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Abstract—The evaluation of the Hilbert transform of a func-
tion is a very important problem that appears widely in science
and engineering, specially in signal analysis. In this work, the
numerical evaluation of a class of Hilbert transforms using
an expansion in terms of Hermite functions, eigenfunctions
of the Fourier transform, is performed. Judicious selection
of convergence accelerators allows for the efficient evaluation
of the resulting series. The approach is particularly accurate
for functions having a Gaussian-like asymptotic behavior. For
more slowly decreasing functions, the accuracy of the evaluation
decreases.

Index Terms—Hilbert-transform, Hermite functions, conver-
gence accelerators.

I. I NTRODUCTION

H ILBERT transforms occur widely in a variety of prob-
lems in science and engineering [1], [2], [3], [4],

[5], [6], [7], [8], [9], [10], including applications in the
treatment of nonlinear waves, dispersion relations in optical
data analysis, scattering problems, and electrocardiography.

Gaussian-type functions play a special role in signal anal-
ysis, since they are localized in both the time and frequency
domains. The construction of the Hilbert transform of many
signals such as Gaussian-type pulses is performed in order
to cancel negative frequency components, and the transform
is most often carried out numerically [2]. An interesting
application of the Hilbert transform of Gaussian functions
occurs in the analysis of the heat equation [11]. As a
consequence in part, the numerical evaluation of Hilbert
transforms has been studied intensely using a number of
different approaches [3], [12], [13], [14], [15], [16], [17],
[18], [19]. A condensed version of this work was presented
at the World Congress of Engineering [20].

The Hilbert transform of a functionf , denotedHf , is
defined by

(Hf) (x) =
1

π
P

∫

∞

−∞

f(s)

x − s
ds, (1)

whereP designates the Cauchy principal value, which can
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be expressed as

(Hf) (x) =
1

π
lim

ǫ→0+

[
∫ x−ǫ

−∞

f(s)

x − s
ds +

∫

∞

x+ǫ

f(s)

x − s
ds

]

.

(2)
The Hilbert transform is also defined using the opposite

sign convention to that given in Eq. (1).H is a linear operator
from Lp(R) → Lp(R), for 1 < p < ∞ [3], [21], [22], where
Lp(R) denotes the Banach space of Lebesgue integrable
functions:

Lp(R) =

{

f : R → C ,

∫

∞

−∞

|f(x)|p dx < ∞
}

. (3)

The most important case occurs for the Hilbert space
L2(R). If f(x) is an even function,f(−x) = f(x), then
Eq. (1) can be expressed as

(Hf) (x) =
2x

π
P

∫

∞

−∞

f(s)

x2 − s2
ds, (4)

and if f(x) is an odd function,f(−x) = −f(x), then

(Hf) (x) =
2

π
P

∫

∞

−∞

sf(s)

x2 − s2
ds. (5)

Equations (4,5) are often referred to as the Kramers-
Kronig transforms of even and odd functions, respectively.

A comment on notation is appropriate:(Hf(s))(x) in-
dicates the Hilbert transform off evaluated at the pointx,
ands is the dummy integration variable. This is written more
concisely as(Hf)(x), when there is no need to specify the
integration variable. If there is no risk of confusion, we will
write H [f(x)] for the Hilbert transform when the functional
form is specified.

There is continuing interest in the development of accurate
numerical methods for the evaluation of Hilbert transforms
and other related singular integrals [13], [14], [15], [16],
[17], [18], [23], [24], [25], [26], [27], [28], [29]. There is
also an extensive body of work devoted to the numerical
determination of the Kramers-Kronig transforms [25].

