -0.03150

50 0.32474 0.24454 0.24135 0.09727

80 0.30150 0.18375 0.18346 0.03925

s.e 100 0.30366 0.11857 0.11858 0.03176

150 0.22181 0.12272 0.12246 0.02950

200 0.22166 0.09309 0.09265 0.02849

50 0.44204 0.24471 0.24150 0.19094

80 0.40722 0.18384 0.18351 0.09897

RMSE 100 0.39449 0.11872 0.11859 0.07443

150 0.29472 0.12296 0.12249 0.05217

200 0.27333 0.09318 0.09265 0.04247

Random numbers,ui, were generated from the uniform
distribution on the interval(0, 1), to produceti as follows,

ti =
1

b+ β

(
ln

[
ea+γ(i−1)+β(ti−1+zi)+bti−1

− ln(ui)(b+ β)]− (a+ βzi + γ(i− 1))

)
.

Table I shows the bias, standard errors and RMSE of
the parameter estimate at various sample sizes. From the
results we can see that both bias and standard error values
are relatively low for all the parameter estimates. Whenn

increases, the decrease in the value of the bias, standard error
and RMSE is clear. Thus, we can conclude that the estimation
procedure is working well for the proposed model.

III. C ONFIDENCE INTERVAL ESTIMATES

Based on the asymptotic normality of the MLE, the inverse
of the observed information matrix, which can be obtained
from the second partial derivatives of the log-likelihood
function evaluated at̂a,̂b,β̂ and γ̂, provides us with the
estimators for the variance and covariance,

v̂ar(â, b̂, β̂, γ̂) = [i(â, b̂, β̂, γ̂)]−1.

The confidence interval estimate based on the asymptotic
normality of the maximum likelihood estimates is also known
as the Wald interval. However, it is widely known that the
Wald intervals can be highly asymmetrical, see [14]. Also,
in many cases it can be totally unreliable especially for short
series of events which is rather common in the modeling of
repairable systems or any recurrent events in general. Thus,
we would like to assess its performance before applying the
Wald intervals to the parameters of this model.

Let θ̂ be the maximum likelihood estimator for parameter
θ and l(θ) the log-likelihood function ofθ. Under mild
regularity conditions,̂θ is asymptotically normally distributed
with meanθ and covariance matrixI−1(θ), whereI (θ) is
the Fisher information matrix evaluated at the true value of
the parameterθ, [5]. The matrixI (θ) which is not available
can be replaced by the observed information matrixI (θ̂)
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whose (j, k)th elementcan be obtained from the second
partial derivatives of the log-likelihood function evaluated
at θ̂.

The estimate of var(̂θj) is then given by the(j, j)th

element ofI−1(θ̂). If z1−α

2
is the (1 − α

2 ) quantileof the
standard normal distribution the100(1 − α)% confidence
interval for θj is given by the following,

θ̂j − z1−α

2

√
I−1(θ̂)jj < θj < θ̂j + z1−α

2

√
I−1(θ̂)jj .

A. Coverage Probability Study

We conducted a coverage probability study using study
usingN = 1000 samples of sizesn = 50, 80, 100, 150 and
200 to compare the performance of the confidence interval
estimates atα = 0.05 andα = 0.10 whereα is the nominal
error probability. Following that, we calculated the estimated
total error probabilities by adding the number of times an
interval did not contain the true parameter value divided by
the total number of samples.

The estimated left(right) error probability was calculated
by adding the number of times the left(right) endpoint was
more(less) than the true parameter value divided by the
total number of samples,N . If the total error probability
is greater thanα + 2.58 s.e(α̂), then the method is termed
anticonservative and if it is lower thanα − 2.58 s.e(α̂), the
method is termed conservative, [15].

B. Results and Discussion

The coverage probability of a confidence interval is the prob-
ability that the interval contains the true parameter value and
should preferably be equal or close to the nominal coverage
probability, (1 − α). Figure 1 illustrates the estimated left
and right error probabilities for parametersa, b, β and γ

whenα = 0.05. Tables 2-3 show the results obtained from
the coverage probability study. The overall performances of
the different methods were judged based on the total number
of anticonservative, conservative and asymmetrical intervals.

TABLE II
SUMMARY OF THE INTERVAL ESTIMATES AT α = 0.05.

n Anti conservative Conservative Asymmetrical

50 4 0 2

80 4 0 2

100 2 0 2

150 3 0 2

200 2 0 3

From figure 1 we can observe that the Wald interval works
quite well for the parametersb andβ but rather poorly for
parametersa and γ. We can also see that the number of
anti conservative and asymmetrical intervals are rather high
especially at lower sample sizes, see table 2. Thus, we should
apply the Wald intervals with much caution especially for
parametersa andγ.

IV. A PPLICATION WITH REAL DATA

We analyzed the demo pipeline data obtained from Trond-
heim’s Gemini VA database using the repairable system

TABLE III
ESTIMATED ERROR PROBABILITIES ATα = 0.05.

