
Steganography using Stochastic Diffusion for the
Covert Communication of Digital Images

Jonathan M Blackledge and AbdulRahman I Al-Rawi ∗

Abstract— This paper is devoted to the study of a

method called Stochastic Diffusion for encrypting dig-

ital images and embedding the information in another

host image or image set. We introduce the theoret-

ical background to the method and the mathemati-

cal models upon which it is based. This includes a

comprehensive study of the diffusion equation and its

properties leading to a convolution model for encrypt-

ing data with a stochastic field that is fundamental

to the approach considered. Two methods of imple-

menting the approach are then considered. The first

method introduces a lossy algorithm for hiding an im-

age in a single host image which is based on the bina-

rization of the encrypted data. The second method

considers a similar approach which uses three host

images to produce a near perfect reconstruction from

the decrypt. In both cases, details of the algorithms

developed are provide and examples given. The meth-

ods considered have applications for covert cryptog-

raphy and the authentication and self-authentication

of documents and full colour images.

Keywords: Image Encryption Information Hid-
ing, Steganography, Stochastic Diffusion, Sym-
metric Encryption

1 Introduction

The relatively large amount of data contained in digi-
tal images makes them a good medium for undertaking
information hiding. Consequently digital images can be
used to hide messages in other images. A colour image
typically has 8-bits to represent the red, green and blue
components for 24-bit colour images. Each colour com-
ponent is composed of 256 colour values and the modifi-
cation of some of these values in order to hide other data
is undetectable by the human eye. This modification is
often undertaken by changing the least significant bit in
the binary representation of a colour or grey level value
(for grey level digital images). For example, the grey level
value 128 has the binary representation 10000000. If we
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change the least significant bit to give 10000001 (which
corresponds to a grey level value of 129) then the differ-
ence in the output image will not be discernable. Hence,
the least significant bit can be used to encode information
other than pixel intensity. If this is done for each colour
component then a single letter can be represented using
just three pixels. The larger the host image compared
with the hidden message, the more difficult it is to detect
the message. The host image represents the key to recov-
ering the hidden image. Rather than the key being used
to generate a random number stream using a pre-defined
algorithm from which the stream can be re-generated (for
the same key), the digital image is, in effect, being used
as the cipher.

The large majority of methods developed for image in-
formation hiding do not include encryption of the hidden
image. In this paper we consider an approach in which a
hidden image is encrypted by diffusion with a noise field
before being embedded in the host image. The paper
provides a short survey on encrypted information hiding
and then presents a detailed account of the mathematical
foundations upon which the method, known as Stochastic
Diffusion, is based. Two applications are then consider:
(i) Lossy information hiding which is based on the bina-
risation of the encrypted field; (ii) Lossless information
hiding which is based on using three separate host im-
ages in which the encrypted information is embedded.
The methods considered have a range of applications in
document and full colour image authentication.

2 Survey on Encrypted Information Hid-
ing

Compared with information hiding in general, there are
relatively few publications that have addressed the is-
sue of hiding encrypted information. We now provide an
overview of some recent publications in this area.

In [1], a novel method is proposed for hiding the transmis-
sion of biometric images based on chaos and image con-
tent. To increase the security of the watermark, it is first
encrypted using a chaotic map where the keys used for
encryption are generated from a palm print image. The
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pixel value distribution, illumination and various image
distortions are different for each palm print image (even if
they are for the same person) because the palm print im-
age is different each time the image is captured. In [1], the
normalized mean value of three randomly selected pixels
from the palm print image is used as an initial condition
for the chaotic map. The logistic map is used to gener-
ate a one-dimensional sequence of real numbers which are
then mapped into a binary stream to encrypt the water-
mark using an XOR operation. The encrypted watermark
is then embedded into the same palm print image used
to derive the secret keys. The stego-palm print image is
hidden into the cover image using a novel content-based
hidden transmission scheme. First the cover image is seg-
mented into different regions using a classical watershed
algorithm. Due to the over-segmentation resulting from
this algorithm, a Region-based Fuzzy C-means Clustering
algorithm is used to merge similar regions. The entropy of
each region is then calculated and the stego-palm print
image embedded into the cover image according to the
entropy value with more information being embedded in
highly textured regions compared to uniform regions. A
threshold value T is used to partition the two regions. If
the entropy is greater than T , the binary streams of the
secret data are inserted into the 4 least significant bits
of the region, and if the entropy is smaller than T , the
binary streams of the secret data are inserted into the 2
least significant bits of the region. Colour host images
are decomposed into RGB channels before embedding.

In [2] a method of hiding the transmission of biometric
images based on chaos and image content is proposed that
is similar to [1]. The secret data is a grayscale image of
size 128 × 128 and before encrypting it, it is converted
into a binary stream with the logistic map being used for
encryption. The encryption keys used to produce the lo-
gistic chaotic map sequence are generated randomly using
any pseudo random number generating algorithm. The
authors use 256×256 color images as hosts which are con-
verted into grayscale images and segmented into different
regions using the watershed algorithm to eliminate over-
segmentation. A Fuzzy C-means Clustering algorithm is
used to implement similar region merging. Each region
is classified into a certain cluster based on the regions
of the watershed lines. A k-nearest neighbour method
is used to partition the regions needing re-segmentation.
For the resultant image without watershed lines, the en-
tropy is calculated and the secret image is embedded ac-
cording to the entropy values. The colour host image is
decomposed into RGB channels for embedding. Highly
textured regions are used to embed more information and
a threshold value T is used to separate the two regions.
If the entropy is smaller than T the binary streams of the
secret data are inserted into the 2 Least Significant Bits

(LSB) of the three channels of the region. If the entropy
is greater than T , the binary streams of the secret data
are inserted into the 4 LSB of the three channels of the
region.

Another steganographic method is proposed in [3] for
PNG images based on the information sharing tech-
nique. The secret image M is divided into shares us-
ing a (k, n)-threshold secret sharing algorithm. Secret
shares are then embedded into the alpha-channel of the
PNG cover image. The image M is first divided into
t-bit segments which transforms each segment into a dec-
imal number resulting in a decimal number sequence. A
(4, 4)-threshold secret sharing algorithm is used to gen-
erate ‘partial shares’ which are then embedded into the
host image by replacing the alpha-channel values of the
host image with the values of the shares. The process is
repeated for all decimal values of the secret data resulting
in a stego-image. In general, if every four t-bit segments
are transformed and embedded similarly, then the data
hiding capacity is proportional to the chosen value of t in
proportion to the dimension of the cover image. However,
the larger the value of t the lower the visual quality of
the stego-image which causes a wider range of the alpha-
channel values to be altered leading to a more obvious
non-uniform transparency effect appearing on the stego-
image. The value of t is therefore selected to ensure a
uniform distribution of the stego-image alpha-channel.

The principle of image scrambling and information hiding
is introduced in [4] in which a double random scrambling
scheme based on image blocks is proposed. A secret im-
age of size M × N is divided into small sub-blocks of
size 4 × 4 or 8 × 8, for example, and a scrambling algo-
rithm used to randomize the sub-blocks using a given key.
However, because the information in each inner sub-block
remains the same, another scrambling algorithm is used
with a second key to destroy the autocorrelation in each
inner sub-block thereby increasing the difficulty of decod-
ing the secret image. To make the hidden secret image
more invisible, its histogram is compressed into a small
range. Image hiding is then performed by simply adding
the secret image to the cover image. The hidden image
is recovered by expanding the histogram after extraction
and decryption carried out for both the sub-blocks and
inner sub-blocks to obtain a final reconstruction.

3 Diffusion and Confusion

The purpose of this section is to introduce the reader to
some of the basic mathematical models associated with
the processes of diffusion and confusion as based on the
physical origins of these processes. This provides a the-
oretical framework for two of the principal underlying
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concepts of cryptology in general as used in a variety of
contexts.

In terms of plaintexts, diffusion is concerned with the
issue that, at least on a statistical basis, similar plain-
texts should result in completely different ciphertexts
even when encrypted with the same key [5], [6]. This
requires that any element of the input block influences
every element of the output block in an irregular fashion.

In terms of a key, diffusion ensures that similar keys result
in completely different ciphertexts even when used for en-
crypting the same block of plaintext. This requires that
any element of the input should influence every element
of the output in an irregular way. This property must also
be valid for the decryption process because otherwise an
attacker may be able to recover parts of the input from
an observed output by a partially correct guess of the key
used for encryption. The diffusion process is a function
of sensitivity to initial conditions that a cryptographic
system should have and further, the inherent topological
transitivity that the system should also exhibit causing
the plaintext to be mixed through the action of the en-
cryption process.

Confusion ensures that the (statistical) properties of
plaintext blocks are not reflected in the corresponding
ciphertext blocks. Instead every ciphertext must have a
random appearance to any observer and be quantifiable
through appropriate statistical tests. Diffusion and con-
fusion are processes that are of fundamental importance
in the design and analysis of cryptological systems, not
only for the encryption of plaintexts but for data trans-
formation in general.

3.1 The Diffusion Equation

In a variety of physical problem, the process of diffusion
can be modelled in terms of certain solutions to the dif-
fusion equation whose basic homogeneous form is given
by [7] - [10]

∇2u(r, t) = σ
∂

∂t
u(r, t), σ =

1
D

where D is the ‘Diffusivity’ and u is the diffused field
which describes physical properties such as temperature,
light, particle concentration and so on; r denotes the spa-
tial vector and t denotes time.

The diffusion equation describes fields u that are the re-
sult of an ensemble of incoherent random walk processes,
i.e. walks whose direction changes arbitrarily from one
step to the next and where the most likely position after
a time t is proportional to

√
t. Note that if u(r, t) is a

solution to the diffusion equation the function u(r,−t) is
not, i.e. it is a solution of the quite different equation,

∇2u(r,−t) = −σ ∂
∂t
u(r,−t).

Thus, the diffusion equation differentiates between past
and future. This is because the diffusing field u repre-
sents the behaviour of some average property of an en-
semble of many elements which cannot in general go back
to their original state. This fundamental property of dif-
fusive processes has a synergy with the use of one-way
functions in cryptology, i.e. functions that, given an in-
put, produce an output that is not reversible - an output
from which it is not possible to compute the input.

Consider the process of diffusion in which a source of ma-
terial diffuses into a surrounding homogeneous medium,
the material being described by some initial condition
u(r, 0) say. Physically, it is to be expected that the mate-
rial will increasingly ‘spread out’ as time evolves and that
the concentration of the material decreases further away
from the source. The general solution to the diffusion
equation yields a result in which the spatial concentra-
tion of material is given by the convolution of the initial
condition with a Gaussian function, the time evolution
of this process being governed by the same process. This
solution is determined by considering how the process of
diffusion responds to a single point source which yields
the Green’s function (in this case, a Gaussian function).

3.2 Green’s Function for the Diffusion
Equation

We evaluate the Green’s function [10]-[12] for for the dif-
fusion equation satisfying the causality condition

G(r | r0, t | t0) = 0 if t < t0

where r | r0 ≡| r − r0 | and t | t0 ≡ t − t0. This can be
accomplished for one-, two- and three-dimensions simul-
taneously [8]. Thus with R =| r− r0 | and τ = t− t0 we
require the solution of the equation(

∇2 − σ ∂

∂τ

)
G(R, τ) = −δn(R)δ(τ), τ > 0

where n is 1, 2 or 3 depending on the number of dimen-
sions and δ is the corresponding Dirac delta function [13]
- [15]. One way of solving this equation is first to take the
Laplace transform with respect to τ , then solve for G (in
Laplace space) and then inverse Laplace transform the
result [16]. This requires an initial condition to be speci-
fied (the value of G at τ = 0). Another way to solve this
equation is to take its Fourier transform with respect to
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R, solve for G (in Fourier space) and then inverse Fourier
transform the result [17], [18]. Here, we adopt the latter
approach. Let

G(R, τ) =
1

(2π)n

∞∫
−∞

G̃(k, τ) exp(ik ·R)dnk

and

δn(R) =
1

(2π)n

∞∫
−∞

exp(ik ·R)dnk.