Weideman [27] studied the numerical evaluation of the
Hilbert transform of a functionf ∈ L2(R) using an expan-
sion technique in terms of the eigenfunctions of the Hilbert
transform operator, which can be written as:

ϕn(x) =
(1 + ix)n

(1 − ix)n+1
, for n ∈ Z. (6)

Expandingf(x) in terms of this orthonormal basis set, the
following result was found:

(Hf)(x) = −ib0ϕ0(x) − i
∞
∑

n=−∞

′ bn sgn(n)ϕ(n), (7)
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where the prime in the summation signifies that the term
with n = 0 is omitted, and the coefficientsbn are given by:

bn =
1

π

∫

∞

−∞

ϕ∗

n(x)f(x) dx. (8)

Weideman examined several examples, for which he ob-
tained the coefficientsbn. For the casef(x) = 1/(1 + x2),
the results are exact, since the function can be expanded
in a compact closed form in terms of the eigenfunctions in
Eq. (6). For functions that decay in a significantly different
manner from this example, the eigenfunction decomposition
approach of Weideman yielded more slowly convergent
series.

II. T HEORY

In this work an alternative to the Weideman scheme is
investigated. Our focus is on more rapidly decaying func-
tions, which arise in several important areas [1], [2], [3].
Two similar methods are presented here for the numerical
evaluation of the Hilbert transform in terms of a numerical
series.

In our first approach, the Hilbert transform is expressed
in terms of an expansion of Hermite functions, which are
eigenfunctions of the Fourier transform operator. We start
by expanding our function of interest (assumed ofL2(R))
as

f(x) =
∞
∑

n=0

αnun(x), (9)

whereun(x) are the orthonormal Hermite functions, defined
in terms of the standard Hermite polynomialsHn(x) by:

un(x) =
1

√

2nn!
√

π
Hn(x)e−x2/2, (10)

and the coefficientsαn are determined from:

αn =

∫

∞

−∞

f(x)un(x) dx. (11)

An analysis of convergence issues associated with the
expansion in Eq. (9) can be found in the work of Boyd [30].

We define the operator

T = sgnx F , (12)

where sgnx denotes the signum function:

sgnx =







1 , x > 0
0 , x = 0

−1 , x < 0
, (13)

andF stands for the Fourier transform operator, a unitary
operator onL2(R). It is obvious thatT is a linear isometric
(bounded) operator onL2(R), therefore it is continuous. The
action of T on the functionf(x) can be also expanded in
the same basis set:

T f(x) =

∞
∑

m=0

µmum(x), (14)

where the coefficientsµm can be expressed as:

µm =

∫

∞

−∞

sgnx (Ff)(x)um(x) dx. (15)

Applying T to Eq. (9), it follows that:

sgnx (Ff)(x) =
∞
∑

n=0

αn sgnx (Fun)(x), (16)

where we have used the fact thatT is linear and continuous.
The basis functionsun(x) satisfy [31]:

(Fun)(x) = (−i)nun(x) (17)

and
(F−1un)(x) = inun(x). (18)

Employing Eq. (17) allows Eq. (16) to be simplified to

sgnx (Ff)(x) = sgnx
∞
∑

n=0

αn(−i)nun(x). (19)

On substituting Eq. (19) into Eq. (15) leads to the follow-
ing result for the coefficientsµm:

µm =

∞
∑

n=0

αn(−i)n

∫

∞

−∞

sgnx um(x)un(x) dx, (20)

which can be rearranged, using the propertyun(−x) =
(−1)nun(x), to yield

µm =

∞
∑

n=0

αn(−i)n
[

1 − (−1)n+m
]

∫

∞

0

um(x)un(x) dx.

(21)
The non-vanishing terms in the previous sum are those for

which n + m is odd. Letm = 2k andn = 2j + 1, for any
k, j non-negative integers, then

µ2k = −i

∞
∑

j=0

α2j+1(−1)jIk,j (22)

and if m = 2k + 1 andn = 2j, then

µ2k+1 =

∞
∑

j=0

α2j(−i)jIj,k, (23)

whereIk,j is defined by

Ik,j = 2

∫

∞

0

u2k(x)u2j+1(x) dx. (24)

Using the key connection between the Fourier and Hilbert
transforms [3], [21], [22],

(FHf)(x) = −i sgnx (Ff)(x), (25)

it follows from Eq. (14) and employing Eq. (18), that

(Hf)(x) = −iF−1

(

∞
∑

m=0

µmum(y)

)

(x)

= −i

∞
∑

m=0

µmimum(x). (26)

