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Abstract—In this paper we study the pricing and hedging
problems of ”generalized” Asian options in a jump-diffusion
model. We choose the minimal entropy martingale measure
(MEMM) as equivalent martingale measure and we derive a
partial-integro differential equation for their price. We discuss
the minimal variance hedging including the optimal hedging
ratio and the optimal initial endowment. When the Asian payoff
is bounded, we show that for the exponential utility function,
the utility indifference price goes to the Asian option price
evaluated under the MEMM as the Arrow-Pratt measure of
absolute risk-aversion goes to zero.

Index Terms—Geometric Lévy process, Generalized Asian
options, Minimal entropy martingale measure, Partial-integro
differential equation, Utility indifference pricing, Exponential
utility function.

I. INTRODUCTION

ASian options have payoff depending on the average
price of the underlying asset during some part of their

life. Therefore, their payoff must be expressed as a function
of the asset price history. But, in contrast to the European
options, they have not a closed form solution for their price,
even when the underlying follows a geometric Brownian
model.

In the setting of the continuous-time market models, many
approaches and numerical approximations are proposed to
price Asian options: For instance, [35] provides tight analytic
bounds for the Asian option price, In [20] is computed the
Laplace transform of the Asian Option price, [27] uses Monte
Carlo simulations, [25] follows a method based on binomial
trees. [13] introduces change of numeraire technique and [32]
uses it to reduce the PDE problem in two variables to obtain
a lower bound for the price. In a recent paper [10] is derived
a closed-form solution for the price of an average strike as
well as an average price geometric Asian option, by making
use of the path integral formulation.

But, in practice, continuous time models are unrealistic,
since the price process really presents discontinuities. In
particular, Lévy processes [6, 33, 2] became the most popular
and tractable for the market modeling and finance applica-
tions.
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To price Asian options in such setting, [12] presents gener-
alized Laplace transform for continuously sampled Asian op-
tion where underlying asset is driven by a Lévy Process, [29]
proposes a binomial tree method under a particular jump-
diffusion model. For the case of semimartingale models, [36]
shows that the pricing function is satisfying a partial-integro
differential equation. For the precise numerical computation
of the PIDE using difference schemes we refer interested
readers to explore with [11]. In [3] is derived the range
of price for Asian option when underlying stock price is
following geometric Brownian motion and jump (Poisson). In
[30] is derived bounds for the price of a discretely monitored
arithmetic Asian option when the underlying asset follows
an arbitrary Lévy process. The paper [37] develops a simple
network approach to American exotic option valuation under
Lévy processes using the fast Fourier transform. [23] uses
lattices to price fixed-strike European-style Asian options that
are discretely monitored. In [28] is studied a certain one-
dimensional, degenerate parabolic partial differential equa-
tion with a boundary condition which arises in pricing of
Asian options. It is proven that the generalized solution of the
problem is indeed a classical solution. [24] provides a semi
explicit valuation formula for geometric Asian options, with
fixed and floating strike under continuous monitoring, when
the underlying stock price process exhibits both stochastic
volatility and jumps.

To overcome the problem of replicating the option by
trading in the underlying asset in such models, the authors
of [15] where the first to introduce a mean-variance criterion
for hedging contingent claims in incomplete markets. They
derive, under a martingale measure setting, a unique strategy
minimizing the variance of the total error of replication due
to hedging in a given claim. More precisely, they propose
to approximate the target payoff H by optimally choosing
the initial capital c and a self-financing trading strategy
(∆t)t∈[0,T ] in the risky asset S in order to minimize the
quadratic hedging error:

J(c,∆) = EQ

[
c+

∫ T

0

∆tdSt −H

]2
. (1)

The choice of EMM Q is questionable, since the market in
presence of jumps may be incomplete. To choose an EMM
many methods are proposed: Minimal martingale measure
[16], Esscher martingale measure [21, 7] and Minimal
entropy martingale measure introduced (MEMM) in [19].
The last one has the advantage that it conserves the Lévy
property of the process under the change of measure. In
particular the MEMMs for geometric Lévy processes have
been discussed by [18, 19, 31].
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In this paper, we study generalized Asian option pricing
and hedging in a financial market where the underlying price
is modeled by geometric jump-diffusion Lévy process. The
considered market is in fact incomplete. Deeply influenced
by [19], we choose the MEMM as equivalent martingale
measure under which we show that the price process of a
generalized Asian option is a solution of a two-dimensional
parabolic-hyperbolic partial-integro differential equation.

The paper is structured as follows: In section (III) we
describe the geometric jump-diffusion market model and
we provide some of their useful properties. Next, we in-
troduce the concept of minimal entropy martingale measure
under which we study the properties of the underlying asset
price. In section (IV), we derive a partial-integro differential
equation for generalized Asian options and we make some
vague study of the numerical computation. Section (V) is
devoted to study minimal variance hedging including the
optimal initial endowment and hedging strategy minimizing
the quadratic risk under the MEMM. In section (VI), we
show that the MEMM generalized Asian price is the limit
of the corresponding utility indifference price as the risk-
aversion parameter tends to zero. Finally, section (VII) gives
some concluding remarks.