Then the equation for G reduces to

σ
∂G̃

∂τ
+ k2G̃ = δ(τ)

where k =| k | which has the solution

G̃ =
1
σ

exp(−k2τ/σ)H(τ)

where H(τ) is the step function

H(τ) =

{
1, τ > 0;
0, τ < 0.

Hence, the Green’s functions are given by

G(R, τ) =
1

σ(2π)n
H(τ)

∞∫
−∞

exp(ik ·R) exp(−k2τ/σ)dnk

=
1

σ(2π)n
H(τ)

 ∞∫
−∞

exp(ikxRx) exp(−k2
xτ/σ)dkx

 ...

By rearranging the exponent in the integral, it becomes
possible to evaluate each integral exactly. Thus, with

ikxRx − k2
x

τ

σ
= −

(
kx

√
τ

σ
− iRx

2

√
σ

τ

)2

−
(
σR2

x

4τ

)

= − τ
σ
ξ2 −

(
σR2

x

4τ

)
where

ξ = kx − i
σRx
2τ

.

The integral over kx becomes

∞∫
−∞

exp
[
−
( τ
σ
ξ2
)
−
(
σRx
4τ

)]
dξ

= e−(σR2
x/4τ)

∞∫
−∞

e−(τξ2/σ)dξ

=
√
πσ

τ
exp

[
−
(
σR2

x

4τ

)]
with similar results for the integrals over ky and kz giving
the result

G(R, τ) =
1
σ

( σ

4πτ

)n
2

exp
[
−
(
σR2

4τ

)]
H(τ).

The function G satisfies an important property which is
valid for all n:∫ ∞

−∞
g(R, τ)dnr =

1
σ

; τ > 0.

This is the expression for the conservation of the Green’s
function associated with the diffusion equation. For ex-
ample, if we consider the diffusion of heat, then if at a
time t0 and at a point in space r0 a source of heat is in-
troduced, then the heat diffuses out through the medium
characterized by σ in such a way that the total flux of
heat energy is unchanged.

3.3 Green’s Function Solution

Working in three dimensions, we consider the Green’s
solution to the inhomogeneous diffusion equation [8], [9](

∇2 − σ ∂
∂t

)
u(r, t) = −S(r, t)

where S is a source of compact support (r ∈ V ) and define
the Green’s function as the solution to the equation(
∇2 − σ ∂

∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0).

The function S describes a source that is being diffused -
a source of heat, for example - and is taken to be localised
in space.

It is convenient to first take the Laplace transform of
these equations with respect to τ = t− t0 to obtain

∇2ū− σ[−u0 + pū] = −S̄

and
∇2Ḡ+ σ[−G0 + pḠ] = −δ3

where

ū(r, p) =

∞∫
0

u(r | r0, τ) exp(−pτ)dτ,

Ḡ(r, p) =

∞∫
0

G(r | r0, τ) exp(−pτ)dτ,
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S̄(r, p) =

∞∫
0

S(r, τ) exp(−pτ)dτ,

u0 ≡ u(r, τ = 0) and G0 ≡ G(r | r0, τ = 0) = 0.

Pre-multiplying the equation for ū by Ḡ and the equation
for Ḡ by ū, subtracting the two results and integrating
over V we obtain∫

V

(Ḡ∇2ū− ū∇2Ḡ)d3r + σ

∫
V

u0Ḡd
3r

= −
∫
V

S̄Ḡd3r + ū(r0, τ).

Using Green’s theorem [19], i.e. given that (Gauss’ theo-
rem for any vector F)∫

V

∇ · Fd3r =
∮
S

F · n̂d2r

where S is the surface that encloses a volume V and n̂
is a unit vector perpendicular to the surface element d2r,
then, for two scalars f and g∫

V

(f∇2g − g∇2f)d3r =
∫
V

∇ · (f∇g − g∇f)d3r

=
∮
S

(f∇g − g∇f) · n̂d2r

and rearranging the result gives

ū(r0, p) =
∫
V

S̄(r, p)Ḡ(r | r0, p)d3r

+σ
∫
V

u0(r)Ḡ(r | r, p)d3r +
∮
S

(ḡ∇ū− ū∇ḡ) · n̂d2r

Finally, taking the inverse Laplace transform and using
the convolution theorem for Laplace transforms, we can
write

u(r0, τ) =

τ∫
0

∫
V

S(r, τ ′)G(r | r0, τ − τ ′)d3rdτ ′

+σ
∫
V

u0(r)G(r | r0, τ)d3r

+

τ∫
0

∮
S

G(r | r0, τ
′)∇u(r, τ − τ ′) · n̂d2rdτ ′

−
τ∫

0

∮
S

u(r, τ ′)∇G(r | r0, τ − τ ′) · n̂d2rdτ ′.

The first two terms are convolutions of the Green’s func-
tion with the source function S and the initial condition
u(r, τ = 0), respectively.

If we consider the equation for the Green’s function(
∇2 − σ ∂

∂t

)
G(r | r0, t | t0) = −δ3(r− r0)δ(t− t0)

together with the equivalent time reversed equation(
∇2 + σ

∂

∂t

)
G(r | r1,−t | −t1) = −δ3(r− r1)δ(t− t1),

then pre-multiplying the first equation by G(r | r1,−t |
−t1) and the second equation by G(r | r0, t | t0), sub-
tracting the results and integrate over the volume of in-
terest and over time t from −∞ to t0 then, using Green’s
theorem, we obtain

t0∫
−∞

dt

∮
S

G(r | r1,−t | t1)∇G(r | r0, t | t0) · n̂d2r

−
t0∫

−∞

dt

∮
S

G(r | r0, t | t0)∇G(r | r1,−t | −t1) · n̂d2r

−σ
∫
V

d3r

t0∫
−∞

dtG(r | r1,−t | −t1)
∂

∂t
G(r | r0, t | t0)

−σ
∫
V

d3r

t0∫
−∞

dtG(r | r0, t | t0)
∂

∂t
G(r | r1,−t | −t1)

= G(r1 | r0, t1 | t0)−G(r0 | r1,−t0 | −t1).

If we then consider the Green’s functions and their gradi-
ents to vanish at the surface S (homogeneous boundary
conditions) then the surface integral vanishes1. The sec-
ond integral is∫

V

d3r [G(r | r1,−t | −t1)G(r | r0, t | t0)]t0t=−∞

and since
G(r | r0, t | t0) = 0, t < t0

then
G(r | r0, t | t0 |t=−∞= 0.

Also
G(r | r1,−t | −t1) |t=t0= 0

for t in the range of integration given. Hence,

G(r1 | r0, t1 | t0) = G(r | r1,−t0 | −t1).

This is the reciprocity theorem of the Green’s function
for the diffusion equation.

1This is also the case if we consider an infinite domain
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3.4 Infinite Domain Solution

In the infinite domain, the surface integral is zero and we
can work with the solution

u(r0, τ) =

τ∫
0

∫
V

S(r, τ ′)G(r | r0, τ − τ ′)d3rdτ ′

+σ
∫
V

u0(r)G(r | r0, τ)d3r

which requires that the spatial extent of the source func-
tion is infinite but can include functions that are localised
provided that S → 0 as | r |→ ∞ - a Gaussian function
for example. The solution is composed of two terms. The
first term is the convolution (in space and time) of the
source function with the Green’s function and the second
term is the convolution (in space only) of the initial con-
dition u(r, 0) with the same Green’s function. We can
write this result in the form

u(r, t) = G(| r |, t)⊗r ⊗tS(r, t) + σG(| r |, t)⊗r u(r, 0)

where ⊗r denotes the convolution over r and ⊗t denotes
the convolution over t.

In the case where we consider the domain of interest over
which the process of diffusion occurs to be infinite in ex-
tent, the solution to the homogeneous diffusion equation
(when the source function is zero) specified as

∇2u(r, t)− σ ∂
∂t
u(r, t) = 0, u(r, 0) = u0(r)

is given by the convolution of the Green’s function with
u0, i.e.

u(r0, t) = σG(| r |, t)⊗r u0(r), t > 0

Thus, in one-dimension, the solution reduces to

u(x, t) =
√

σ

4πσt
exp

[
−σx

2

4t

]
⊗x u0(x), t > 0

where ⊗x denotes the convolution integral over indepen-
dent variable x and we see that the field u at a time t > 0
is given by the convolution of the field at time t = 0 with
the one-dimensional Gaussian function√

σ

4πt
exp

(
−σx

2

4t

)
.

In two-dimensions, the result is

u(x, y, t) =
σ

4πt
exp

(
− σ

4t
[x2 + y2]

)
⊗x⊗yu0(x, y), t > 0.

Ignoring scaling by the function σ/(4πt), we can write
this result in the form

u(x0, y0) = exp
[
− σ

4t
(x2 + y2)

]
⊗x ⊗yu0(x, y)

Thus, the field at time t > 0 is given by the field at
time t = 0 convolved with the two-dimensional Gaussian
function

exp
[
− σ

4t
(x2 + y2)

]
.

This result can, for example, be used to model the dif-
fusion of light through a diffuser that generates multiple
light scattering processes.

4 Diffusion from a Stochastic Source

For the case when(
∇2 − σ ∂

∂t

)
u(r, t) = −S(r, t), u(r, 0) = 0

the solution is

u(r, t) = G(| r |, t)⊗r ⊗tS(r, t), t > 0

If a source is introduced in terms of an impulse in time,
then the ‘system’ will react accordingly and the diffuse for
t > 0. This is equivalent to introducing a source function
of the form

S(r, t) = s(r)δ(t).

The solution is then given by

u(r, t) = G(| r |, t)⊗r s(r), t > 0.

Observe that this solution is of the same form as the
homogeneous case with initial condition u(r, 0) = u0(r)
and the solution for initial condition u(r, 0) = u0(r) is
given by

u(r, t) = G(| r |, t)⊗r [s(r) + u0(r)]

= G(| r |, t)⊗r u0(r) + n(r, t), t > 0

where
n(r, t) = G(| r |, t)⊗r s(r)

If s is a stochastic function (i.e. a random dependent
variable characterised, at least, by a Probability Den-
sity Function (PDF) denoted by Pr[s(r)]), then n will
also be a stochastic function. Note, that for the time-
independent source function S(r), we can construct an
inverse solution (see Appendix A) given by

u0(r) = u(r, T )

+
∞∑
n=1

(−1)n

n!
[(DT )n∇2nu(r, T ) +D−1∇2n−2S(r)]
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and that if S is a stochastic function, then the field u0

can not be recovered because the functional form of S
is not known. Thus, any error or noise associated with
diffusion leads to the process being irreversible - a ‘one-
way’ process. This, however, depends on the magnitude
of the diffusivity D which for large values cancels out the
effect of any noise, thus making the process reversible, an
effect that is observable experimentally in the mixing of
two highly viscous fluids, for example.

The inclusion of a stochastic source function provides us
with a self-consistent introduction to another important
concept in cryptology, namely ‘confusion’. Taking, for
example, the two-dimensional case, the field u is given by
(with scaling)

u(x, y) =
1

4πt
exp

[
− σ

4t
(x2 + y2)

]
⊗x⊗yu0(x, y)+n(x, y).

We thus arrive at a basic model for the process of diffusion
and confusion, namely

Output=Diffusion+Confusion.

Here, diffusion involves the ‘mixing’ of the initial con-
dition with a Gaussian function and confusion is com-
pounded in the addition of a stochastic or noise function
to the diffused output. The relative magnitudes of the
two terms determines the dominating effect. As the noise
function n increases in amplitude relative to the diffusion
term, the output will become increasingly determined by
the effect of confusion alone. In the equation above, this
will occur as t increases since the magnitude of the dif-
fusion term depends of the scaling factor 1/t. This is
illustrated in Figure 1 which shows the combined effect
of diffusion and confusion for an image of the phrase

Confusion
+

Diffusion

as it is (from left to right and from top to bottom) pro-
gressively diffused (increasing values of t) and increas-
ingly confused for a stochastic function n that is uni-
formly distributed.