Rewriting Eq. (26) to account for the even and odd
contributions ofm and substituting Eqs. (22) and (23), leads
to the final result:

(Hf)(x) = −
∞
∑

k=0

(−1)ku2k(x)

∞
∑

j=0

(−1)jα2j+1Ik,j

+
∞
∑

k=0

(−1)ku2k+1(x)
∞
∑

j=0

(−1)jα2jIj,k. (27)
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TheIk,j integral can be evaluated from Eq. (24) by using a
relationship between Hermite polynomials and the associated
Laguerre polynomialsL(α)

j (x), and employing the change of
variablet = x2, to obtain

Ik,j =
(−1)k+j2k+j+1/2k!j!
√

(2k)!(2j + 1)! π

∫

∞

0

L
(−1/2)
k (t)L

(1/2)
j (t)e−tdt.

(28)
The integral in Eq. (28) can be solved in terms of the

gamma functionΓ(z), by writing both polynomials as a
series inL

(0)
m and then employing the orthogonality relation

for Laguerre polynomials, to yield
∫

∞

0

L
(−1/2)
k (t)L

(1/2)
j (t) e−t dt

=
2Γ
(

k + 1
2

)

Γ
(

j + 3
2

)

π(2j − 2k + 1)Γ(k + 1)Γ(j + 1)
, (29)

so that

Ik,j =
(−1)k+j2k+j+3/2Γ

(

k + 1
2

)

Γ
(

j + 3
2

)

π3/2(2j − 2k + 1)
√

(2k)!(2j + 1)!
. (30)

The preceeding formula can be expressed in terms of
double factorials as

Ik,j =
(−1)k+j

√
2(2k − 1)!!(2j + 1)!!

(2j − 2k + 1)
√

π(2k)!(2j + 1)!
. (31)

Equation (27) reflects the fact that the Hilbert transform
of an even function is an odd function andvice versa.
When the functionf(x) is even or odd, the right-hand side
reduces to only one double sum because everyα2k+1 or α2k,
respectively, is zero. Furthermore, for functions for which all
αm are zero form greater than a finite value, the second
summation of both terms is a finite sum.

The second numerical approach investigated involves ap-
plying the Hilbert transform directly to Eq. (9), to obtain

(Hf)(x) =

∞
∑

n=0

αnH [un(x)] . (32)

where we have made use of the fact thatH is a continuous
operator onL2(R). Therefore, the right-hand side converges
in the norm sense. If we expand explicitely the Hermite
polynomials, we can write:

(Hf)(x) =
1

π1/4

∞
∑

n=0

2n
√

(2n)! α2nχ(1)
n

+

√
2

π1/4

∞
∑

n=0

2n
√

(2n + 1)! α2n+1χ
(2)
n (33)

where

χ(1)
n =

n
∑

m=0

(−1)mH
[

x2(n−m)e−x2/2
]

4mm!(2n − 2m)!
(34)

and

χ(2)
n =

n
∑

m=0

(−1)mH
[

x2(n−m)+1e−x2/2
]

4mm!(2n − 2m + 1)!
. (35)

The Hilbert transforms H [x2(n−m)e−x2/2] and
H [x2(n−m)+1e−x2/2], using the recursive relation ([4],
App. 1)

H [tnf(t)] (x) = xH
[

tn−1f(t)
]

(x) − 1

π

∫

∞

−∞

tn−1f(t)dt,

(36)

TABLE I
EXACT HILBERT TRANSFORMS FOR THE FUNCTIONS INVESTIGATED

NUMERICALLY.