II. GENERALIZED ASIAN OPTIONS

Let (St)0≤t≤T be the stock price process with jumps and
(Yt)0≤t≤T be the arithmetic average value of the underlying
over the life time interval [0, t]:

Yt =
1

t

∫ t

0

Sudu. (2)

Consider an Asian option maturing at time T based on YT

with an FT -measurable payoff H:

H = φ(ST , YT ),

where φ satisfies the following Lipschitz assumption:

(A1) ∃a > 0; ∀(S, S′, Y, Y ′) ∈ R4
+,

|φ(S, Y )− φ(S′, Y ′)| ≤ a[|S − S′|+ |Y − Y ′|].
This kind of options will be termed as generalized Asian
options. As examples we cite the payoff φ(ST , YT ) =
|ST − YT | of a straddle Asian option and the payoff
φ(ST , YT ) = (ζ. (YT −K1ST −K2))

+
, which is a fixed

strike Asian option, for K1 = 0, and a floating strike Asian
option for K2 = 0. The constant ζ = ±1 determines whether
the option is call or put.

The price Vt of a generalized Asian option depends on t,
St and on the path that the asset price followed up to time
t. In particular, we can not invoke the Markov property to
claim that Vt is a function of t and St.
To overcome this difficulty, we increase the state variable St

by using the second process Yt given by Equation (2) which
follow the stochastic differential equation:

dYt =
St − Yt

t
dt. (3)

The process (St, Yt) constitutes then a two-dimensional
Markov process. Furthermore, the payoff H = φ(ST , YT ) is
a function of T and the final value (ST , YT ) of this process.
This implies the existence of some function ϕ(t, S, Y ) such

that the generalized Asian option price under any EMM Q
is written as:

ϕ(t, St, Yt) = EQ[e−r(T−t)φ(ST , YT )/Ft].

III. ASIAN OPTIONS IN A GEOMETRIC JUMP-DIFFUSION
LÉVY MARKET MODEL

In this section, we focus on the market where the underly-
ing price process is modeled by a geometric jump-diffusion
Lévy process. And we make an appropriate choice of EMM
for such incomplete market.

A. Description of the market model

Let (Ω,F ,P) be a given complete probability space. We
consider a market which consists of a bond with price process
given by Bt = ert, where r denotes the (constant) interest
rate and a non-dividend paying risky asset (the stock or
index). The price process (St)0≤t≤T of the risky asset is
modeled by the following geometric jump-diffusion Lévy
process:

St = S0 exp(rt+ Lt), 0 ≤ t ≤ T, (4)

where Lt is a Lévy process given by:

Lt = µt+ σBt +

Nt∑
j=1

Uj , (5)

here µ is a drift, σ is the underlying volatility supposed to be
positive and (Nt)0≤t≤T is a Poisson process with intensity
λ > 0. The jump sizes (Uj)j≥1 are i.i.d. P-integrable
r.v.s with a distribution F and independent of (Nt)0≤t≤T .
We denote by Ŝt = e−rtSt = S0 exp(Lt) the discounted
underlying price process.
We assume that the σ-fields generated respectively by
(Bt)0≤t≤T , (Nt)0≤t≤T and (Uj)j≥1 are independents and
we take Ft := σ(Bs, Ns, Uj1{j≤Ns}; s ≤ t, j ≥ 1), t ≥ 0
as filtration. Let τ1, · · · , τj , · · · be the dates of jumps of
the stock price St; i.e. the jump times of (Nt)0≤t≤T and
V1, · · · , Vj , · · · their proportions of jumps at these times,
respectively; i.e.

∆Sτj = Sτj − Sτ−
j

= Sτ−
j
Vj for all j ≥ 1,

where Vj = eUj − 1. The r.v.’s (Vj)j≥1 are i.i.d. with a
common distribution G and takes its values in the interval
(−1,+∞). Recall that the expression (5) can be rewritten in
integral form as

Lt = µt+ σBt +

∫
[0,t]

∫
R
xJL(ds, dx),

and Lt is a Lévy process with the characteristic triplet
(µ +

∫
|x|≤1

xνL(dx), σ
2, νL), where νL(dx) = λF (dx)

is the Lévy measure, JL(dt, dx) =
∑
j≥1

δ(τj ,∆Lτj
) is the

random Poisson measure of L on [0,+∞[×R with intensity
νL(dt, dx) := νL(dx)dt.
Hence L has the following Lévy-Itô decomposition:

Lt =

(
µ+

∫
|x|≤1

xνL(dx)

)
t+ σBt (6)

+

∫
[0,t]

∫
|x|>1

xJL(ds, dx) +

∫
[0,t]

∫
|x|≤1

xJ̃L(ds, dx),
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where J̃L(dt, dx) is the compensated measure of JL, i.e.
J̃L(dt, dx) := (JL − νL)(dt, dx).
Since

∫
R |x| νL(dx) = λEP[|U1|] < ∞, it comes that the

first moment of Lt (for all t) is finite (E[|Lt|] < ∞).
Consequently, the expression (6) resumes to this form:

Lt =

(
µ+

∫
R
xνL(dx)

)
t+σBt+

∫ t

0

∫
R
(JL−νL)(ds, dx).