The specific characteristics of the diffusion process con-
sidered here is determined by an approach that is based
on modelling the system in terms of the diffusion equa-
tion; the result being determined by the convolution of
the initial condition with a Gaussian function. The pro-
cess of confusion is determined by the statistical char-
acteristics of the stochastic function n, i.e. its PDF.
Stochastic functions with different PDFs will exhibit dif-
ferent characteristics with regard to the level of confusion

inherent in the process as applied. In the example given
in Figure 1, uniformly distributed noise has been used.
Gaussian or ‘normal’ distributed noise is more common
by virtue of fact that noise in general is the result of
an additive accumulation of many statistically indepen-
dent random processes combining to form a normal or
Gaussian distributed field. Knowledge of the noise field,

Figure 1: Progressive diffusion and confusion of an image
(top-left) - from left to right and from top to bottom -
for uniform distributed noise. The convolution is under-
taken using the convolution theorem and a Fast Fourier
Transform (FFT)

in particular, its PDF, provides a statistical approach
to reconstructing the data based on the application of
Bayesian estimation. For a Gaussian distributed noise
field with a standard deviation of σn and a data field u0

modelled in terms of Gaussian deviates with a standard
deviation of σu, the estimate û0(x, y) of u0(x, y) is given
by [20], [21]

û0(x, y) = q(x, y)⊗x ⊗yu(x, y)

where

q(x, y) =
1

(2π)2

∫ ∫
dkxdky exp(ikxx) exp(ikyy)

× G∗(kx, ky)
| G(kx, ky) |2 +σ2

n/σ
2
u

and

G(kx, ky) =
1

4πt

∫ ∫
dxdy exp(ikxx) exp(ikyy)

× exp
[
− σ

4t
(x2 + y2)

]
Figure 2 illustrates the effect of applying this result to two
digital outputs (using a Fast Fourier Transform) with low
and high levels of noise, i.e. two cases for times t1 (low)
and t2 > t1 (high). This example shows the effect of
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increasing the level of confusion that occurs with increas-
ing time t on the output of the reconstruction clearly
illustrating that it is not possible to recover u0 to any
degree of information assurance. This example demon-
strates that the addition of a stochastic source function
to an otherwise homogeneous diffusive process introduces
a level of error (as time increases) from which is it not pos-
sible to recover the initial condition u0. From a physical
point of view, this is indicative of the fact that diffusive
process are irreversible. From an information theoretic
view point, Figure 2 illustrated that knowledge of the
statistics of the stochastic field is not generally sufficient
to recover the information we require. This is consistent
with the basic principle of data processes - Rubbish in
Gives Rubbish Out, i.e. given that

p(x, y) =
1

4πt
exp

[
− σ

4t
(x2 + y2)

]
,

the (Signal-to-Noise) ratio

‖p(x, y)⊗x ⊗yu0(x, y)‖
‖n(x, y)‖

tends to zero as t increases. In other words, the longer the
time taken for the process of diffusion to occur, the more
the output is dominated by confusion. This is consistent
with all cases when the level of confusion is high and when
the stochastic field used to generate this level of confusion
is unknown (other than knowledge of its PDF). However,
if the stochastic function has been synthesized2 and is
thus known a priori, then we can compute

u(x, y)−n(x, y) =
1

4πt
exp

[
− σ

4t
(x2 + y2)

]
⊗x⊗yu0(x, y)

from which u0 can be computed via application of the
convolution theorem to design an appropriate inverse fil-
ter.

5 Stochastic Fields

By considering the diffusion equation for a stochastic
source, we have derived a basic model for the ‘solution
field’ or ‘output’ u(r, t) in terms of the initial condition
or input u0(r) given by

u(r) = p(r)⊗r u0(r) + n(r)

where p is the PSF given by (with a = σ/4t)

exp
(
−a | r |2

)
and n - which is taken to denote noise - is a stochastic
field, i.e. a random variable [22]. We shall now consider
the principal properties of stochastic fields, considering
the case where the fields are random variables that are
functions of time t.

2The synthesis of stochastic functions is a principal issue in cryp-
tology.

Figure 2: Bayesian reconstructions (right) for data (left)
with low (above) and high (below) levels of confusion.

5.1 Independent Random Variables

Two random variables f1(t) and f2(t) are independent if
their cross-correlation function is zero, i.e.

∞∫
−∞

f1(t+ τ)f2(τ)dτ = f1(t)� f2(t) = 0.

From the correlation theorem [20], it then follows that

F ∗1 (ω)F2(ω) = 0

where

F1(ω) =

∞∫
−∞

f1 exp(−iωt)dt

and

F2(ω) =

∞∫
−∞

f1 exp(−iωt)dt.

If each function has a PDF Pr[f1(t)] and Pr[f2(t)] respec-
tively, the PDF of the function f(t) that is the sum of
f1(t) and f2(t) is given by the convolution of Pr[f1(t)]
and Pr[f2(t)], i.e. the PDF of the function

f(t) = f1(t) + f2(t)

is given by [21], [22]

Pr[f(t)] = Pr[f1(t)]⊗t Pr[f2(t)].

Further, for a number of statistically independent
stochastic functions f1(t), f2(t), ..., each with a PDF
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Pr[f1(t)],Pr[f2(t)], ..., the PDF of the sum of these func-
tions, i.e.

f(t) = f1(t) + f2(t) + f3(t) + ...

is given by

Pr[f(t)] = Pr[f1(t)]⊗t Pr[f2(t)]⊗t Pr[f1(t)]⊗t ...

These results can derived using the Characteristic Func-
tion [23]. For a strictly continuous random variable f(t)
with distribution function Pf (x) = Pr[f(t)] we define the
expectation as

E(f) =

∞∫
−∞

xPf (x)dx,

which computes the mean value of the random variable,
the Moment Generating Function as

E[exp(−kf)] =

∞∫
−∞

exp(−kx)Pf (x)dx

which may not always exist and the Characteristic Func-
tion as

E[exp(−ikf)] =

∞∫
−∞

exp(−ikx)Pf (x)dx

which will always exist. Observe that the moment gen-
erating function is the Laplace transform of Pf and the
Characteristic Function is the Fourier transform of Pf .
Thus, if f(t) is a stochastic function which is the sum
of N independent random variables f1(t), f2(t), ..., fN (t)
with distributions Pf1(x), Pf2(x), ..., PfN

(x), then

f(t) = f1(t) + f2(t) + ...+ fN (t)

and

E[exp(−ikf)] = E[exp[−ik(f1 + f2 + ...+ fN )]

= E[exp(−ikf1)]E[exp(−ikf2)]...E[exp(−ikfN )]

= F̂ [Pf1 ]F̂ [Pf2 ]...F̂ [PfN
]

where

F̂ ≡
∞∫
−∞

dx exp(ikx).

In other words, the Characteristic Function of the ran-
dom variable f(t) is the product of the Characteristic
Functions for all random variables whose sum if f(t). Us-
ing the convolution theorem for Fourier transforms, we
then obtain

Pf (x) =
N∏
n=1

⊗ Pfn
(x) = Pf1(x)⊗xPf2(x)⊗x ...⊗xPfN

(x)

Further, we note that if f1, f2,... are all identically dis-
tributed then

E[exp[−ik(f1 + f2 + ...)] =
(
F̂ [Pf1 ]

)N
and

Pf (x) = Pf1(x)⊗x Pf1(x)⊗x ...

5.2 The Central Limit Theorem

The Central Limit Theorem stems from the result that
the convolution of two functions generally yields a func-
tion which is smoother than either of the functions that
are being convolved. Moreover, if the convolution opera-
tion is repeated, then the result starts to look more and
more like a Gaussian function - a normal distribution -
at least in an approximate sense [24]. For example, sup-
pose we have a number of independent random variables
each of which is characterised by a distribution that is
uniform. As we add more and more of these functions
together, the resulting distribution is the given by con-
volving more and more of these (uniform) distributions.
As the number of convolutions increases, the result tends
to a Gaussian distribution. A proof of this theorem for a
uniform distribution is given in Appendix B.

Figure 3 illustrates the effect of successively adding uni-
formly distributed but independent random times series
(each consisting of 5000 elements) and plotting the re-
sulting histograms (using 32 bins), i.e. given the discrete
times series f1[i], f2[i], f3[i], f4[i] for i=1 to 5000, Figure 3
shows the time series

s1[i] = f1[i]

s2[i] = f1[i] + f2[i]

s3[i] = f1[i] + f2[i] + f3[i]

s4[i] = f1[i] + f2[i] + f3[i] + f4[i]

and the corresponding 32-bin histograms of the signals
sj , j = 1, 2, 3, 4. Clearly asj increases, the histogram
starts to ‘look’ increasing normally distributed. Here, the
uniformly distributed discrete time series fi, i = 1, 2, 3, 4
have been computed using the uniform random number
generator

fi+1 = fi77modP

where P = 232−1 is a Mersenne prime number, by using
different four digit seeds f0 in order to provide time series
that are ‘independent’.

The Central Limit Theorem has been considered specifi-
cally for the case of uniformly distributed independent
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Figure 3: Illustration of the Central Limit Theorem. The
top-left image shows plots of a 5000 element uniformly
distributed time series and its histogram using 32 bins.
The top-right image shows that result of adding two uni-
formly distributed and independent time series together
and the 32 bin histogram. The bottom-left image is the
result after adding three uniformly distributed times se-
ries and the bottom-right image is the result of adding
four uniformly distributed times series.

random variables. However, in general, it is approxi-
mately applicable for all independent random variables,
irrespective of their distribution. In particular, we note
that for a standard normal (Gaussian) distribution given
by

Gauss(x;σ, µ) =
1√
2πσ

exp

[
−1

2

(
x− µ
σ

)2
]

where
∞∫
−∞

Gauss(x)dx = 1

and
∞∫
−∞

Gauss(x) exp(−ikx)dx = exp(ikµ) exp
(
−σ

2k2

2

)
.

Thus, since

Gauss(x)⇐⇒ exp(ikµ) exp
(
−σ

2k2

2

)
then

N∏
n=1

⊗ Gauss(x)⇐⇒ exp(ikNµ) exp
(
−Nσ

2k2

2

)
so that

N∏
n=1

⊗ Gauss(x) =
(

1
2πNσ2

)
exp

[
− 1

2N

(
x− µ
σ

)2
]

In other words, the addition of Gaussian distributed fields
produces a Gaussian distributed field.

6 Other ‘Diffusion’ Models

The diffusion model given by

u(r) = p(r)⊗r u0(r)

where (ignoring scaling)

p(r) = exp(−a | r |2)⊗r

is specific to the case when we consider the homogeneous
diffusion equation. This is an example of ‘Gaussian dif-
fusion’ since the characteristic Point Spread Function is
a Gaussian function. We can consider a number of dif-
ferent diffusing functions by exploring the effect of using
different Point Spread Functions p. Although arbitrary
changes to the PSF are inconsistent with classical diffu-
sion, in cryptology we can, in principal, choose any PSF
that is of value in ‘diffusing’ the data.
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6.1 Diffusion by Noise

Given the classical diffusion/confusion model of the type

u(r) = p(r)⊗r u0(r) + n(r)

discussed above, we note that both the operator and the
functional form of p are derived from solving a physical
problem (using a Green’s function solution) compounded
in a particular PDE - diffusion or wave equation. We can
use this basic model and consider a variety of PSFs as
required; this include PSFs that are stochastic functions.
Noise diffusion involves interchanging the roles of p and
n, i.e. replacing p(r) - a deterministic PSF - with n(r) - a
stochastic function. Thus, noise diffusion is compounded
in the result

u(r) = n(r)⊗r u0(r) + p(r)

or
u(r) = n1(r)⊗r u0(r) + n2(r)

where both n1 and n2 are stochastic function which may
be of the same (i.e. have the same PDFs) or of different
types (with different PDFs). This form of diffusion is not
‘physical’ in the sense that it does not conform to a phys-
ical model as defined by the diffusion or wave equation,
for example. Here n(r) can be any stochastic function
(synthesized or otherwise).

The simplest form of noise diffusion is

u(r) = n(r)⊗r u0(r).