Case f(x) (Hf)(x)

1 e−ax2

(a > 0)
G(a, x)

2 xe−ax2

(a > 0)
xG(a, x) − 1√

aπ

3 x2e−ax2

(a > 0)
x2G(a, x) − 1

x
√

aπ

4 cos(bx)e−ax2

(a > 0, b ≥ 0)
e−ax2

Im
{

eibxerf
[√

a

(

b

2a
+ ix

)]}

5
e−a|x|

(a > 0)

sgnx

π

[

ea|x|E1(a|x|) + e−a|x|Ei(a|x|)
]

6
1

1 + x2

x

1 + x2

can be reduced in closed form to the functionH [e−x2/2],
and the latter can be evaluated [3], [4] as:

H [e−x2/2] = −ie−x2/2erf(ix/
√

2), (37)

where erf(z) denotes the error function, defined by ([32],
p. 297)

erf(z) =
2√
π

∫ z

0

e−t2 dt. (38)

One of the strengths of this approach occurs when the
function of interest can be expanded in a finite series using
Eq. (9), then the Hilbert transform can be computed accu-
rately. Only one infinite series is encountered for a general
function of interest, not taking into account the particular
evaluation strategy forH

[

xke−x2/2
]

, whereas in the Fourier
transform approach, two infinite series will be encountered
in many cases.

III. C OMPUTATIONAL APPROACH

For the numerical evaluation of the Hilbert transform we
have selected the test functions displayed in Table I. These
functions show a range of different asymptotic decays and
their Hilbert transforms can be evaluated analytically, and
therefore provide useful test cases for numerical comparison.

For notational compactnessG(a, x) is used to denote
the Hilbert transformH [e−ax2/2], for a > 0, and can be
expressed as

G(a, x) = −ie−ax2

erf(i
√

ax). (39)

The special functions appearing in Table I are the expo-
nential integral functions, defined by (see for example [32],
p. 228)

Ei(z) = −P

∫

∞

−z

e−t

t
dt, (40)

and

E1(z) =

∫

∞

1

e−zt

t
dt, (41)

and Im denotes the imaginary part.
For the test functions employed, the corresponding expan-

sion coefficientsαn obtained from Eq. (11) are tabulated
in Table II. In these cases, they can be evaluated in closed
form, which is an obvious advantage for the application
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of our method, and we will use them in the computations
reported. However, this approach does not require that the
expansion coefficients be known explicitely, as they can
be determined numerically by Gauss-Hermite quadrature or
other numerical integration methods in a straightforward
manner. In this table,Γ(a, z) denotes the incomplete gamma
function and1F1(a; b; z) designates the Kummer confluent
hypergeometric function.

In Table II, we have included some particular cases of
special relevance for the functions of Table I, as well as the
expansion coefficients for more general expressions in other
cases. It is obvious that if the function has a well defined
parity, only non-zero coefficients with either an even or odd
index arise.

We note parenthetically that it is easy to find examples
where theαm expansion coefficients can be determined
analytically, but the Hilbert transform cannot be evaluated
in a simple closed form, for example:

f(x) = log |x|e−ax2

, for a > 0. (42)

The present approach is demonstrated by first considering
the simple example

f(x) = x2me−x2/2. (43)

Since this function is even, it can be expanded using
Eq. (9) as

f(x) =

∞
∑

n=0

α2nu2n(x). (44)

Thus, Eq. (27) simplifies to:

(Hf)(x) =

∞
∑

k=0

(−1)ku2k+1(x)

m
∑

j=0

(−1)jα2jIj,k. (45)

Let us consider the particular test casem = 1, then the
expansion coefficients from Table II areα0 = π1/4/2, α2 =
π1/4/21/2, α2n = 0 for n > 1, and hence

(Hf)(x) =

√√
π

2

∞
∑

k=0

(−1)k
(√

2I0,k − I1,k

)

u2k+1(x).

(46)
As a second example, consider

f(x) = x2m+1e−x2/2. (47)

In an analogous fashion, the expansion coefficients can be
found from Table II, and Eq. (27) simplifies to

(Hf)(x) = −
∞
∑

k=0

(−1)ku2k(x)
m
∑

j=0

(−1)jα2j+1Ik,j . (48)

In the two preceeding examples, the functions can be
written as a finite series using Eq. (9), and the resulting
Hilbert transform contains a single infinite series.

A slightly more generalized example is the following
function wherea > 0, anda 6= 1/2,

f(x) = x2me−ax2

, (49)

and the expansion coefficients are displayed in Table II. The
resulting Hilbert transform now involves two infinite series.
However, it should be noted that a rescaling of the expansion

variable leads to the inner series expansion being a finite sum,
which yields a more efficient numerical approach.