Set Xt := Lt + rt, then Xt is a Lévy process with
characteristic triplets (b, σ2, νL), where

b = µ+

∫
|x|≤1

xνL(dx) + r. (7)

According to Proposition 8.22 of [8], there exists a Lévy
process X̂ such that St is the Doleans-Dade exponent of
X̂t: S = E(X̂). The process X̂ is given by

X̂t = Xt +
σ2

2
t+

∑
0≤u≤t

(1 + ∆Xu − e∆Xu)

= Lt +

(
r +

σ2

2

)
t+

∑
0≤u≤t

(1 + ∆Lu − e∆Lu)

with ∆Xt = Xt −Xt− = Xt − limu↑t Xu and satisfies the
stochastic differential equation

St = S0 +

∫ t

0

Su−dX̂u.

or in integral form

X̂t = b1t+ σBt +

∫ t

0

∫
|x|≤1

(ex − 1)J̃L(du, dx)

+

∫ t

0

∫
|x|>1

(ex − 1)JL(du, dx),

where

b1 =
1

2
σ2 + b+

∫
|x|≤1

(ex − 1− x)νL(dx). (8)

Note that, X̂t is a Lévy process under P with characteristics
(b̂, σ2, ν̂), and has the following Lévy-Itô decomposition
[19]:

X̂t = b̂t+ σBt +

∫ t

0

∫
|x|>1

xJX̂(du, dx) (9)

+

∫ t

0

∫
|x|≤1

xJ̃X̂(du, dx),

where ν̂(dy) = νoJ−1(dy) with J(x) = ex − 1, b̂ =
b1 +

∫
{x<−1}(e

x − 1)νL(dx)−
∫
{log2<x≤1}(e

x − 1)νL(dx),
JX̂ is the random Poisson measure of X̂ with intensity
ν̂(du, dx) = ν̂(dx)du and J̃X̂(du, dx) = (JX̂ − ν̂)(du, dx)
its compensator.

Denote by (R̂t) be the simple return process for (Ŝt) [7].
i.e. R̂t =

∫ t

0
1

Ŝu−
dŜu. It is easy to see that

R̂t = X̂t − rt (10)

B. Minimal entropy martingale measure and geometric
jump-diffusion Lévy processes

The fundamental asset pricing theorem shows that the
choice of an arbitrage-free method is equivalent to the
choice of an equivalent martingale measure Q ∼ P. To do
so, influenced by [19], we use minimal entropy martingale
method for geometric Lévy processes.

Denote by EMM(P) the set of all EMMs of S; i.e. the
set of all probability measures Q on (Ω,FT ) such that the
process {e−rtSt, 0 ≤ t ≤ T} is an (Ft,Q)-martingale and
Q ∼ P.

Definition 1: The relative entropy of Q ∈ EMM(P), with
respect to P, is defined by:

H(Q|P) :=


∫
Ω

log

[
dQ
dP

]
dQ, if Q ≪ P;

∞ otherwise.

If an EMM P∗ satisfies the following condition:

H(P∗|P) ≤ H(Q|P), for all Q ∈ EMM(P), (11)

then, P∗ is called the minimal entropy martingale measure
(MEMM) of (St)0≤t≤T .
A general feature of the MEMM is that its statistical prop-
erties resemble the original process so the specification of
the prior is quite important. It has also the advantage that
the Lévy property is preserved for geometric Lévy processes
and can be defined in terms of the Esscher transform and
Return process [14, 7]. The following theorem resumes the
main properties and results concerning the MEMM.

Theorem 1: [19] Suppose there exists a constant β∗ such
that the following assumptions hold:
(A2)∫
x>1

exeβ
∗(ex−1)νL(dx) = λEP

[
1U1>1e

U1eβ
∗(eU1−1)

]
< ∞

(A3) µ+

(
1

2
+ β∗

)
σ2+

∫
R
(ex−1)eβ

∗(ex−1)νL(dx) = 0

then,
1) The Esscher transform define a probability measure P∗

on FT by:

dP∗

dP

∣∣∣∣
Ft

:=
eβ

∗R̂t

EP[eβ∗R̂t ]
= eβ

∗X̂t−b0t, ∀t ∈ [0, T ],

where (R̂t)t∈[0,T ] is the simple return process given
by Equation (10), (X̂t) is defined by (9), and

b0 =
β∗

2
(1 + β∗)σ2 + β∗b+

∫
R
(eβ

∗(ex−1) − 1

− β∗x1{|x|≤1})νL(dx),

with b defined by Equation (7).
2) The probability measure P∗ is actually in EMM(P). In

addition, P∗ is the MEMM for (St)t≥0 and the relative
entropy of P∗ with respect to P has the form:

H(P∗|P) = −T

[
β∗(b− r) +

β∗(1 + β∗)

2
σ2

+

∫
R
(eβ

∗(ex−1) − 1− β∗x1{|x|≤1})νL(dx)

]
.

where b is the drift (7).
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3) The Stochastic process (Lt) remains a Lévy process
under P∗ with characteristic triplet (µ∗, σ2, ν∗L) and
Lévy-Itô decomposition:

Lt = µ∗t+ σB∗
t +

∫ t

0

∫
|x|≤1

x(JL − ν∗L)(ds, dx)

+

∫ t

0

∫
|x|>1

xJL(ds, dx), (12)

where µ∗ = µ + β∗σ2 +
∫
|x|≤1

xeβ
∗(ex−1)νL(dx),

ν∗L(dx) = eβ
∗(ex−1)νL(dx) and B∗

t = Bt − σβ∗t is a
P∗-Brownian motion.