The expected statistical distribution associated with the
output of noise diffusion process is Gaussian. This can
be shown if we consider u0 to be a strictly deterministic
function described by a sum of delta functions, equivalent
to a binary stream in 1D or a binary image in 2D (discrete
cases), for example. Thus if

u0(r) =
∑
i

δn(r− ri)

then

u(r) = n(r)⊗r u0(r) =
N∑
i=1

n(r− ri).

Now, each function n(r−ri) is just n(r) shifted by ri and
will thus be identically distributed. Hence

Pr[u(r)] = Pr

[
N∑
i=1

n(r− ri)

]
=

N∏
i=1

⊗ Pr[n(r)]

and from the Central Limit Theorem, we can expect
Pr[u(r)] to be normally distributed for large N . In par-
ticular, if

Pr[n(r)] =

{
1
X , | x |≤ X/2;
0, otherwise

then

N∏
i=1

⊗ Pr[n(r)] '
√

6
πXN

exp(−6x2/XN).

This is illustrated in Figure 4 which shows the statistical
distributions associated with a binary image, a uniformly
distributed noise field and the output obtained by con-
volving the two fields together.

Figure 4: Binary image (top-left), uniformly distributed
2D noise field (top-centre), convolution (top-right) and
associated histograms (bottom-left, -centre and -right re-
spectively).

6.2 Diffusion of Noise

Given the equation

u(r) = p(r)⊗r u0(r) + n(r),

if the diffusion by noise is based on interchanging p and
n, then the diffusion of noise is based on interchanging u0

and n. In effect, this means that we consider the initial
field u0 to be a stochastic function. Note that the solution
to the inhomogeneous diffusion equation for a stochastic
source S(r, t) = s(r)δ(t) is

n(r, t) = G(| r |, t)⊗r s(r)

and thus, n can be considered to be diffused noise. If we
consider the model

u(r) = p(r)⊗r n(r),

then for the classical diffusion equation, the PSF is a
Gaussian function. In general, given the convolution op-
eration, p can be regarded as only one of a number of
PSFs that can be considered in the ‘production’ of dif-
ferent stochastic fields u. This includes PSFs that define
self-affine stochastic fields or random scaling fractals [27]-
[29].
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7 Information and Entropy

Consider a simple linear array such as a deck of eight
cards which contains the ace of diamonds for example
and where we are allowed to ask a series of sequential
questions as to where in the array the card is. The first
question we could ask is in which half of the array does
the card occur which reduces the number of cards to four.
The second question is in which half of the remaining four
cards is the ace of diamonds to be found leaving just two
cards and the final question is which card is it. Each
successive question is the same but applied to successive
subdivisions of the deck and in this way we obtain the re-
sult in three steps regardless of where the card happens
to be in the deck. Each question is a binary choice and in
this example, 3 is the minimum number of binary choices
which represents the amount of information required to
locate the card in a particular arrangement. This is the
same as taking the binary logarithm of the number of
possibilities, since log2 8 = 3. Another way of appreciat-
ing this result, is to consider a binary representation of
the array of cards, i.e. 000,001,010,011,100,101,110,111,
which requires three digits or bits to describe any one
card. If the deck contained 16 cards, the information
would be 4 bits and if it contained 32 cards, the informa-
tion would be 5 bits and so on. Thus, in general, for any
number of possibilities N , the information I for specify-
ing a member in such a linear array, is given by

I = − log2N = log2

1
N

where the negative sign is introduced to denote that in-
formation has to be acquired in order to make the cor-
rect choice, i.e. I is negative for all values of N larger
than 1. We can now generalize further by considering
the case where the number of choices N are subdivided
into subsets of uniform size ni. In this case, the infor-
mation needed to specify the membership of a subset is
given not by N but by N/ni and hence, the information
is given by

Ii = log2 Pi

where Pi = ni/N which is the proportion of the subsets.
Finally, if we consider the most general case, where the
subsets are non-uniform in size, then the information will
no longer be the same for all subsets. In this case, we can
consider the mean information given by

I =
∑
i

Pi log2 Pi

which is the Shannon Entropy measure established in his
classic works on information theory in the 1940s [30]. In-
formation, as defined here, is a dimensionless quantity.
However, its partner entity in physics has a dimension

called ‘Entropy’ which was first introduced by Ludwig
Boltzmann as a measure of the dispersal of energy, in
a sense, a measure of disorder, just as information is a
measure of order. In fact, Boltzmann’s Entropy concept
has the same mathematical roots as Shannon’s informa-
tion concept in terms of computing the probabilities of
sorting objects into bins (a set of N into subsets of size
ni) and in statistical mechanics the Entropy is defined as
[31]

E = −k
∑
i

Pi lnPi

where k is Boltzmann’s constant. Shannon’s and Boltz-
mann’s equations are similar. E and I have opposite
signs, but otherwise differ only by their scaling factors
and they convert to one another by E = −(k ln 2)I.
Thus, an Entropy unit is equal to −k ln 2 of a bit. In
Boltzmann’s equation, the probabilities Pi refer to inter-
nal energy levels. In Shannon’s equations Pi are not a
priori assigned such specific roles and the expression can
be applied to any physical system to provide a measure of
order. Thus, information becomes a concept equivalent to
Entropy and any system can be described in terms of one
or the other. An increase in Entropy implies a decrease
of information and vise versa. This gives rise to the fun-
damental conservation law: ˇThe sum of (macroscopic)
information change and Entropy change in a given sys-
tem is zero.

7.1 Entropy Based Information Extrac-
tion

In signal analysis, the Entropy is a measure of the lack of
information about the exact information content of the
signal, i.e. the value of fi for a given i. Thus, noisy
signals (and data in general) have a larger Entropy. The
general definition for the Entropy of a system E is

E = −
∑
i

Pi lnPi

where Pi is the probability that the system is in a state i.
The negative sign is introduced because the probability
is a value between 0 and 1 and therefore, lnPi is a value
between 0 and −∞, but the Entropy is by definition, a
positive value.

An Entropy based approach to the extraction of infor-
mation from noise [32] can be designed using an Entropy
measure defined in terms of the data fi (rather than the
PDF). A reconstruction for fi is found such that

E = −
∑
i

fi ln fi

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_02

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 



is a maximum which requires that fi > 0∀i. Note that
the function x lnx has a single local minimum value be-
tween 0 and 1 whereas the function −x lnx has a single
local maximum value. It is a matter of convention as to
whether a criteria of the type

E =
∑
i

fi ln fi

or
E = −

∑
i

fi ln fi

is used leading to (strictly speaking) a minimum or max-
imum Entropy criterion respectively. In some ways, the
term ‘Maximum Entropy’ is misleading because it implies
that we are attempting to recover information from noise
with minimum information content and the term ‘Mini-
mum Entropy’ conveys a method that is more consistent
with the philosophy of what is being attempted, i.e. to
recover useful and unambiguous information from a sig-
nal whose information content has been distorted or con-
fused by (additive) noise. For example, suppose we input
a binary stream into some time invariant linear system,
where f = (...010011011011101...). Then, the input has
an Entropy of zero since 0 ln 0 = 0 and 1 ln 1 = 0. We
can expect the output of such a system to generate a new
array of values (via the diffusion process) which are then
perturbed (via the confusion process) through additive
noise. The output ui = pi⊗i fi +ni (where it is assumed
that ui > 0∀i and ⊗i denotes the convolution sum over
i) will therefore have an Entropy that is greater than 0.
Clearly, as the magnitude of the noise increases, so, the
value of the Entropy increases leading to greater loss of
information on the exact state of the input (in terms of
fi, for some value of i being 0 or 1). With the inverse
process, we ideally want to recover the input without any
bit-errors. In such a hypothetical case, the Entropy of the
restoration would be zero. In practice, we approach the
problem in terms of an inverse solution that is based a
Minimum Entropy criterion, i.e. find fi such that

E =
∑
i

fi ln fi

is a minimum or for a continuous field f(r) in n-
dimensions, find f such that

E =
∫
f(r) ln f(r)dnr

is a minimum.

Given that

u(r) = p(r)⊗r f(r) + n(r)

where ⊗r is the convolution integral over r we can write

λ

∫ (
[u(r)− p(r)⊗r f(r)]2 − [n(r)]2

)
dnr = 0

an equation that holds for any constant λ (the Lagrange
multiplier). We can therefore write the equation for E as

E = −
∫
f(r) ln f(r)dnr

+λ
∫ (

[u(r)− p(r)⊗r f(r)]2 − [n(r)]2
)
dnr

because the second term on the right hand side is zero
anyway (for all values of λ). Given this equation, our
problem is to find f such that the Entropy E is a maxi-
mum when

∂E

∂f
= 0,

i.e. when

−1− ln f(r) + 2λ[u(r)�r p(r)− p(r)⊗r f(r)�r p(r)] = 0

where �r denotes the correlation integral over r. Rear-
ranging,

f(r) = exp[−1 + 2λ[u(r)�r p(r)− p(r)⊗r f(r)�r p(r)].

This equation is transcendental in f and as such, requires
that f is evaluated iteratively, i.e.

[f(r)]n+1 = exp[−1 + 2λ[u(r)�r p(r)

−p(r)⊗r [f(r)]n �r p(r))]

The rate of convergence of this solution is determined by
the value of the Lagrange multiplier given an initial es-
timate of f(r), i.e. [f(r)]0. However, the solution can
be linearized by retaining the first two terms (the lin-
ear terms) in the series representation of the exponential
function leaving us with the following result

f(r) = 2λ[u(r)�r p(r)− p(r)⊗r f(r)�r p(r)].

Using the convolution and correlation theorems, in
Fourier space, this equation becomes

F (k) = 2λU(k)[P (k)]∗ − 2λ | P (k) |2 F (k)

which after rearranging gives

F (k) =
U(k)[P (k)]∗

| P (k) |2 + 1
2λ

.

so that

f(r) =
1

(2π)n

∞∫
−∞

[P (k)]∗U(k)
| P (k) |2 + 1

2λ

exp(ik · r)dnk.

The cross Entropy or Patterson Entropy uses a criterion
in which the Entropy measure

E = −
∫
dnrf(r) ln

[
f(r)
w(r)

]
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is maximized where w(r) is some weighting function
based on any available a priori information on f(r). If
the calculation above is re-worked using this definition of
the cross Entropy, then we obtain the result

f(r) = w(r) exp(−1+2λ[u(r)�rp(r)−p(r)⊗rf(r)�rp(r)]).

The cross Entropy method has a synergy with the Wilkin-
son test in which a PDF Pn(x) say of a stochastic field
n(r) is tested against the PDF Pm(x) of a stochastic field
m(r). A standard test to quantify how close the stochas-
tic behaviour of n is to m (the null-hypothesis test) is to
use the Chi-squared test in which we compute

χ2 =
∫ (

Pn(x)− Pm(x)
Pm(x)

)2

dx.

The Wilkinson test uses the metric

E = −
∫
Pn(x) ln

(
Pn(x)
Pm(x)

)
dx.

7.2 Entropy Conscious Confusion and
Diffusion

From the point of view of designing an appropriate sub-
stitution cipher, the discussion above clearly dictates that
the cipher n[i] should be such that the Entropy of the ci-
phertext u[i] is a maximum. This requires that a Pseudo
Random Number Generation (PRNG) algorithm be de-
signed that outputs a number stream whose Entropy is a
maximum. There are a wide range of algorithms for gen-
erating pseudo random number streams that are continu-
ally being developed and improved upon for applications
to random pattern generation [33] and image encryption
[34], for example, and are usually based on some form of
numerical iteration or ‘round transformation’. However,
irrespective of the application, a governing condition in
the design of a PRNG is determined by the Information
Entropy of the stream that is produced. Since the Infor-
mation Entropy of the stream is defined as

E =
N∑
i=1

Pilog2Pi

it is clear that the stream should have a PDF Pi that
yields the largest possible values for E. Figure 5 shows a
uniformly distributed and a Gaussian distributed random
number stream consisting of 3000 elements and the char-
acteristic discrete PDFs using 64-bins (i.e. for N = 64).
The Information Entropy, which is computed directly
from the PDFs using the expression for E given above, is
always greater for the uniformly distributed field. This is

to be expected because, for a uniformly distributed field,
there is no bias associated with any particular numerical
range and hence, no likelihood can be associated with a
particular state. Hence, one of the underlying principals

Figure 5: A 3000 element uniformly distributed random
number stream (top left) and its 64-bin discrete PDF
(top right) with E = 4.1825 and a 3000 element Gaussian
distributed random number stream (bottom left) and its
64-bin discrete PDF (bottom right) with E = 3.2678.

associated with the design of a cipher n[i] is that it should
output a uniformly distributed sequence of random num-
bers. However, this does not mean that the ciphertext
itself will be uniformly distributed since if

u(r) = u0(r) + n(r)

then
Pr[u(r)] = Pr[u0(r)]⊗r Pr[n(r)].