That is, the Hilbert transform can be evaluated using

(Hf)(x) =

(

1

2a

)m

H
[

t2me−t2/2
] (√

2ax
)

, (50)

and the expansion in Eq. (45).
For the preceding examples in Eqs. (43), (47) and (49),

the Hilbert transform can be found in terms of a single infi-
nite series, which is most effectively evaluated by applying
convergence acceleration techniques, when direct summation
is too inaccurate. We now focus on the general case where
a finite series for Eq. (9) cannot be obtained, resulting in a
double infinite series. To apply a convergence accelerator to
the general case we make use of an interchange of order of
summation [33] for Eq. (27), transforming the double infinite
series to a combination of finite and infinite series of the
form:

(Hf)(x) = −
∞
∑

k=0

(−1)k
k
∑

j=0

α2j+1Ik−j,j u2(k−j)(x)

+

∞
∑

k=0

(−1)k
k
∑

j=0

α2jIj,k−j u2(k−j)+1(x). (51)

Five different convergence accelerators were tested: these
were the Levin-u [34] and Levin-t′ [35], [36] transforma-
tions, the Weniger-1 and Weniger-2 [36], [37], [38], [39]
transformations, and the Wynnǫ-algorithm [40], [41]. These
convergence accelerators are given by the following formu-
las. Each provides an estimate depending on the indexk
that converges to the value of the sum with increasingk.
The Levin-u formula is:

uk =

k
∑

j=0

(−1)k (j + 1)k−2

j!(k − j)!

Sj+1

Aj+1

k
∑

j=0

(−1)k (j + 1)k−2

j!(k − j)!

1

Aj+1

, (52)

the Levin-u formula is:

t′k =

k
∑

j=0

(−1)k (j + 1)k−1

j!(k − j)!

Sj+1

Aj+2

k
∑

j=0

(−1)k (j + 1)k−1

j!(k − j)!

1

Aj+2

, (53)

the Weniger-1 formula is:

w
(1)
k =

k
∑

j=0

(−1)k (−j − 1)k−1

j!(k − j)!

Sj+1

Aj+1

k
∑

j=0

(−1)k (−j − 1)k−1

j!(k − j)!

1

Aj+1

, (54)

and the Weniger-2 formula is:

w
(2)
k =

k
∑

j=0

(−1)k (j + 1)k−1

j!(k − j)!

Sj+1

Aj+1

k
∑

j=0

(−1)k (j + 1)k−1

j!(k − j)!

1

Aj+1

. (55)
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TABLE II
EXPANSION COEFFICIENTS OF DIFFERENT TEST FUNCTIONS.

f(x) Expansion coefficientsα2n or α2n+1

x2me−x2/2 α2n =







(2m)!π1/4

22m−n(m − n)!
√

(2n)!
, n ≤ m

0 , n > m

x2m+1e−x2/2 α2n+1 =







(2m + 1)!π1/4

22m−n+ 1
2 (m − n)!

√

(2n + 1)!
, n ≤ m

0 , n > m

x2me−ax2

(a > 0)
α2n =

√

(2n)!
√

π

22m+n
(

a + 1
2

)n+m+ 1
2

n
∑

j=0

(−1)j(2m + 2n − 2j)!
(

a + 1
2

)j

j!(m + n − j)!(2n − 2j)!

x2m+1e−ax2

(a > 0)
α2n+1 =

√

(2n + 1)!
√

π

22m+n+ 3
2

(

a + 1
2

)n+m+ 3
2

n
∑

j=0

(−1)j(2m + 2n + 2 − 2j)!
(

a + 1
2

)j

j!(m + n + 1 − j)!(2n + 1 − 2j)!

cos(bx)e−ax2

(a > 0, b ≥ 0)
α2n =

√

(2n)!
√

π

2n
(

a + 1
2

)n+ 1
2

n
∑

j=0

(−1)j
(

a + 1
2

)j
1F1

(

1
2
− j + n; 1

2
; −b2

2(1+2a)

)

j!(n − j)!

e−a|x|

(a > 0)

α2n =
22n+ 1

2

√

(2n)!