An easy calculus of the density ηT := dP∗

dP |FT
of the

MEMM P∗ leads to the explicit expression:

ηT = exp

[
β∗σBT − 1

2
(β∗σ)2T

+

∫
[0,T ]

∫
R
β∗(ex − 1)JL(ds× dx)

−T

∫
R

(
eβ

∗(ex−1) − 1
)
νL(dx)

]
.

Remark 1: Assumption (A2) ensures that the first expo-
nential moment of Lt under P∗ is finite, i.e. (Ŝt)0≤t≤T is
P∗-integrable. Consequently, the r.v. V1 = eU1 + 1 is also
P∗-integrable.
The decomposition (12) of L can be rewritten as:

Lt = µ∗t+ σB∗
t +

 Nt∑
j=1

Uj − tλκ

 .

where κ = EP[U1e
β∗(eU1−1)1{|U1|≤1}]. The expression of St

is finally given by:

St = S0 exp(µ0t+ σB∗
t )

Nt∏
j=1

(1 + Vj),

where

µ0 = µ+ β∗σ2 +

∫
|x|≤1

xeβ
∗(ex−1)νL(dx)− λκ+ r

= µ+ β∗σ2 + r.

Since L is a Lévy process with characteristic triplet
(µ∗, σ2, ν∗L) under P∗, it comes according to Proposition
8.20 of [8] and taking account of assumption (A3), that L
is a P∗-square integrable martingale and has the following
expression:

Ŝt = S0 + σ

∫ t

0

Ŝs−dB
∗
s (13)

+

∫ t

0

∫ +∞

−∞
Ŝs−(e

x − 1)(JL − ν∗L)(ds, dx).

The integral of the predictable random function θ(ω, s, x) =
Ŝs−(ω)(e

x−1), with respect to the Poisson random measure
JL, is given by:∫ t

0

∫ +∞

−∞
θ(s, x)JL(ds, dx) =

∑
s∈[0,t]
∆Ls ̸=0

θ(s,∆Ls)

=

Nt∑
j=1

θ(τj , Uj) =

Nt∑
j=1

(eUj − 1)Ŝτ−
j
=

Nt∑
j=1

VjŜτ−
j
.

On the other hand, we have:∫ t

0

∫ +∞

−∞
Ŝs−(e

x − 1)ν∗L(ds, dx)

= λ

∫ t

0

Ŝsds

∫
R
(ex − 1)eβ

∗(ex−1)F (dx)

= λE∗ [V1]

(∫ t

0

Ŝsds

)
.

= (µ+ β∗σ2)

(∫ t

0

Ŝsds

)
.

where E∗ denotes the expectation under P∗. The last equality
follow from assumption (A1). It follows from the Equation
(13) that Ŝt satisfies:

Ŝt = S0 +

∫ t

0

Ŝs

[
σdB∗

s + (µ+ β∗σ2)dt
]

+

Nt∑
j=1

VjŜτ−
j
.

IV. PRICING AND PARTIAL-INTEGRO DIFFERENTIAL
EQUATION

Recall that H = φ(ST , YT ) is the payoff of a general-
ized Asian option in the exponential jump-diffusion market
model, where φ is Borel and fulfills assumption (A1). Using
the stationary and the independence of the increments of L,
the value Vt = e−r(T−t)E∗[H/Ft] of the option at time t is
a function of t, St and Yt:

Vt = ϕ(t, St, Yt),

where ϕ is the following measurable function on [0, T ]×R2:

ϕ(t, S, Y ) = e−r(T−t)E∗[H | St = S, Yt = Y ]

= E∗
[
e−r(T−t)φ

(
SeLT−t+r(T−t),

t

T
Y

+
S

T

∫ T−t

0

eLu+rudu

)]
. (14)

We have the following useful lemma
Lemma 1: On each compact set K0 = [0, T ] × [0, S0] ×

[0, Y0], Y0, S0 > 0, the function ϕ is Lipschitz; i.e. there exist
a constant a0 > 0 such that for all (t, S, Y ), (t′, S′, Y ′) ∈ K0

we have:

|ϕ(t, S, Y )− ϕ(t′, S′, Y ′)| ≤ a0[|t− t′|+|S − S′|+|Y − Y ′|].

Proof: See Appendix (A).