This is illustrated in Figure 6 which shows 256-bin his-
tograms for an 8-bit ASCII plaintext (the LaTeX file as-
sociated with this paper) u0[i], a stream of uniformly dis-
tributed integers n[i], 0 ≤ n ≤ 255 and the ciphertext
u[i] = u0[i] + n[i]. The spike associate with the plaintext
histogram reflects the ‘character’ that is most likely to
occur in the plaintext of a natural Indo-European lan-
guage, i.e. a space with ASCII value 32. Although the
distribution of the ciphertext is broader than the plain-
text it is not as broad as the cipher and certainly not
uniform. Thus, the Entropy of the ciphertext, although
larger than the plaintext (in this example Eu0 = 3.4491
and Eu = 5.3200), the Entropy of the ciphertext is
still less that then that of the cipher (in this example
En = 5.5302). There are two ways in which this problem
can be solved. The first method is to construct a cipher
n with a PDF such that

Pn(x)⊗x Pu0(x) = U(x)

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_02

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 



Figure 6: 256-bin histograms for an 8-bit ASCII plaintext
u0[i] (left), a stream of uniformly distributed integers be-
tween 0 and 255 n[i] (centre) and the substitution cipher
u[i] (right).

where U(x) = 1, ∀x. Then

Pn(x) = U(x)⊗x Q(x)

where

Q(x) = F̂−1

(
1

F̂ [Pu0(x)]

)
.

But this requires that the cipher is generated in such a
way that its output conforms to an arbitrary PDF as de-
termined by the plaintext to be encrypted. The second
method is based on assuming that the PDF of all plain-
texts will be of the form given in Figure 9 with a char-
acteristic dominant spike associated with the number of
spaces that occur in the plaintext3 Noting that

Pn(x)⊗x δ(x) = Pn(x)

then as the amplitude of the spike increases, the out-
put increasingly approximates a uniform distribution; the
Entropy of the ciphertext increases as the Entropy of
the plaintext decreases. One simple way to implement
this result is to pad-out the plaintext with spaces 4 The
statistical effect of this is illustrated in Figure 7 where
Eu0 = 1.1615, En = 5.5308 and Eu = 5.2537.

8 Discussion

The purpose of this paper has been to introduce two of
the most fundamental processes associated with cryp-
tology, namely, diffusion and confusion. Diffusion has
been considered via the properties associated with the

3This is only possible provided the plaintext is an Indo-European
alpha-numeric array and is not some other language or file format
- a compressed image file, for example.

4Padding out a plaintext file with any character will provides
a ciphertext with a broader distribution, the character @ (with
an ASCII DEC of 64) providing a symmetric result, but space-
character padding does not impinge on legibility.

Figure 7: 256-bin histograms for an 8-bit ASCII plain-
text u0[i] (left) after space-character padding, a stream
of uniformly distributed integers between 0 and 255 n[i]
(centre) and the substitution cipher u[i] (right).

homogeneous (classical) diffusion equation and the gen-
eral Green’s function solution. Confusion has been con-
sidered through the application of the inhomogeneous dif-
fusion equation with a stochastic source function and it
has been shown that

u(r) = p(r)⊗r u0(r) + n(r)

where p is a Gaussian Point Spread Function and n is a
stochastic function.

Diffusion of noise involves the case when u0 is a stochas-
tic function. Diffusion by noise involves the use of a
PSF p that is a stochastic function. If u0 is taken
to be deterministic information, then we can consider
the processes of noise diffusion and confusion to be
compounded in terms of the following:

Diffusion
u(r) = n(r)⊗r u0(r)

Confusion
u(r) = u0(r) + n(r)

Diffusion and Confusion

u(r) = n1(r)⊗r u0(r) + n2(r)

Ťhe principal effects of diffusion and confusion have been
illustrated using various test images. This has been un-
dertaken for visual purposes only but on the understand-
ing that such ‘effects’ apply to fields in different dimen-
sions in a similar way.

The statistical properties associated with independent
random variables has also bee considered. One of the
most significant results associated with random variable
theory is compounded in the Central Limit Theorem.
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When data is recorded, the stochastic term n, is often
the result of many independent sources of noise due to a
variety of physical, electronic and measuring errors. Each
of these sources may have a well-defined PDF but if n is
the result of the addition of each of them, then the PDF
of n tends to be Gaussian distributed. Thus, Gaussian
distributed noise tends to be common in the large ma-
jority of applications in which u is a record of a physical
quantity.

In cryptology, the diffusion/confusion model is used in a
variety of applications that are based on diffusion only,
confusion only and combined diffusion/confusion models.
One such example of the combined model is illustrated in
Figure 8 which shows how one data field can be embedded
in another field (i.e. how one image can be used to water-
mark another image using noise diffusion). In standard
cryptography, one of the most conventional methods of
encrypting information is through application of a con-
fusion only model. This is equivalent to implementing a
model where it is assumed that the PSF is a delta func-
tion so that

u(r) = u0(r) + n(r).

If we consider the discrete case in one-dimension, then

u[i] = u0[i] + n[i]

where u0[i] is the plaintext array or just ‘plaintext’ (a
stream of integer numbers, each element representing a
symbol associated with some natural language, for exam-
ple), n[i] is the ‘cipher’ and u[i] is the ‘ciphertext’. Meth-
ods are then considered for the generation of stochastic
functions n[i] that are best suited for the generation of
the ciphertext. This is the basis for the majority of sub-
stitution ciphers where each value of each element of u0[i]
is substituted for another value through the addition of
a stochastic function n[i], a function that should:

• include outputs that are zero in order that the spec-
trum of random numbers is complete5

• have a uniform PDF.

The conventional approach to doing this is to design ap-
propriate Pseudo Random Number Generators (PRNGs)
or pseudo chaotic ciphers. In either case, a cipher should
be generated with maximum Entropy which is equiva-
lent to ensuring that the cipher is a uniformly distributed
stochastic field. However, it is important to appreciate
that the statistics of a plaintext are not the same as those

5The Enigma cipher, for example, suffered from a design fault
with regard to this issue in that a letter could not reproduce its self
- u[i] 6= u0[i]∀i. This provided a small statistical bias which was
nevertheless significant in the decryption of Enigma ciphers.

of the cipher when encryption is undertaken using a con-
fusion only model; instead the statistics are determined
by the convolution of the PDF of the plaintext with the
PDF of the cipher. Thus, if

u(r) = u0(r) + n(r)

then
Pr[u(r)] = Pr[n(r)]⊗r Pr[u0(r)].

One way of maximising the Entropy of u is to construct
u0 such that Pr[u0(r)] = δ(r). A simple and practical
method of doing this is to pad the data u0 with a single
element that increase the data size but does not intrude
on the legibility of the plaintext.

Assuming that the encryption of a plaintext u0 is un-
dertaken using a confusion only model, there exist the
possibility of encrypting the ciphertext again. This is an
example of double encryption, a process that can be re-
peated an arbitrary number of times to give triple and
quadruple encrypted outputs. However, multiple encryp-
tion procedures in which

u(r) = u0(r) + n1(r) + n2(r) + ...

where n1, n2,... are different ciphers, each consisting of
uniformly distributed noise, suffer from the fact that the
resultant cipher is normally distributed because, from the
Central Limit Theorem

Pr[n1 + n2 + ...] ∼ Gauss(x).

For this reason, multiple encryption systems are generally
not preferable to single encryption systems. A notable
example is the triple DES (Data Encryption Standard)
or DES3 system [35] that is based on a form of triple
encryption and originally introduced to increase the key
length associated with the generation of a single cipher
n1. DES3 was endorsed by the National Institute of Stan-
dards and Technology (NIST) as a temporary standard to
be used until the Advanced Encryption Standard (AES)
was completed in 2001 [36].

The statistics of an encrypted field formed by the dif-
fusion of u0 (assumed to be a binary field) with noise
produces an output that is Gaussian distributed, i.e. if

u(r) = n(r)⊗r u0(r)

then

Pr[u(r)] = Pr[n(r)⊗r u0(r)] ∼ Gauss(x).

Thus, the diffusion of u0 produces an output whose statis-
tics are not uniform but normally distributed. The En-
tropy of a diffused field using uniformly distributed noise
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is therefore less than the Entropy of a confused field. It
is for this reason, that a process of diffusion should ide-
ally be accompanied by a process of confusion when such
processes are applied to cryptology in general.

The application of noise diffusion for embedding or water-
marking one information field in another is an approach
that has a range of applications including diffusion only
cryptology for applications to low resolution print secu-
rity for example which is discussed later on in this work.

Since the diffusion of noise by a deterministic PSF pro-
duces an output whose statistics tend to be normally
distributed, such fields are not best suited for encryp-
tion. However, this process is important in the design of
stochastic fields that have important properties for the
camouflage of encrypted data. This includes the genera-
tion of random fractal fields and the use of methods such
a fractal modulation for covert data communications.

9 Lossy Watermarking Method

In ‘image space’, we consider the plaintext to be an image
p(x, y) of compact support x ∈ [−X,X]; y ∈ [−Y, Y ].
Stochastic diffusion is then based on the following results:

Encryption

c(x, y) = m(x, y)⊗x ⊗yp(x, y)

where
m(x, y) = F−1

2 [M(kx, ky)]

and ∀kx, ky

M(kx, ky) =

{
N∗(kx,ky)
|N(kx,ky)|2 , | N(kx, ky) |6= 0;

N∗(kx, ky), | N(kx, ky) |= 0.

Decryption

p(x, y) = n(x, y)�x �yc(x, y)

Here, kx and ky are the spatial frequencies and F−1
2 de-

notes the two-dimensional inverse Fourier transform. For
digital image watermarking, we consider a discrete array
pij , i = 1, 2, ..., I; j = 1, 2, ..., J of size I × J and discrete
versions of the operators involved, i.e. application of a
discrete Fourier transform and discrete convolution and
correlation sums.

If we consider a host image denoted by h(x, y), then we
consider a watermarking method based on the equation

c(x, y) = Rm(x, y)⊗x ⊗yp(x, y) + h(x, y)

where
‖m(x, y)⊗x ⊗yp(x, y)‖∞ = 1

and
‖h(x, y)‖∞ = 1

By normalising the terms in this way, the coefficient
0 ≤ R ≤ 1 can be used to adjust the relative magni-
tudes of the terms such that the diffused image m(x, y)⊗x
⊗yp(x, y) becomes a perturbation of the ‘host image’
(covertext) h(x, y). This provides us with a way of digital
watermarking one image with another, R being referred
to as the ‘watermarking ratio’, a term that is equivalent,
in this application, to the standard term ‘Signal-to-Noise’
or SNR as used in signal and image analysis. For colour
images, the method can be applied by decomposing the
image into its constituent Red, Green and Blue compo-
nents. Stochastic diffusion is then applied to each com-
ponent separately and the result combined to produce an
colour composite image.

For applications in image watermarking, stochastic diffu-
sion has two principal advantages:

• a stochastic field provides uniform diffusion;

• stochastic fields can be computed using random
number generators that depend on a single initial
value or seed (i.e. a private key).