π1/4

n
∑

j=0

(−1)j

8jj!(2n − 2j)!

[

Γ

(

n − j +
1

2

)

1F1

(

n − j +
1

2
;
1

2
;
a2

2

)

−
√

2aΓ(n − j + 1)1F1

(

n − j + 1;
3

2
;
a2

2

)]

1

1 + x2
α2n =

√

(2n)! e
√

π

2n

n
∑

j=0

(−1)jΓ
(

j − n + 1
2
, 1
2

)

j!(n − j)!

In these expressionsAi is the i-th term of the original
series, Sj denotes the partial sumSj =

∑j
i=0 Ai and

(n)k denotes a Pochhammer symbol. Finally, the Wynnǫ-
algorithm yields a succesive approximationǫ

(n)
k to the value

of the sum, given by:

ǫ
(n)
k = ǫ

(n+1)
k−2 +

1

ǫ
(n+1)
k−1 − ǫ

(n)
k−1

, (56)

with ǫ
(n)
−1 = 0 andǫ

(n)
0 = Sn. This algorithm was computed

using the following property [40]:

ǫ
(n)
2k =

H
(k+1)
n (S)

H
(k)
n (∆2S)

, (57)

where H
(k)
n (S) is a Hankel determinant depending on the

sequence of partial sumsS = {Sn} given by:

H(k)
n (S) =

∣

∣

∣

∣

∣

∣

∣

Sn · · · Sn+k−1

... · · ·
...

Sn+k−1 · · · Sn+2k−2

∣

∣

∣

∣

∣

∣

∣

, n ≥ 0, k ≥ 1,

(58)
and∆ is the forward difference operator.

All the numerical calculations were carried out in Math-
ematica using a computational precision consistent with the
particular approach employed, which was 30 digits or less
for the entries in Table IV, while the operating precision was
extended to 50 digits arithmetic for the entries reported in
Table III.

IV. RESULTS AND DISCUSSION

Using the exact formulas from Table I we were able to test
the numerical evaluations for the two different approaches. A
comparison of the numerical results obtained using Eq. (33),
with the exact evaluations of the Hilbert transform for the
test functions is shown in Table III.

The test functions 1-4 gave the best results, with the
number of significant digits decreasing as the value of
x increased. These four test functions exhibit a Gaussian
behaviour similar to the Hermite functionsun(x) and hence
the expansion coefficients obtained from Eq. (11) are ex-
pected to converge rapidly. The test functions 5 and 6 gave
results with a reduced accuracy. Neither of these two test
functions have an asymptotic decay that closely matches a
Gaussian function, and as a results the expansion coefficients
converge much more slowly. By examining either Eq. (33)
or Eq. (51), we see that the only difference between the
numerical Hilbert transform of two different functions is the
expansion coefficients associated with that function. This
indicates a direct correlation between the behaviour of the
expansion coefficients and the rate of convergence of the
Hilbert transform.

For functions with a Gaussian character, the expansion of
the present work will improve on the accuracy obtained using
the expansion of Weideman [27]. This is expected because of
the choice of basis functions for the expansion. As we move
to functions exhibiting slower rates of asymptotic decay, the
expansion of Weideman will lead to higher accuracy. For
example, for cases likef(x) = x2e−ax2

, a > 0, the present
approach gives a very compact closed form expansion, which
can be evaluated with high efficiency. Here the present
approach is significantly better in both computational speed
and accuracy compared with the Weideman approach, whilst
for a case likef(x) = (1+x2)−1 we encounter the opposite
situation, where the latter technique leads to a closed form
solution with only two terms, and the approaches described
in this work would require much more computational ef-
fort. For cases including some oscillatory behaviour, for
example, working withf(x) = (cos x + sinx)e−x2

or
f(x) = cos x

2+sin xe−x2

, we have found that the computational
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TABLE III
A COMPARISON OF NUMERICAL VALUES FOR THEHILBERT TRANSFORM VERSUS THE EXACT EVALUATION FOR THE TEST FUNCTIONS GIVEN IN

TABLE I. THE VALUES a = 12/11 AND b = 11/13 HAVE BEEN EMPLOYED.

