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Abstract: For estimating the population variance of 
variable under study, a generalized difference-cum-ratio type 
estimator has been proposed. Expressions for bias and mean 
square error have been obtained using random sampling at 
both the phases. The expressions have also been derived using 
simple random sampling at both the phases as a special case. 
Then the comparison has been made with the regression-type 
estimator and sample variance. Results have also been 
illustrated numerically and graphically. 
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I. INTRODUCTION 

In survey sampling, the estimation of population variance 
of the variable under study has attracted the attention of 
large number of statisticians to know the variation in the 
population. It is well known that the use of the auxiliary 
information can increase the efficiency of the estimators of 
parameters of interest. Using the prior knowledge of 

population variance 2
xS  of auxiliary variable x, which is 

highly correlated with study variable y, several estimators 
have been defined by different authors such as Tripathi et 
al.(1978), Jhajj et al.(1980), Ahmed et al.(2003), Jhajj et 
al.(2005), Kadilar & Cingi (2006), Pradhan B.K.(2010) in 
the literature for estimating the unknown population 
variance of study variable y. In the situation when 

information on population variance 2
xS  is not known in 

advance then generally two phase (double) sampling design 
has been widely used.   In the two-phase sampling design, a 
large preliminary random sample (called first phase sample) 
is drawn from the population and information on auxiliary 
variable is taken, which is used to estimate the value of 

unknown population variance 2
xS of auxiliary variable x. 

Then second phase sample is drawn either from the first 
phase sample or independently from the population and 
observations on study and auxiliary variable are taken. 
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In the present paper, we propose a generalized difference-
cum-ratio type estimator for the population variance under 
double sampling design. The expressions for bias and mean 
square error of the proposed estimator have been obtained. 
The comparison of the proposed estimator has been made 
with the regression type and sample variance. Effort has also 
been made to illustrate the results numerically and 
graphically.  
 

II. NOTATIONS AND RESULTS 

A preliminary large random sample (first phase sample) 

of size n is drawn from a finite population of size N and 
both auxiliary variable x and study variable y are measured 

on it. The second phase random sample of size  n n is 

drawn from the first phase sample.  

Let iY  and iX denote the respective values of variables y 

and x on the  1, 2,...,thi i N  unit of the population and 

the corresponding small letters denote the values in the 
sample. 

Denoting 
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 where 2
xs , 2

xs and 2
ys , 2

ys are the sample 

variances of variables x and y based on the sampling units of 

first and second phase samples of sizes n and n  
respectively. 

Defining  
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III. THE PROPOSED ESTIMATOR AND ITS MEAN 

SQUARE ERROR 

When information on population variance 2
xS  of the 

auxiliary variable x is not known, we propose an estimator 

of population variance 2
yS  of study variable y under the 

double sampling design defined in section 2 as                          
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   where   and   are unknown constants. 

To find the bias and mean square error of estimator 2
hgds  , 

we expand 2
hgds in terms of 's and 's and retaining 

terms up to second degree of 
approximation
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Taking expectation of 

(3.2), we obtain  
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Up to first order of approximation, mean square error (MSE) 

of the estimator 2
hgds  is obtained by using (3.2) as 

    22 2 2
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Differentiating (3.4) w.r.t.

 

 and equating to zero, we get 
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 After solving, we get the optimum value of  as 
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Substituting the optimum value of  from (3.5) in (3.4), 

we get minimum mean square error  2
min hgdMSE s as 
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Theorem 1: Up to first order of approximation, the bias of 

estimator 2
hgds

 
is
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and its Mean Square Error is 
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Theorem 2: Up to first order of approximation, the MSE of 

2
hgds

 
is minimized for
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and its minimum value is given by
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Special Case : When simple random sampling is used for 
selection of samples in given double  sampling design, then 
we have 
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Substituting results of (3.7) in (3.3) and (3.4) respectively,  

we have 
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For minimizing  2
hgdMSE s , we differentiate (3.9) 

w.r.t.  and equating to zero and after some simplification, 
we get
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Substituting the optimum value of  from (3.10) in (3.9), 
we obtain
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Cor 1.1: Up to first order of approximation  1n
, under 

double sampling design in which simple random sampling is 

used at both phases, the bias of estimator 2
hgds  is 
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Cor2.1: Up to first order of approximation  1n
, under 

double sampling design in which simple random sampling is 

used at both phases, the MSE of 2
hgds  is minimized for
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and its minimum value is given by 

 

 
 
 

IV. COMPARISON 
 

For comparing the proposed estimator with the existing 
ones, we first write the expressions of their mean square 

errors. The MSE of the linear regression-type estimator 2
lrds  

under double sampling design is given by 
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and the MSE of the sample variance 2
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V. NUMERICAL ILLUSTRATION 

 
To  have a rough idea about the gain in efficiency of the 

proposed estimator ( 2
hgds ) over the Regression-type 

estimator  2
lrds in double sampling, we take the empirical 

population considered in the literature (Source: Sukhatme & 
Sukhatme, 1970, p-256). The values of the population 
parameters obtained are given in Table 1. The mean square 
error and relative efficiency of the proposed estimator 

( 2
hgds ) w.r.t. Regression-type estimator  2

lrds  and sample 

variance ( 2
ys ) are given for some different values of   in 

the table 2. 

Table 1: Value of Population Parameters 

 

 

 

 

Table 2: Mean Square Errors and Relative Efficiency 

Proposed Estimator Vs. Regression-type Estimator and 
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   Figure 1: Comparison of Proposed estimator with    

Regression-type estimator and sample variance 

VI. CONCLUSION 

From table 2, we can see that there is a significant gain in 

efficiency of the proposed estimator ( 2
hgds ) over the 

Regression-type estimator  2
lrds in double sampling for 

0 2  and sample variance ( 2
ys ) for 
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. From the graph we also 

see that for 0 2  , the efficiency of proposed estimator 
is more than the regression-type estimator and it is also 

more efficient than sample variance for wider range of   at 
moderate value of correlation coefficient.  Hence we 
conclude that proposed estimator will always be better than 
the existing regression-type estimator under double 

sampling for 0 2   and sample variance for 
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N  n  n  
yS  v  

89 45 23 716.65 0.81 

   2
yM S E s

 
 2

lrdMSE s

 
 2

hgdMSE s

 

Efficiency 

2
ys  2

lrds  2
hgds  

0 83539.758 56329.12 56329.12 100 148.30 148.30 

0.5 83539.758 56329.12 46105.85 100 148.30 181.19 

1 83539.758 56329.12 42698.09 100 148.30 195.65 

1.5 83539.758 56329.12 46105.85 100 148.30 181.19 

2 83539.758 56329.12 56329.12 100 148.30 148.30 
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APPENDIX 

Appendix: I. For getting the expected value of 1 1  , we 

proceed as   
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On the similar line, other results involved in (2.1) can be 
derived. 
 
II. Under Simple Random Sampling, covariance between 
sample variance of x  and y  can be  obtained as  
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The following results can be obtained by usual procedure  
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      (6) 
Using the results of (3), (4), (5) and (6) in (2), and 

retaining terms up to first order of approximation, we have 
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On the similar line, other results involved in (3.8) can be 
derived. 
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