9.1 Binary Image Watermarking

Watermarking a full grey level or colour image in another
grey or colour image, respectively, using stochastic diffu-
sion leads to two problems: (i) it can yield a degrada-
tion in the quality of the reconstruction especially when
R is set to a low value which is required when the host
image has regions that are homogeneous; (ii) the host
image can be corrupted by the watermark leading to dis-
tortions that are visually apparent. Points (i) and (ii)
lead to an optimisation problem with regard to the fi-
delity of the watermark and host images in respect of the
value of the watermark ratio that can be applied which
limits the type of host images that can be used and the
fidelity of the ‘decrypts’. However, if we consider the
plaintext image p(x, y) to be of binary form, then the
output of stochastic diffusion can be binarized to give a
binary ciphertext. The rationale for imposing this condi-
tion is based on considering a system in which a user is
interested in covertly communicating documents such as
confidential letters and certificates, for example.

If we consider a plaintext image p(x, y) which is a binary
array, then stochastic diffusion using a pre-conditioned
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cipher 0 ≤ m(x, y) ≤ 1 consisting of an array of floating
point numbers will generate a floating point output. The
Shannon Information Entropy of of any array A(xi, yi)
with Probability Mass Function (PMF) p(zi) is given by

I = −
∑
i=1

p(zi) log2 p(zi)

The information entropy of a binary plaintext image
(with PMF consisting of two components whose sum is
1) is therefore significantly less than the information en-
tropy of the ciphertext image. In other words, for a bi-
nary plaintext and a non-binary cipher, the ciphertext is
data redundant. This provides us with the opportunity
of binarizing the ciphertext by applying a threshold, i.e.
if cb(x, y) is the binary ciphertext, then

cb(x, y) =

{
1, c(x, y) > T

0, c(x, y) ≤ T
(2)

where 0 ≤ c(x, y) ≤ 1∀x, y. A digital binary ciphertext
image cb(xi, yj) where

cb(xi, yi) =

{
1, or
0, for any xi, yj

can then be used to watermark an 8-bit host image
h(x, y), h ∈ [0, 255] by replacing the lowest 1-bit layer
with cb(xi, xj). To recover this information, the 1-bit
layer is extracted from the image and the result corre-
lated with the digital cipher n(xi, yj). Note that the
original floating point cipher n is required to recover the
plaintext image and that the binary watermark can not
therefore be attacked on an exhaustive XOR basis using
trial binary ciphers. Thus, binarization of a stochastically
diffused data field is entirely irreversible.

9.2 Statistical Analysis

The expected statistical distribution associated with
stochastic diffusion is Gaussian. This can be shown if
we consider a binary plaintext image pb(x, y) to be de-
scribed by a sum of N delta functions where each delta
function describes the location of a non-zero bit at coor-
dinates (xi, yj). Thus if

pb(x, y) =
N∑
i=1

N∑
j=1

δ(x− xi)δ(y − yj)

then
c(x, y) = m(x, y)⊗x ⊗yp(x, y)

=
N∑
i=1

N∑
j=1

m(x− xi, y − yj).

Each function m(x − xi, y − yj) is just m(x, y) shifted
by xi, yj and will thus be identically distributed. Hence,
from the Central Limit Theorem

Pr[c(x, y)] = Pr

 N∑
i=1

N∑
j=1

m(x− xi, y − yj)

 =

N∏
i=1

⊗ Pr[m(x, y)] ≡ Pr[m(x, y)]⊗x⊗yPr[m(x, y)]⊗x⊗y...

∼ Gaussian(z), N →∞
where Pr denotes the Probability Density Function. We
can thus expect Pr[c(x, y)] to be normally distributed and
for m(x, y) ∈ [0, 1]∀x, y the mode of the distribution will
be of the order of 0.5. This result provides a value for
the threshold T in equation (2) which for 0 ≤ c(x, y) ≤ 1
is 0.5 (theoretically). Note that if n(x, y) is uniformly
distributed and thereby represents δ-uncorrelated noise
then both the complex spectrum N∗ and power spectrum
| N |2 will also be δ-uncorrelated and since

m(x, y) = F−1
2

[
N∗(kx, ky)
| N(kx, ky) |2

]
Pr[m(x, y)] will be uniformly distributed. Also note that
the application of a threshold which is given by the mode
of the Gaussian distribution, guarantees that there is no
statistical bias associated with any bit in the binary out-
put, at least, on a theoretical basis. On a practical ba-
sis, the needs to be computed directly by calculating the
mode from the histogram of the cipher and that bit equal-
ization can not be guaranteed as it will depend on: (i)
the size of the images used; (ii) the number of bins used
to compute the histogram.

9.3 Principal Algorithms

The principal algorithms associated with the application
of stochastic diffusion for watermarking with ciphers are
as follows:

Algorithm I: Encryption and Watermarking Al-
gorithm

Step 1: Read the binary plaintext image from a file and
compute the size I × J of the image.

Step 2: Compute a cipher of size I × J using a private
key and pre-condition the result.

Step 3: Convolve the binary plaintext image with the
pre-conditioned cipher and normalise the output.
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Step 4: Binarize the output obtained in Step 3 using a
threshold based on computing the mode of the Gaussian
distributed ciphertext.

Step 5: Insert the binary output obtained in Step 4 into
the lowest 1-bit layer of the host image and write the
result to a file.

The following points should be noted:

(i) The host image is taken to be an 8-bit or higher grey
level image which must ideally be the same size as the
plaintext image or else resized accordingly. However, in
resembling the host image, its proportions should be the
same so that the stegotext image does not appear to be
a distorted version of the covertext image. For this pur-
pose, a library of host images should be developed whose
dimensions are set according to a predetermined appli-
cation where the dimensions of the plaintext image are
known.

(ii) Pre-conditioning the cipher and the convolution pro-
cesses are undertaken using a Discrete Fourier Transform
(DFT).

(iii) The output given in Step 3 will include negative float-
ing point numbers upon taking the real component of a
complex array. The array must be rectified by adding the
largest negative value in the output array to the same ar-
ray before normalisation.

(iv) For colour host images, the binary ciphertext can be
inserted in to one or all of the RGB components. This
provides the facility for watermarking the host image with
three binary ciphertexts (obtained from three separate
binary documents, for example) into a full colour image.
In each case, a different key can be used.

(v) The binary plaintext image should have homogeneous
margins in order to minimise the effects of ringing due to
‘edge-effects’ when processing the data in the spectral
domain.

Algorithm II: Decryption Algorithm

Step 1: Read the watermarked image from a file and
extract the lowest 1-bit layer from the image.

Step 2: Regenerate the (non-preconditioned) cipher us-
ing the same key used in Algorithm I.

Step 3: Correlate the cipher with the input obtained in
Step 1 and normalise the result.

Step 4: Quantize and format the output from Step 3
and write to a file.

The following points should be noted:

(i) The correlation operation should be undertaken using
a DFT.

(ii) For colour images, the data is decomposed into each
RGB component and each 1-bit layer is extracted and cor-
related with the appropriate cipher, i.e. the same cipher
or three ciphers relating to three private keys respectively.

(iii) The output obtained in Step 3 has a low dynamic
range and therefore requires to be quantized into an 8-bit
image based on floating point numbers within the range
max(array)-min(array).

9.4 StegoText

StegoText is a prototype tool designed using MATLAB to
examine the applications to which stochastic diffusion can
be used. A demonstration version of the system is avail-
able at http://eleceng.dit.ie/arg/downloads/Stegocrypt
which has been designed with a simple Graphical User
Interface as shown in Figure 8 whose use is summarised
in the following table:

Encryption Mode Decryption Mode
Inputs: Inputs:
Plaintext image Stegotext image
Covertext image Private key (PIN)
Private Key (PIN)
Output: Output:
Watermarked image Decrypted watermark
Operation: Operation:
Encrypt by clicking on Decrypt by clicking on
buttom E (for Encrypt) button D (for Dycrypt)

The PIN (Personal Identity Number) can be an numer-
ical string with upto 16 elements. In principal, any ex-
isting encryption algorithm, application or system can
be used to generate the cipher required by StegoText by
encrypting an image composed of random noise. The out-
put is then needs to be converted into a decimal integer
array and the result normalised as required, i.e. depend-
ing on the format of the output that is produced by a
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Figure 8: Graphical User Interface for Stegotext software
system.

given system. In this way, StegoText can be used in con-
junction with any existing encryption standard.

The principal aim of StegoText is to encrypt an image and
transform the ciphertext into a binary array which is then
used to watermark a host image. This provides a gen-
eral method for hiding encrypted information in ‘image-
space’.

9.5 e-Fraud Prevention of e-Certificates

Electronic or E-documents consisting of letters and cer-
tificates, for example, are routinely used in EDI. EDI
refers to the structured transmission of data between or-
ganizations by electronic means. It is used to transfer
electronic documents from one computer system to an-
other; from one trading partner to another trading part-
ner, for example [37], [38]. The USA National Institute of
Standards and Technology defines EDI as the computer-
to-computer interchange of strictly formatted messages
that represent documents other than monetary instru-
ments [39]. EDI remains the data format used by the
vast majority of electronic transactions in the world and
EDI documents generally contain the same information
that would normally be found in a paper document used
for the same organizational function.

In terms of day-to-day applications, EDI relates to the use
of transferring documents between two parties in terms
of an attachment. For hardcopies, the attachment is typ-
ically the result of scanning the document and generating
an image which is formatted as a JPEG or PDF (Print
Device File) file, for example. This file is then sent as an
attachment to an email which typically refers to the at-
tachment, i.e. the email acts as a covering memorandum
to the information contained in the attachment. How-
ever, a more common approach is to print a document
directly to PDF file, for example. Thus, letters written

in MicroSoft word, for example, can be routinely printed
to a PDF file for which there are a variety of systems
available, e.g. PDF suite http://pdf-format.com/suite/.

For letters and other documents that contain confiden-
tial information, encryption systems are often used to
secure the document before it is attached to an email
and sent. The method discussed in this paper provides a
way of encrypting a document using stochastic diffusion
and then hiding the output in an image, thus providing
a covert method of transmitting encrypted information.
However, the approach can also be used to authenticate
a document by using the original document as a ‘host
image’. In terms of the Stegotext GUI shown in Figure 8,
this involves using the same file for the Input and Host
Image. An example of this is shown in Figure 9 where
a hardcopy issue of a certificate has been scanned into
electronic form and the result printed to a PDF file. The
properties of the image are as follows: File size=3.31Mb;
Pixel Dimensions - Width=884 pixels, Height =1312 pix-
els; Document Size - Width=39.5 cm, Height=46.28cm;
Resolution=28 pixels/cm. The result has been encrypted
and binarised using stochastic diffusion and the output
used to watermark the original document. The fidelity of
the decrypt is perfectly adequate to authenticate aspects
of the certificate such as the name and qualification of the
holder, the date and signature, for example. Figure 10
shows the ‘Coat of Arms’ and the signatures associated
with this decrypt which have been cut from the original
decrypt given in Figure 9. These results illustrate that
the decrypt is adequately resolved for the authentication
of the document as a whole. It also illustrates the abil-
ity for the decrypt to retain the colour of the original
plaintext image.

Figure 9: Certificate with binary watermark (left) and
decrypt (right).
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Figure 10: ‘Coat of Arms’ (left) and signatures (right) of
decrypt given in Figure 9.

10 Lossless Watermarking Method

The method discussed in the previous section is suit-
able for document authentication, but the lossy nature
of the reconstruction generated through binarisation of
the cipher, illustrated in Figure 9, is not suitable for full
colour images. In this section we introduce an algorithms
for hiding grey scale image in a colour image and full
colour images using three host colour images. Figure 11
shows a block diagram for hiding an encrypted 8-bit grey
level image in a 24-bit colour image and Figure 12 shows
the equivalent block diagram for hiding encrypted 24-bit
colour image in three 24-bit colour host images. In the
latter case, the same approach is used applied to each
colour component of the colour image. Referring to Fig-
ure 11, stochastic diffusion is used to encrypt an 8-bit
grey level image into a 24-bit colour host image with a
near perfect decrypt. In this scheme, the cipher is not bi-
narised but is converted into binary form. The first and
second Least Significant Bits (LSBs) are ignored and the
third and fourth bits are embedded into the two LSBs
of the host image’s red channel. Similarly, the 5th and
6th bits are embedded into the two LSBs of the host im-
age’s green channel, and finally the 7th and 8th bits are
embedded into the two LSBs of the host image’s blue
channel. The inverse process is based on extracting the
relevant bits from the associated channels with the first
and second bits being set to zero. The extracted bits
are then used to re-generate the original cipher and the
reconstruction obtained by correlation with the original
noise field.