Case x0 (Hf)(x0) (Hf)(x0)

(from the exact result) (numerical result)

1/4 0.29200513386717174646471636 0.29200513386717174646471651

1 1 0.595985918897246073259532 0.595985918897246073259513

7 0.07479733191561997571 0.07479733191561997524

1/4 -0.4459776510413501694804727 -0.4459776510413501694804716

2 1 0.0770069843891029671629 0.0770069843891029671619

7 0.0046023889011967239 0.0046023889011967220

1/4 -0.111494412760337542370118 -0.111494412760337542370149

3 1 0.07700698438910296716288 0.07700698438910296716301

7 0.032216722308377067 0.032216722308377080

1/4 0.3370871404860270460661 0.3370871404860270460659

4 1 0.559773149180786017822 0.559773149180786017818

7 0.062416237155745896 0.062416237155745869

1/4 0.3157 0.3184

5 1 0.4027 0.4036

7 0.0798005012 0.0798005051

1/4 0.2352941 0.2352957

6 1 0.500000 0.500008

7 0.14000 0.14013

Fig. 1. Plot of the individual termsak(x) for the Hilbert transform
calculated from Eq. (59) for case 4 withx = 1.

speed of both approaches is similar, but the accuracy is better
with the approach of the present work.

With respect to the performance of the convergence accel-
erators employed in this work, the best results were obtained
using the Wynnǫ-algorithm. On writing the general result,
given by Eq. (51), in the form:

(Hf)(x) =

∞
∑

k=0

ak(x), (59)

and analyzing the individual termsak(x) for case 4 withx =
1, the sequence behaved in a non-monotonic manner with
irregular signs, as shown in Fig. 1. This would be somewhat
similar to the terms generated from the functionsin(kx)/k.
For this situation, Wynn’s algorithm is expected to be the
most suitable choice for convergence acceleration [42].

A comment on what constitutes the best convergence
accelerator is appropriate. One would normally think about
the accuracy of the result, and judge on that basis, however,
computational efficiency should also be an issue. In practical

applications, two extremes arise. One situation occurs when
the individual terms of the series are extremely expensive
to evaluate. The other extreme, is where the terms can
be evaluated relatively quickly. In the former situation, the
best convergence accelerator might arguably be the one that
produces a satisfactory accuracy with a modest number of
evaluations, even though a competing method can achieve
a somewhat improved accuracy, but requiring additional
evaluations. In the case where the evaluations can be done
relatively quickly, the best convergence accelerator will prob-
ably be taken as the one producing the more accurate result,
even if it employs slightly additional computational labor.
The examples of the present work are of the latter type. In
this work, we are concerned with the optimal results (in the
accuracy sense) that can be obtained using each convergence
accelerator, usingapproximately the same amount of input
data. This means that differentn andk values will be used to
obtain the optimal accuracy, when the different convergence
accelerators are employed.

The Levin and Weniger convergence accelerators offered
satisfactory accuracy, but less compared to the Wynnǫ-
algorithm. Based on the form of the series, the performance
of this method is not surprising [42]. Table IV shows a com-
parison of the convergence accelerators employed using the
test functionf(x) = cos(bx)e−ax2

and employing Eq. (51).
The other test functions exhibited similar trends in the
relative precision for the different convergence accelerators
investigated, so the results in Table IV are representative of
the observed trends.

From Table III we can see that the numerical method
works well for functions exhibiting a Gaussian asymptotic
behavior. By examining the expansion coefficients in Fig. 2
for the test functions employed, we indeed see a trend in their
convergence rates as mentioned previously. To keep Fig. 2
uncluttered, only the expansion coefficients for cases 4-6 are
shown. The convergence rate for case 4 is slower than for
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TABLE IV
A COMPARISON OF THE DIFFERENT CONVERGENCE ACCELERATOR

METHODS USING THE FUNCTIONf(x) = cos(bx)e−ax2

. THE VALUES
a = 12/11 AND b = 11/13 HAVE BEEN EMPLOYED.