Para. n Left Right Total

50 0.074 0.113 0.187

80 0.037 0.100 0.137

a 100 0.030 0.101 0.131

150 0.026 0.093 0.119

200 0.019 0.073 0.092

50 0.039 0.033 0.072

80 0.035 0.033 0.068

b 100 0.037 0.025 0.062

150 0.039 0.027 0.066

200 0.034 0.022 0.056

50 0.041 0.033 0.074

80 0.034 0.030 0.064

β 100 0.027 0.033 0.060

150 0.028 0.038 0.066

200 0.026 0.034 0.060

50 0.000 0.318 0.318

80 0.002 0.248 0.250

γ 100 0.001 0.201 0.202

150 0.001 0.158 0.159

200 0.002 0.131 0.133
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Fig. 1. Estimated error probabilities fora, b, β andγ at α = 0.05.

model with a time dependent covariate. This database con-
tains 82 failures from a pipe network starting from the year
1975 to 2001. The time dependent covariate used in the
model is the age of the pipes. All variables were measuerd
in days.

Table 4 shows the values of the parameter estimates and
standard errors when the data was fitted to the proposed
model. The table also shows the90% and95% Wald confi-
dence interval estimates for the model parameters. We know
that if b is not significant then there is no evidence of time
trend and if the parameterγ is not significant then there is no
evidence of repair effect within the proposed model. Here,
b > 0 shows that the failure rate is increasing over time.
The value ofγ < 0 implies that the repair action reduces
the failure intensity. The parameterβ shows the effect of the
time dependent covariate. The valueβ < 0 indicates that
older pipes have higher resistance against failure . The Wald
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TABLE IV
ESTIMATES OF PARAMETERS FOR PIPE NETWORK FAILURES WITH TIME

DEPENDENT COVARIATE.

Wald intervals(90%)

Para. Est. Std.err. Wald intervals(95%)

(−5.99087,−4.72719)

a −5.359030 0.38410 (−6.11187,−4.60619)

(0.00058, 0.00242)

b 0.001500 0.00056 (0.00040, 0.00260)

(−0.00001, 0.00001)

β −0.000004 0.00001 (−0.00002, 0.00002)

(−0.28151,−0.06555)

γ −0.173530 0.06564 (−0.30218,−0.04487)

confidence interval estimates suggests that parametersb and
γ aresignificant whereasβ is not significant at both90% and
95% confidence intervals. However, as we can see from the
results of the coverage probability study , the Wald intervals
are not very reliable. Thus, we carry out the likelihood ratio
test to check the significance of the parameters of this model.

This test is known to perform better than the Wald test
since it has better statistical properties, [13]. The basic idea of
a likelihood ratio test is to compare the maximized likelihood
of two nested models, the full model and the reduced model.
The reduced model is restricted by certain conditions given
in H0.
Let θ̂r be the maximum likelihood estimator of the restricted
model underH0 and θ̂f the maximum likelihood estimator
of the full model. The maximized likelihood of the reduced
model, l(θ̂r) can never exceed the maximized likelihood of
the full model,l(θ̂f ), because it is a subset of the full model.
Thus, the ratio of the maximized likelihood of the reduced
model to the full model is bounded between 0 and 1. A
ratio close to 1 indicates that the reduced model is close to
the full model whereas a ratio close to 0 indicates that the
two models are quite different and that the reduced model
is unacceptable. The likelihood ratio statistic for testingH0

versusHl is given by the following,

Ψ = −2[L(θ̂r)− L(θ̂f )].

For large sample size,Ψ is approximatelyχ2
(ν), whereν is

the number of parameters in the full model minus the number
of parameters in the reduced model.

We are interested mainly in testing whether the time trend,
repair effect and the covariate effect are significant. Table 5
displays the likelihood ratio test results and whetherH0 is
rejected atα = 0.05. The results indicate that both time trend
and repair effect are significant atα = 0.05. However the
effect of the time dependent covariate, is not significant at
α = 0.05. So, the full model is not necessary and we can use
the reduced model by omitting the time dependent covariate.

Table 6 shows the values of the parameter estimates and
standard error for the reduced model. Figure 2 shows the
estimates of the expected number of failures for the reduced
model. We can clearly see that expected number of failures
appear to fit the real data very well.

V. CONCLUSION

In this paper, we proposed the use of a repairable system
model with time dependent covariate. This model allows us

TABLE V
L IKELIHOOD RATIO TEST RESULTS.

Hypothesis Ψ Conclusion

1.H0: b = 0 Reject H0

H1: b 6= 0 7.640 at α = 0.05

2.H0: γ = 0 Reject H0

H1: γ 6= 0 7.346 at α = 0.05

3.H0: β = 0 Fail to reject

H1: β 6= 0 0.114 H0 at α = 0.05

TABLE VI
PARAMETERS ESTIMATES FOR PIPE NETWORK FAILURES FOR THE FINAL

MODEL.

Para. Est. Std.err.

a −5.43490 0.31465

b 0.00150 0.00056

γ −0.17373 0.06589
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Fig. 2. Estimates of expected number of failures for reduced model.

to incorporate the effect of a time dependent covariate in the
modeling of repairable system failures. More work should
be done to investigate the use of other types of models that
can incorporate time dependent covariates. We should also
extend these models to include several types of covariates,
for example fixed and time dependent covariates or covariates
that may take values that follow a step function instead of
continuously changing with time.

Discussion on the confidence interval procedure for this
model was based on the asymptotic normality of the max-
imum likelihood method. This method depends heavily on
asymptotic properties, thus, for the moderate and small
sample sizes the standard error estimates may not be par-
ticularly good. Alternative methods based on the parametric
bootstrap should be investigated since they have proved to be
more useful in many instances especially for short series of
events which is rather common in the modeling of repairable
systems or any recurrent events in general.
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