A. Partial-integro differential equation

Proposition 1: Under the assumption (A1), the function
ϕ, given by (14) is continuous on [0, T ]×R+×R+. Further-
more, if ϕ is in the class C1,2,1(]0, T [×R∗

+ × R∗
+), then it

fulfills the following partial-integro differential equation on
[0, T [×R∗

+ × R∗
+:

Lϕ(t, S, Y ) = 0

with the following terminal condition

∀S > 0,∀Y > 0, ϕ(T, S, Y ) = φ(S, Y ),
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where

Lϕ =
∂ϕ

∂t
+
(
r + µ+ β∗σ2

)
S
∂ϕ

∂S
(15)

+
S − Y

t

∂ϕ

∂Y
+

σ2

2
S2 ∂

2ϕ

∂S2
− (r + λ)ϕ

+ λ

∫ +∞

−1

eβ
∗vϕ(t, S(1 + v), Y )G(dv)

=
∂ϕ

∂t
+
(
r + µ+ β∗σ2

)
S
∂ϕ

∂S
+

S − Y

t

∂ϕ

∂Y

+
σ2

2
S2 ∂

2ϕ

∂S2
− (r + λ)ϕ

+ λ

∫ +∞

−∞
eβ

∗(eu−1)ϕ(t, Seu, Y )F (du).

with G the distribution function of the r.v. V1 under P.
Proof: See Appendix (B).

Remark 2: In the above PIDE it is important to note the
term

(
St−Yt

t

)
. This plays an important role in the Upwinding

technique used for numerical computation. The appearance
of this term is precisely due to assumption Yt =

1
t

∫ t

0
Sudu.

It is interesting to note that, for example, [32] defined Yt =∫ t

0
Sudu in order to compute the pricing PDE of an Asian

option when stock price follows geometric Brownian motion.
Remark 3: Note that the integro differential operator (15)

is not well defined at t = 0. It is easy to check that we can
take the following transformation

At = tYt =

∫ t

0

Sudu

to remove the singularity. The corresponding integro differ-
ential operator L1 is given by:

L1ϕ =
∂ϕ

∂t
+
(
r + µ+ β∗σ2

)
S
∂ϕ

∂S
+ S

∂ϕ

∂A

+
σ2

2
S2 ∂

2ϕ

∂S2
− (r + λ)ϕ

+ λ

∫ +∞

−1

eβ
∗vϕ(t, S(1 + v), A)G(dv)

=
∂ϕ

∂t
+
(
r + µ+ β∗σ2

)
S
∂ϕ

∂S
+ S

∂ϕ

∂A

+
σ2

2
S2 ∂

2ϕ

∂S2
− (r + λ)ϕ

+ λ

∫ +∞

−∞
eβ

∗(eu−1)ϕ(t, Seu, A)F (du).

B. Numerical computation of the PIDE

Despite the original domain is 0 ≤ S < ∞, and
0 ≤ Y < ∞, for computational sake we need to truncate
the domain with [0, Smax] × [0, Ymax], with Smax = Ymax.
In order to make the integral defined, it is necessary to
approximate the solution outside the computational domain
S > Smax. Abide by [11], no boundary condition is required
at S = 0, Y = 0, Y = Ymax, which is because, either PIDE
becomes ODE or the resulting degenerate parabolic PIDE
has a normal hyperbolic term with outgoing characteristics.
[11] ensured with the development of consistent, stable
and monotone discrete scheme that no data outside the
computational domain at S = 0 is required.
For the boundary condition at S = ∞ two measure issues
are of concern.

(a) No obvious Dirichlet type condition can be imposed.
(b) On any finite domain [0, Smax], the integral term appears
to gather information from the outside domain. According to
[11], Smax will be taken large so that the solution can be well
approximated by a linear function of S in the region [Smax−
δ, Smax]. δ should be chosen carefully, so that integral term
in the PIDE in [0, Smax − δ] has sufficient data, for accurate
computation. In the region [Smax− δ, Smax]× [0, Ymax] L is
linear in S so the PIDE is reduced to the PDE.
We refer interested readers to [11] for the computational de-
tail in which Semi-Lagrangian method coupled with Implicit-
discretization is proposed. For the Integral term evaluation
FFT is used and correction term δ has alleviated the wrap
around effect.

V. MINIMAL VARIANCE HEDGING

Consider an economic agent who has sold at t = 0 the
contingent claim with terminal payoff H = φ(ST , YT ) for
the price c and decides to hedge the associated risk by trading
in the risky asset S. Note that under the model assumptions,
the payoff H is (FT ,P∗)-square integrable.
The predictable σ-algebra is the σ-algebra generated on
[0, T ] × Ω by all adapted and left-continuous processes.
A stochastic process X : [0, T ] × Ω −→ R which is
measurable with respect to the predictable σ-algebra is called
predictable process. Any left-continuous process is, there-
fore, predictable (by definition). All predictable processes are
generated from left-continuous processes. However, there are
predictable processes which are not left-continuous.

1) The admissible strategy: A hedging strategy is a R2-
valued adapted process K = {(∆0

t ,∆t), 0 ≤ t ≤ T} such
that ∆t (resp. ∆0

t ) represents the number of shares held by
the investor in the risky asset (resp. the riskless asst). The
value at a time t of any strategy K is given by Vt = ∆0

tS
0
t +

∆tSt. A strategy K is said to be self-financing if

dVt = ∆0
tdS

0
t +∆tdŜt.