Method (Hf)(1) (Hf)(1/4)

Levin-u 0.5597737 0.3370875

Levin-t′ 0.5597723 0.3370865

Weniger-1 0.5597735 0.3370865

Weniger-2 0.5597720 0.33708709

Wynn ǫ 0.55977314921 0.3370871404860286

exact 0.55977314918 0.3370871404860270

Fig. 2. Comparison of the expansion coefficients for cases 4, 5,and 6.

cases 1-3, but we see from Fig. 2 that the convergence rate
of case 4 is much faster than either case 5 or case 6. The
results in Fig. 2 provide support for the rate of convergence
of the expansion coefficients in either Eq. (33) or Eq. (51)
being an important factor, as expected, in determining ac-
curate numerical values for the Hilbert transform. The other
important factor in determining accurate results is the optimal
selection of convergence accelerator to apply. The numerical
method proposed by Weideman also showed that a slower
convergence rate for the expansion coefficients resulted in a
slower converging Hilbert transform.

The Fourier transform method offered a few more digits
of precision over the direct series method forx = 1/4.
However, for the Fourier method given in Eq. (51), the
results were obtained by settingn = 30 andk = 15 for all
calculations using Eq. (57), while for the direct method given
in Eq. (33), the results were obtained by utilizingn = 12
and k = 12 for all calculations employing Eq. (57). For
x = 1 both methods performed equally well and forx = 7
the direct method offered a few more digits of precision over
the Fourier method.

Attempts at improving the precision for cases 5 and 6
involved direct summation of the first several terms of the
Hilbert transform series that were erratic, and then con-
vergence accelerators were applied to the remaining series,
and the results combined. This was tried on both cases
5 and 6 with each of the convergence accelerators, but
did not produce any increase in precision over convergence
acceleration of the original series. Attempts were also made
to split the series in terms of the even and odd contributions
of k in Eq. (51). From Fig. 1 we see that splitting the

series that way would produce two sequences that are slowly
convergent and non-alternating with an irregular sign pattern.
The convergence accelerators were applied to both of the
resulting series and the results were combined. This also
offered no increase in precision for cases 5 and 6. It is
usually much more difficult to apply convergence accelerator
techniques to series producing irregular input. For a recent
study involving this issue, see [43].

Another method that could offer better precision would
be to modify the basis functions in Eq. (9). By changing
the orthogonal functionun(x) to a different orthogonal
function, whose behavior is similar to the function of interest,
then the resulting expansion coefficients would be expected
to converge faster, leading to the Hilbert transform series
converging faster. This alternative scheme would only be
comparable with the direct series approach, because the
Fourier series method relies on the functionun(x) being an
eigenfunction of the Fourier transform operator.

One approach to the numerical evaluation of the Hilbert
transform of a functionf that cannot be evaluated in closed
form, is to adopt the following strategy. Select a new function
g that mimics the essential features off , and for which
Hg can be evaluated in closed form. Numerical experiments
carried out withg, using the exactHg as a guide, will pro-
vide useful information on the best expansion approach, and
on the optimal convergence accelerator scheme to employ,
when working with the functionf . The optimal choice of the
expansion basis needs to meet two requirements. The Hilbert
transform of the basis functions must be easily determined,
or if the Fourier approach is employed, then the Fourier
transform of the basis functions and the inverse Fourier
transform of sgnx(Ff)(x) should be determinable in closed
form.

The second requirement is that either the resulting series
should be rapidly convergent, or alternatively, accurately
summable by convergence acceleration techniques.

V. CONCLUSION

Two methods have been presented for the numerical
evaluation of the Hilbert transform, both of which are com-
putationally efficient, and both yield accurate results for a
number of test functions. The approaches are particularly
effective for functions exhibiting a Gaussian-like asymptotic
behavior. Five different convergence accelerator techniques
were employed to sum the series that arise, with the Wynn
ǫ-algorithm providing the best accuracy for this particular
application.
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