Figure 13 shows an example of the method based on the
block diagram given in Figure 12 using the MATLAB
code given in Appendix C. The three 24-bit colour host
images after application of the embedding process are
given in Figure 14.

Figure 11: Block Diagram for hiding an encrypted 8-bit
grey level image in a 24-bit colour host image.
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Figure 12: Block Diagram for hiding an encrypted 24-bit
colour image in three 24-bit colour host images.

Figure 13: Orginal Image (above) and reconstructed im-
age after decryption (below).

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_02

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 



Figure 14: Host images used to hide the image given in
Figure 13 after embedding the ciphers.

11 Conclusions

This paper has focused on the application of stochastic
diffusion for transmitting e-documents and digital images
over the internet in such a way that encrypted informa-
tion can be communicated covertly and the information
authenticated. The use of the Internet to transfer docu-
ments as image attachments has and continues to grow
rapidly. It is for this ‘market’ that the approach reported
in this paper has been developed. Inserting a binary wa-
termark into a host image obtained by binarizing a float-
ing point ciphertext (as discussed in Section 9) provides
a cryptographically secure solution. This is because bi-
narization is an entirely one-way process. Thus, although
the watermark may be removed from the covertext im-
age, it can not be decrypted without the recipient having
access to the correct cryptographically secure algorithm
and key. The approach discussed in Section 9.4 and the
StegoText system currently available has a range of ap-
plication for e-document authentication. For example,
many institutes such as universities still issue ‘paper cer-
tificates’ to their graduates. These certificates are then
scanned and sent as attachments along with a CV and
covering letter when applying for a job. It is at this point
that the certificate may be counterfeited and, for this rea-
son, some establishments still demand originals to be sub-
mitted. StegoText provides the facility to issue electronic
certificates (in addition or in substitution to a hardcopy)
which can then be authenticated as discussed in Section
9.4. By including a serial number on each certificate (a
Certificate Identity Number) which represents a ‘public
key’, the document can be submitted to the authority
that issued the certificate for authentication, for which
an online service can be established as required subject
to any regulation of investigatory powers e.g. [40].

In this paper, the method of stochastic diffusion has been
extended to hide 24-bit colour images in a set of three
24-bit colour images. This provides a lossless method
of encrypting and covertly communicating 24-bit colour
images over the Internet as required and as illustrated in
Section 10. The applications to which stochastic diffusion
can be applied are numerous and, coupled with appropri-
ate key-exchange protocols, provides a generic method of
encrypting and hiding digital image information.

Appendix A: Inverse Diffusion

Suppose we consider the homogeneous diffusion problem
defined by the equation

D∇2u(r, t)− ∂

∂t
u(r, t) = 0, u(r, 0) = u0(r)
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with the solution

u(r, τ) =
1
D
G(| r |, t)⊗r u0(r), t > 0.

If we record a diffused field u after some time t = T , is it
possible to reconstruct the field at time t = 0, i.e. to solve
the inverse problem or de-diffuse the field measured? We
can express u(r, 0) in terms of u(r, T ) using the Taylor
series

u0(r) ≡ u(r, 0) = u(r, T )+
∞∑
n=1

(−1)n

n!
Tn
[
∂n

∂tn
u(r, t)

]
t=T

.

Now, from the diffusion equation

∂2u

∂t2
= D∇2 ∂u

∂t
= D2∇4u,

∂3u

∂t3
= D∇2 ∂

2u

∂t2
= D3∇6u

and so on. Thus, in general we can write[
∂n

∂tn
u(r, t)

]
t=T

= Dn∇2nu(x, y, T ).

Substituting this result into the series for u0 given above,
we obtain

u0(r) = u(r, T ) +
∞∑
n=1

(−1)n

n!
(DT )n∇2nu(r, T ).

For a time-independent source function S(r) the equiva-
lent solution to the equation

D∇2u(r, t)− ∂

∂t
u(r, t) = −− S(r), u(r, 0) = u0(r)

is then given by
u0(r) = u(r, T )

+
∞∑
n=1

(−1)n

n!
[(DT )n∇2nu(r, T ) +D−1∇2n−2S(r)]

Appendix B: Proof by Induction of the
Central Limit Theorem for a Uniformly
Distributed Stochastic Function

We consider the effect of applying multiple convolutions
of the uniform distribution

P (x) =

{
1
X , | x |≤ X/2;
0, otherwise

and show that

N∏
n=1

⊗ Pn(x) ≡ P1(x)⊗x P2(x)⊗x ...⊗x PN (x)

'
√

6
πN

exp(−6x2/XN)

where Pn(x) = P (x), ∀n and N is large. This result is
based on considering the effect of multiple convolutions
in Fourier space (through application of the convolution
theorem) and then working with a series representation
of the result.

The Fourier transform of P (x) is given by

P̃ (k) =

∞∫
−∞

P (x) exp(−ikx)dx

=

X/2∫
−X/2

1
X

exp(−ikx)dx = sinc(kX/2)

where sinc(x) = sin(x)/x - the ‘sinc’ function. Thus,

P (x)⇐⇒ sinc(kX/2)

where ⇐⇒ denotes transformation into Fourier space,
and from the convolution theorem in follows that

Q(x) =
N∏
n=1

⊗ Pn(x)⇐⇒ sincN (kX/2).

Using the series expansion of the sin function for an ar-
bitrary constant α,

sinc(αk)

=
1
αk

(
αk − 1

3!
(αk)3 +

1
5!

(αk)5 − 1
7!

(αk)7 + . . .

)
= 1− 1

3!
(αk)2 +

1
5!

(αk)4 − 1
7!

(αk)6 + . . .

The N th power of sinc(αk) can be written in terms of a
binomial expansion giving

sincN (αk) =
(

1− 1
3!

(αk)2 +
1
5!

(αk)4 − 1
7!

(αk)6 + . . .

)N

= 1−N
(

1
3!

(αk)2 − 1
5!

(αk)4 +
1
7!

(αk)6 − . . .
)

+
N(N − 1)

2!

(
1
3!

(αk)2 − 1
5!

(αk)4 +
1
7!

(αk)6 − . . .
)2

−N(N − 1)(N − 2)
3!

×
(

1
3!

(αk)2 − 1
5!

(αk)4 +
1
7!

(αk)6 − . . .
)3

+ . . .

= 1−N α2k2

3!
+N

α4k4

5!
− kα

6k6

7!
− . . .
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+
N(N − 1)

2!

(
α4k4

(3!)2
− 2

α6k6

3!5!
+ . . .

)
−N(N − 1)(N − 2)

3!

(
α6k6

(3!)3
+ . . .

)
= 1− N

3!
α2k2 +

(
N

5!
α4 +

N(N − 1)
2!(3!)2

α4

)
k4

−
(
N

7!
α6 +

N(N − 1)
3!5!

α6 +
N(N − 1)(N − 2)

3!(3!)3
α6

)
k6+. . .

Now the series representation of the exponential (for an
arbitrary positive constant c) is

exp(−ck2) = 1− ck2 +
1
2!
c2k4 − 1

3!
c3k6 + . . .

Equating terms involving k2, k4 and k6 it is clear that
(evaluating the factorials),

c =
1
6
Nα2,

1
2
c2 =

(
1

120
N +

1
72
N(N − 1)

)
α4

or

c2 =
(

1
36
N2 − 1

90
N

)
α4,

and
1
6
c3 =(

1
5040

N +
1

720
N(N − 1) +

1
1296

N(N − 1)(N − 2)
)
α6

or

c3 =
(

1
216

N3 − 1
1080

N2 +
1

2835
N

)
α6.

Thus, by deduction, we can conclude that

cn =
(

1
6
N

)n
α2n +O(Nn−1α2n).

Now, for large N , the first term in the equation above
dominates to give the following approximation for the
constant c,

c ' 1
6
Nα2.

We have therefore shown that the N th power of the
sinc(αk) function approximates to a Gaussian function
(for large N), i.e.

sincN (αk) ' exp
(
−1

6
Nα2k2

)
.

Thus, if α = X
2 , then

Q(x)⇐⇒ exp
(
−X

24
Nk2

)

approximately. The final part of the proof is therefore
to Fourier invert the function exp(−XNk2/24), i.e. to
compute the integral

I =
1

2π

∞∫
−∞

exp
(
− 1

24
XNk2

)
exp(ikx)dk.

Now,

I =
1

2π

∞∫
−∞

e
−
[(√

XN
24 k−

√
24

XN
ix
2

)2
− 6x2

XN

]
dk

=
1
π

√
6

XN
e−

6x2
XN

∞+ix
√

6
XN∫

−∞+ix
√

6
XN

e−y
2
dy

after making the substitution

y =

√
XN

6
k

2
− ix

√
6

XN
.

By Cauchy’s theorem

I =
1
π

√
6

XN
e−

6x2
XN

∞∫
−∞

e−z
2
dz =

√
6

πXN
e−

6x2
XN

where we have use the result
∞∫
−∞

exp(−y2)dy =
√
π.

Thus, we can write

Q(x) =
N∏
n=1

⊗ Pn(x) '
√

6
πXN

exp[−6x2/(XN)]

for large N .

Appendix C: MATLAB Code for Loss-less
Watermarking Method

function [] = CIE( ImageName )
% This function - Covert Image Encryption (CIE) -
% inputs a 24-bit color image and encrypts it
% using the Stochastic Diffusion method.

% Read input image
InImage = imread(ImageName);
row = size(InImage,1);
col = size(InImage,2);
InImage = double(InImage);
%-------------------------
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% Generate the noise field
% using Matlab’s rand function
NoiseImageR = rand(row,col);
NoiseImageG = rand(row,col);
NoiseImageB = rand(row,col);

NR = NoiseImageR;
NG = NoiseImageG;
NB = NoiseImageB;
% -------------------------

% Convolve the input image with the
% noise image using a 2D FFT
% with pre-conditioning
mR = PreCondition(NoiseImageR);
mG = PreCondition(NoiseImageG);
mB = PreCondition(NoiseImageB);
% -----------------------------
% Encrypt the Red Channel
CR=ifft2(fft2(mR).*fft2(InImage(:,:,1)) );
% Encrypt the Green Channel.
CG=ifft2(fft2(mG).*fft2(InImage(:,:,2)) );
% Encrypt the Blue Channel
CB=ifft2(fft2(mB).*fft2(InImage(:,:,3)) );

% Normalize Cipher Images to range 0:255.
CR = Normalize(CR) .* 255;
CG = Normalize(CG) .* 255;
CB = Normalize(CB) .* 255;
% ------------------------
CR = uint8(CR);
CG = uint8(CG);
CB = uint8(CB);
% ------------------------

% Embed cipher images into three
% named cover images:
%
% cover1.bmp
% cover2.bmp
% cover3.bmp

% Embed red channel cipher into cover image 1
CoverImage1 = imread(’cover1.bmp’);
CoverImage1 = imresize(CoverImage1 , [row col]);
figure(1);
subplot(1,2,1), imshow(CoverImage1),
title(’Cover Image1 before embedding’);
for i = 1 : size(CoverImage1,1)

for j = 1 : size(CoverImage1,2)

CoverImage1(i,j,1) =
bitand( CoverImage1(i,j,1) , 252 );

CoverImage1(i,j,1) =
bitor( CoverImage1(i,j,1),
bitand(bitshift(CR(i,j),-2),3) );

CoverImage1(i,j,2) =
bitand( CoverImage1(i,j,2) , 252 );

CoverImage1(i,j,2) =
bitor( CoverImage1(i,j,2),
bitand(bitshift(CR(i,j),-4),3) );