Taking account of jumps, the components (∆0
t ) and (∆t)

will be taken to be left-continuous with limits from the right
(caglad). For any self-financing strategy K with initial value
V0, we have:

V̂t(K) = V0 +

∫ t

0

∆udŜu. (16)

In order to make Equation (16) meaningful, we shall restrict
ourselves to the following class Θ of admissible hedging
strategies, composed by all caglad and predictable processes
∆ : Ω× [0, T ] −→ R such that:

E∗

(∫ T

0

∆udŜu

)2
 < ∞. (17)

Remark 4: : Thanks to the isometry formula given by
Proposition 8.8 of Cont and Tankov [8], the condition (17)
is equivalent to:

E∗

[∫ T

0

∆2
t Ŝ

2
t dt

]
< ∞. (18)

It ensures that the discounted value V̂t of any admissible
strategy K is a P∗-square integrable martingale.
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The value at a time t of any admissible hedging strategy is
given by:

V̂t(K) = V0 +

∫ t

0

∆uŜu

[
σdB∗

s + (µ+ β∗σ2)dt
]

+

Nt∑
j=1

∆τjVjŜτ−
j

(19)

2) The optimal hedging ratio: Under market incomplete-
ness, the contingent claim H cannot be perfectly replicated
by a self-financing strategy. Therefore, our objective is
naturally to hedge the claim H by the selection of a self-
financing strategy and an initial endowment that minimize
the variance of the error of replication over the set of all
admissible strategies and all initial endowments. The residual
hedging error associated to any admissible strategy ∆ ∈ Θ
is given by:

ϵ(c,∆) = c− Ĥ +

∫ T

0

∆udŜu = e−rT (VT (K)−H), (20)

where Ĥ = e−rTH . Following [34], we consider the
following optimization problem to price and hedge the claim
H under market incompleteness:

(P) inf
(c,∆)∈R×Θ

E∗

(c− Ĥ +

∫ T

0

∆udŜu

)2


= inf(c,∆)∈R×Θ E∗[ϵ(c,∆)2]
where the expectation is taken to be under P∗.

Proposition 2: Let H = φ(ST , YT ) be the payoff of a
generalized Asian option as in the previous proposition.
Suppose that the function ϕ, given by Equation (14), is in
C1,2,1([0, T [×R+ × R+) and that assumptions (A2) and
(A3) are satisfied. The optimal hedging ratio of the risky
asset and initial endowment that allow the minimization of
the quadratic risk over the set Θ are given by:

c̄ = e−rTE∗[H], (21)
∆̄t = ∆̄(t, St− , Yt),

with

∆̄(t, S, Y ) =
1

σ2 +
∫
R eβ∗(eu−1)(eu − 1)2νL(du)

(22)

×
[
σ2 ∂ϕ

∂S
(u, S, Y ) +

1

S

∫
R
eβ

∗(eu−1)(eu − 1)

× [ϕ(t, Seu, Y )− ϕ(t, S, Y )]νL(du)]

Proof: See Appendix (C).

VI. THE MEMM AND UTILITY INDIFFERENCE PRICING

The indifference price concept was first introduced by [22]
in one dimensional Black and Scholes price model, where
trading in the underlying involves a transaction cost. This
concept was developed in order to define a price that could
not be based any more on exact replication, since transaction
costs where admitted, but was founded on agent preferences.

[17] was the first to use an alternative approach to
compute indifference price, applying the general theory of
convex analysis and duality results proven by [4]. He studied
an incomplete market model driven by a d-dimensional
semimartingale, where the set of admissible strategies was

taken to be the set of predictable processes such that the
corresponding wealth processes are uniformly bounded from
below.

In a recent paper, [1] studies the problem of utility
indifference pricing in a constrained financial market, using
a utility function defined over the positive real line. He
provides a dynamic programming equation associated with
the risk measure, and characterize the last as a viscosity
solution of this equation.

Let Uα(x), α > 0 be a CARA exponential utility function
defined by

Uα(x) = 1− e−αx

and c be a real constant, Γ be a suitable set of trading
strategies. The gain process of every strategy θ ∈ Γ is given
by

G(θ)t =

∫ t

0

θudSu,

Note that exponential utility implies constant absolute risk-
aversion, with coefficient of absolute risk-aversion:

−U ′′(x)

U(x)
= α.

Though isoelastic utility, exhibiting constant relative risk-
aversion, is considered more plausible, exponential utility is
particularly convenient for many calculations.

We denote by M a convex subset of probability measures
on (Ω,FT ) which are absolutely continuous with respect to
P.
Let us take a bounded generalized Asian payoff H =
φ(ST , YT ) and consider the following assumption (A4):
(A1

4) The MEMM P∗ belongs to M i.e.

inf
Q∈M

H(Q|P) = H(P∗|P) < ∞ (23)

(A2
4) (Duality relation) [9], [4] : Duality relation holds.

Jα(c,H) = sup
θ∈Γ

EP[Uα(c+G(θ)T −H)]

= 1− exp

[
− inf

Q∈M

(
H(Q|P) + αc− EQ[αH]

)]
Jα(c,H)

= 1− e−αc exp

[
α sup

Q∈M

(
EQ[H]− 1

α
H(Q|P)

)]
For the duality relation to hold [9] and [26] have considered
locally bounded semimartingales. But the geometric jump-
diffusion Lévy process Ŝt considered in this article does not
necessarily possess this property. [4] has shown that for un-
bounded price process infimum of equation (23) may not be
attained by an equivalent martingale measure. But [19] have
established existence of the MEMM for the geometric Lévy
process without using the assumption. So it would be natural
to expect that Duality theorem hold. For details see [18].
Now we introduce utility indifference price pα(c,H) [9].
The value pα(c,H) which satisfies the following equation :

Jα(c+ pα(c,H), H) = Jα(c, 0)
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is called utility indifference price. Solution of above equation
is written as

pα(c,H) = sup
Q∈M

(
EQ[H]− 1

α
H(Q|P)

)
+

1

α
inf

Q∈M
H(Q|P)

Remark that pα(c,H) does not depend on c and will be
denoted by pα(H); i.e.

pα(H) = pα(0, H) = pα(c,H).

Let QH
α be a probability measure in M such that

EQH
α [H]− 1

α
H(QH

α |P)

> sup
Q∈M

(
EQ[H]− 1

α
H(Q|P)

)
− α.

Theorem 2: MEMM for bounded generalized Asian
options
Consider a generalized Asian options with bounded payoff
H = e−rTφ(ST , YT ), (for example a fixed strike Asian
put option with payoff H = e−rT max (K − YT , 0)). Then
following is true.

(1) lim
α↓0

H(QH
α |P) = H (P∗|P).

(2) lim
α↓0

∥QH
α − P∗∥var = 0 where ∥.∥var denotes total

variation norm.
(3) pα(H) ≥ EP∗

[H] for any α > 0.
(4) If 0 < α < β then pα(H) ≤ pβ(H).
(5) lim

α↓0
pα(H) = EP∗

(H).

The proof of the theorem will exactly follow with the same
lines of [19] for bounded contingent claim H . [5] has shown
that the utility indifference price of any bounded claim lies
within the interval of possible arbitrage-free valuations, i.e.
No-arbitrage consistency: For H ∈ L∞(P):

inf
Q∈EMM(P)

EQ[H] ≤ pα(H) ≤ sup
Q∈EMM(P)

EQ[H].

It is also clear that the utility-indifference price tends to
the super-replication price, which is the supremum of the
expectations of H over all equivalent martingale measures,
as the risk-aversion tends to infinity, price converges to the
super-hedging price, that is, worst price under the viability
assumption. On the other hand, as the absolute risk-aversion
decreases to zero, the utility indifference price tends to a
risk-neutral valuation under the minimal entropy martingale
measure P∗ which is the lower bound of the interval of
arbitrage-free price i.e. infimum of expectation of H over all
equivalent martingale measures. Above theorem for Asian
put option and arguments portrays that MEMM P∗ is the
appropriate choice for pricing generalized Asian options.

VII. CONCLUDING REMARKS

In this paper, we studied generalized Asian option pricing
and hedging problems in a financial market with jumps in the
underlying under the minimal entropy martingale measure.
Such measure is better than the method suggested by [16] in
the presence of jumps: Their choice for semimartingale price
process in the market measure, would end up with signed
measure. But, it is well-known that this kind of measures are

not robust with stopping times. Thus, an obvious extension
of this theory to the case of Asian-American style options is
not feasible to us.

We showed that the Asian option’s price is subject to a
time-dependent partial-integro differential equation. To solve
this PIDE we need to customize boundary condition viewing
the option constraint. The obtained PIDE is not very obvious
to solve numerically and simulation techniques are also
not very apparent. In subsection (IV-B) we tried to make
some vague study of the numerical computation. Precise
study of the numerical computation of the PIDE regarding
consistency, stability and comparison with empirical data,
this is what we intend to do in future works.

We also showed that the utility indifference price for
bounded Asian option payoffs, converges to the risk-neutral
valuation under the MEMM, as the risk-aversion goes to
zero. For the case of unbounded generalized Asian options,
the question remains open.

APPENDIX A
PROOF OF LEMMA 1

Proof of lemma 1: Let S0 > 0, Y0 > 0 and K0 =
[0, T ]× [0, S0]× [0, Y0]. For (t, S, Y ), (t′, S′, Y ′) ∈ K0, we
have taking into account assumption (A1):

|ϕ(t, S, Y )− ϕ(t′, S′, Y ′)| ≤ e−r(T−t) ×

E∗

[∣∣∣∣∣φ
(

S

S0
ST−t,

t

T
Y +

S

TS0

∫ T−t

0

Sudu

)

−φ

(
S′

S0
ST−t,

t

T
Y ′ +

S′

TS0

∫ T−t

0

Sudu

)∣∣∣∣∣
]

+
∣∣∣e−r(T−t) − e−r(T−t′)

∣∣∣
×E∗

[∣∣∣∣∣φ
(
S′

S0
ST−t,

t

T
Y ′ +

S′

TS0

∫ T−t

0

Sudu

)∣∣∣∣∣
]

≤ ξ(T ) [|S′ − S|+ |Y ′ − Y |] + rerT |t′ − t| (|φ(0, 0)|
+ ξ(T )(|S0|+ |Y0|))
≤ a0[|S′ − S|+ |Y ′ − Y |+ |t′ − t|],

where ξ(T ) := a
(
erT + 1

r (e
rT − 1) + 1

)
and a0 =

max
{
ξ(T ), rerT (|φ(0, 0)|+ ξ(T )(|S0|+ |Y0|))

}
.