CoverImage1(i,j,3) =
bitand( CoverImage1(i,j,3) , 252 );
CoverImage1(i,j,3) =
bitor( CoverImage1(i,j,3),
bitand(bitshift(CR(i,j),-6),3));

end
end
subplot(1,2,2), imshow(CoverImage1),
title(’Cover Image1 after Embedding’);
% -----------------------------------
% Embed green channel cipher into Cover Image 2
CoverImage2 = imread(’cover2.bmp’);
CoverImage2 = imresize(CoverImage2 , [row col]);
figure(2);
subplot(1,2,1), imshow(CoverImage2),
title(’Cover Image2 before Embedding’);

for i = 1 : size(CoverImage2,1)
for j = 1 : size(CoverImage2,2)

CoverImage2(i,j,1) =
bitand( CoverImage2(i,j,1) , 252 );
CoverImage2(i,j,1) =
bitor( CoverImage2(i,j,1),
bitand(bitshift(CG(i,j),-2),3) );

CoverImage2(i,j,2) =
bitand( CoverImage2(i,j,2) , 252 );
CoverImage2(i,j,2) =
bitor( CoverImage2(i,j,2),
bitand(bitshift(CG(i,j),-4),3) );

CoverImage2(i,j,3) =
bitand( CoverImage2(i,j,3) , 252 );
CoverImage2(i,j,3) =
bitor( CoverImage2(i,j,3),
bitand(bitshift(CG(i,j),-6),3));

end
end
subplot(1,2,2), imshow(CoverImage2),
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title(’Cover Image2 after Embedding’);
% ------------------------------------
% Embed blue channel cipher into Cover Image 3
CoverImage3 = imread(’cover3.bmp’);
CoverImage3 = imresize(CoverImage3 , [row col]);
figure(3);
subplot(1,2,1), imshow(CoverImage3),
title(’Cover Image3 before Embedding’);

for i = 1 : size(CoverImage3,1)
for j = 1 : size(CoverImage3,2)

CoverImage3(i,j,1) =
bitand( CoverImage3(i,j,1) , 252 );

CoverImage3(i,j,1) =
bitor( CoverImage3(i,j,1),
bitand(bitshift(CB(i,j),-2),3) );

CoverImage3(i,j,2) =
bitand( CoverImage3(i,j,2) , 252 );
CoverImage3(i,j,2) =
bitor( CoverImage3(i,j,2),
bitand(bitshift(CB(i,j),-4),3) );

CoverImage3(i,j,3) =
bitand( CoverImage3(i,j,3) , 252 );
CoverImage3(i,j,3) =
bitor( CoverImage3(i,j,3),
bitand(bitshift(CB(i,j),-6),3));

end
end
subplot(1,2,2), imshow(CoverImage3),
title(’Cover Image3 after Embedding’);
% ------------------------------------

% Extract the hidden ciphers from cover images
% Extract red channel cipher from cover image 1
for i = 1 : size(CoverImage1,1)

for j = 1 : size(CoverImage1,2)

R = bitand( CoverImage1(i,j,1), 3);
G = bitand( CoverImage1(i,j,2), 3);
B = bitand( CoverImage1(i,j,3), 3);
ExImageR(i,j) = bitor( bitor(bitshift(R,2),
bitshift(G,4)),
bitshift(B,6) );

end
end
ExImageR = uint8(ExImageR);
% -------------------------
%

% Extract green channel cipher
% from cover image 2
for i = 1 : size(CoverImage2,1)

for j = 1 : size(CoverImage2,2)

R = bitand( CoverImage2(i,j,1), 3);
G = bitand( CoverImage2(i,j,2), 3);
B = bitand( CoverImage2(i,j,3), 3);
ExImageG(i,j) = bitor( bitor(bitshift(R,2),
bitshift(G,4)),
bitshift(B,6) );

end
end
ExImageG = uint8(ExImageG);
% -------------------------
%
% Extract blue channel cipher
% from cover image 3
for i = 1 : size(CoverImage3,1)

for j = 1 : size(CoverImage3,2)

R = bitand( CoverImage3(i,j,1), 3);
G = bitand( CoverImage3(i,j,2), 3);
B = bitand( CoverImage3(i,j,3), 3);
ExImageB(i,j) = bitor( bitor(bitshift(R,2),
bitshift(G,4)),
bitshift(B,6) );

end
end
ExImageB = uint8(ExImageB);
% -------------------------

% Correlate the Extracted ciphers with the
% noise field using a 2D FFT
ExImageR = double(ExImageR);
ExImageG = double(ExImageG);
ExImageB = double(ExImageB);

PlainImR =
ifft2( conj(fft2(NR)) .* fft2(ExImageR) );

PlainImG =
ifft2( conj(fft2(NG)) .* fft2(ExImageG) );

PlainImB =
ifft2( conj(fft2(NB)) .* fft2(ExImageB) );

% Normalize images to raneg 0:255
PlainImR = Normalize(PlainImR) .* 255;
PlainImG = Normalize(PlainImG) .* 255;
PlainImB = Normalize(PlainImB) .* 255;
%-------------------------------------
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Result(:,:,1) = PlainImR;
Result(:,:,2) = PlainImG;
Result(:,:,3) = PlainImB;
Result = uint8(Result);
imwrite(Result,’Output_Color.bmp’);

figure(4);
subplot(1,2,1), imshow(uint8(InImage)),
title(’Input Image before Encryption’);

subplot(1,2,2), imshow(Result),
title(’Output Image after Decryption’);

end

%--------------------------------------

function [ x ] = Normalize( mat )
% Function to normalise images

MAX = max(mat(:)); MIN = min(mat(:));

for i = 1:size(mat,1)
for j = 1:size(mat,2)
x(i,j) = ((mat(i,j) - MIN )/(MAX - MIN));
end

end

return;
end

%-----------------------------------

function [ m ] = PreCondition( arr )
% Pre-conditioning function

arrF = fft2(arr);
for i = 1:size(arrF,1)

for j = 1:size(arrF,2)
if abs(arrF(i,j)) == 0

M(i,j) = arrF(i,j);
else

M(i,j)=
arrF(i,j)/(abs(arrF(i,j))*abs(arrF(i,j)));

end
end

end
m = ifft2(M);

return;
end

Acknowledgments

The authors are grateful for the support of the Science
Foundation Ireland.

References

[1] Xiaolu, Li., Zhi, Qi., Zhiqiang, Yang, and Jun,
Kong., “A Novel Hidden Transmission of Biometric
Images Base on Choas and Image Content”, First In-
ternational Workshop on Education Technology and
Computer Science, 2009

[2] Jun, Kong., Hongru, Jia., Xiaolu. Li., and Zhi,
Qi., “A Novel Content-based Information Hiding
Scheme”, International Conference on Computer
Engineering and Technology, 2009

[3] Che-Wei, Lee and Wen-Hasiang, Tsai, “A New
Steganographic Method Based on Information Shar-
ing via PNG Images”, IEEE transactions, 2010.

[4] Chen Uuefen, Lin Junhuan, Zhang Shiqing, and
Chen Caiming, “Double Random Scrambling Algo-
rithm Based on Subblocks for Image Hiding”, Inter-
national Conference on Computer and Communica-
tion Technologies in Agriculture Engineering, 2010.

[5] Ptitsyn, N. V., Blackledge, J. M. and Chernenky V.
M., “Deterministic Chaos in Digital Cryptography”,
Proceedings of the First IMA Conference on Frac-
tal Geometry: Mathematical Methods, Algorithms
and Applications (Eds. J M Blackledge, A K Evans
and M Turner), Horwood Publishing Series in Math-
ematics and Applications, pp. 189-222, 2002

[6] Ptitsyn, N. V., Deterministic Chaos if Digital Cryp-
tography, PhD Thesis, De Montfort University, 2003.

[7] Webster, A. G., Partial Differential Equations of
Mathematical Physics, Stechert, 1933.

[8] Morse, P. M. and Feshbach, H., Methods of Theoret-
ical Physics, McGraw-Hill, 1953.

[9] Butkov, E., Mathematical Physics, Addison-Wesley,
1973.

[10] Evans, G. A., Blackledge, J. M. and Yardley, P., An-
alytical Solutions to Partial Differential Equations,
Springer, 1999.

[11] Roach, G. F., Green’s Functions (Introductory The-
ory with Applications), Van Nostrand Reihold, 1970.

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_02

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 



[12] Stakgold, I., Green’s Functions and Boundary Value
Problems, Wiley, 1979.

[13] Dirac, P. A. M., The Principles of Quantum Me-
chanics, Oxford University Press, 1947.

[14] Hoskins, R. F., The Delta Function, Horwood Pub-
lishing, 1999.

[15] Hoskins, R. G. and Sousa Pinto, J., Theories of Gen-
eralised Functions: Distributions, Ultradistributions
and Other Generalised Functions, Horwood, 2005.

[16] Watson, E. J., Laplace Transforms and Applications,
Van Nostrand Reinhold, 1981.

[17] Papoulis, A., The Fourier Integral and its Applica-
tions, McGraw-Hill, 1962.

[18] Bracewell, R. N., The Fourier Transform and its Ap-
plications, McGraw-Hill, 1978.

[19] Ferrers, N. M. (Ed.), Mathematical Papers of George
Green, Chelsea, 1970.

[20] Wadsworth, G. P. and Bryan, J. G., Introduction
to Probability and Random Variables, McGraw-Hill,
1960.

[21] Van der Waerden, B. L., Mathematical Statistics,
Springer-Verlag, 1969.

[22] Wilks, S. S., Mathematical Statistics, Wiley, 1962.

[23] Laha, R. G. and Lukacs, E., Applications of Char-
acteristic Functions, Griffin, 1964.

[24] Wackerly, D., Scheaffer, R. L. and Mendenhall, W.,
Mathematical Statistics with Applications (6th Edi-
tion), Duxbury, May 2001.

[25] Steward, E. G., Fourier Optics: An Introduction,
Horwood Scientific Publishing, 1987.

[26] Hecht, E., Optics, Addison-Wesley, 1987.

[27] Mandelbrot, B. B., The Fractal Geometry of Nature,
Freeman, 1983.

[28] Barnsley, M. F., Dalvaney, R. L., Mandelbrot, B.
B., Peitgen, H. O., Saupe, D. and Mandelbrot, R.
F., The Science of Fractal Images, Springer, 1988.

[29] Turner, M. J., Blackledge, J. M. and Andrews, P.
R., Fractal Geometry in Digital Imaging, Academic
Press, 1997.

[30] Shannon, C. E., A Mathematical Theory of Commu-
nication, Bell System Technical Journal, Vol. 27, pp.
379-423, 1948.

[31] Sethna, J., Statistical Mechanics : Entropy, Or-
der Parameters and Complexity, Oxford University
Press, 2006.

[32] Buck, B. B. and Macaulay, V. A. (Eds.), Maximum
Entropy in Action, Clarendon Press, 1992.

[33] Seth, A., Bandyopadhyay, S. and Maulik, U., Proba-
bilistic Analysis of Cellular Automata Rules and its
Application in Pseudo Random Pattern Generation,
IAENG International Journal of Applied Mathemat-
ics, Vol. 38, No. 4, pp. 1-9, 2008.
http://www.iaeng.org/IJAM/issues v38/issue 4/
IJAM 38 4 07.pdf

[34] Awad, A. and Saadane, A., New Chaotic Permuta-
tion Methods for Image Encryption, IAENG Inter-
national Journal of Computer Science, Vol. 37, No.
4, pp. 1-9, 2010.
http://www.iaeng.org/IJCS/issues v37/issue 4/
IJCS 37 4 10.pdf

[35] http://www.freedownloadscenter.com/Best/des3-
source.html

[36] http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf

[37] Blackledge, J M and Mahmoud, K. W., “Printed
Document Authentication using Texture Coding”,
ISAST Journal on Electronics and Signal Process-
ing, Vol. 4, No 1, 81-98, 2009

[38] http://en.wikipedia.org/wiki/
Electronic Data Interchange

[39] Kantor, M. and Burrows, J. H. (1996-04-
29). “Electronic Data Interchange”, National
Institute of Standards and Technology, 1996
http://www.itl.nist.gov/fipspubs/fip161-2.htm.

[40] http://www.opsi.gov.uk/acts/acts2000/
ukpga 20000023 en 1

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_02

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 