APPENDIX B
PROOF OF PROPOSITION 1

Let V̂t = e−rtVt = e−rtϕ(t, St, Yt) := ϕ̂(t, St, Yt) be the
discounted value of the option at time t. The continuity of
the function ϕ derives from Lemma (1). We have

dSt = ert
(
dŜt + rŜtdt

)
= St− (σdB∗

t + ςdt) ,

dYt =
St − Yt

t
dt,

with ς = r − λE∗ [V1] = r + µ + β∗σ2, taking account of
(A3), and Y0 = limt→0

1
t

∫ t

0
Sudu = S0, a.s., Then by

application of Itô’s lemma on each time interval [τj−1, τj ] to
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ϕ̂(t, St, Yt), t < T , we get after addition

V̂t = ϕ(0, S0, Y0)− r

∫ t

0

e−ruϕ(u, Su, Yu)du

+

∫ t

0

e−ru ∂ϕ

∂t
(u, Su, Yu)du

+

∫ t

0

e−ru ∂ϕ

∂S
(u, Su, Yu)Su− (σdB∗

u + ςdu)

+

∫ t

0

e−ru ∂ϕ

∂Y
(u, Su, Yu)

Su − Yu

u
du

+
1

2

∫ t

0

e−ru ∂
2ϕ

∂S2
(u, Su, Yu) σ

2S2
u−du+Σt,

where

Σt =

Nt∑
j=1

[
ϕ̂(τj , Sτj , Yτj )− ϕ̂(τj , Sτ−

j
, Yτj )

]
.

Since Sτj = (1 + Vj)Sτ−
j

= S0e
Uj+X

τ
−
j = S0e

∆Xτj
+X

τ
−
j

with Xt = Lt + rt, we obtain:

Σt =
Nt∑
j=1

[
ϕ̂(τj , S0e

∆Xτj
+X

τ
−
j , Yτj )− ϕ̂(τj , S0e

X
τ
−
j , Yτj )

]

=

∫ t

0

∫
R

[
ϕ̂(s, S0e

u+Xs− , Ys)− ϕ̂(s, S0e
Xs− , Ys)

]
×JL(ds, du)

=

∫ t

0

∫
R

[
ϕ̂(s, Ss−e

u, Ys)− ϕ̂(s, Ss−, Ys)
]

×JL(ds, du) = Ct +Dt,

where

Ct =

∫ t

0

∫
R

[
ϕ̂(s, Ss−e

u, Ys)− ϕ̂(s, Ss−, Ys)
]

× (JL − ν∗L)(ds, du)

Dt =

∫ t

0

∫
R

[
ϕ̂(s, Ss−e

u, Ys)− ϕ̂(s, Ss−, Ys)
]

× ν∗L(du)ds

= λ

∫ t

0

∫
R
eβ

∗(eu−1)
[
ϕ̂(s, Ss−e

u, Ys)

− ϕ̂(s, Ss−, Ys)
]
F (du)ds

= λ

∫ t

0

∫ +∞

−1

eβ
∗v
[
ϕ̂(s, Ss−(1 + v), Ys)

− ϕ̂(s, Ss−, Ys)
]
G(dv)ds,

Hence,

V̂t = ϕ(0, S0, Y0) + σ

∫ t

0

e−ru ∂ϕ

∂S
(u, Su, Yu)SudB

∗
u

+

∫ t

0

e−rukudu+ Ct

where k. is the process defined by:

ku = Lϕ(u, Su, Yu),

L being the parabolic-hyperbolic integro differential operator
defined by Equation (15).
Since the process V̂t is a martingale, as well as the process

Ct, the process k vanishes almost surely and we consequently
obtain:

V̂t − Ct = ϕ(0, S0, Y0) (24)

+ σ

∫ t

0

e−rt ∂ϕ

∂S
(u, Su, Yu)SudB

∗
u.

APPENDIX C
PROOF OF PROPOSITION 2

Since for all admissible strategy ∆ ∈ Θ,
E∗
[∫ T

0
∆udŜu

]
= 0, one has :

E∗[ϵ(c,∆)2] = (c− E∗[Ĥ])2

+ E∗

(E∗[Ĥ]− Ĥ +

∫ T

0

∆udŜu

)2
 .

The last equation shows that the optimal initial capital for the
problem (P) is given by c̄ = E∗[Ĥ]. After replacing c by c̄
in the expression of the quadratic criterion to be minimized,
we obtain:

E∗[ϵ(c̄,∆)2] = E∗

(E∗[Ĥ]− Ĥ +

∫ T

0

∆udŜu

)2
 .

Let V̂t = e−rtVt = e−rtϕ(t, St, Yt) be the discounted value
of the option at time t. Equation (24) is written as:

ϕ̂(t, St, Yt) = ϕ(0, S0, Y0) + σ

∫ t

0

∂ϕ

∂S
(u, Su, Yu)ŜudB

∗
u

+ Ct,

where

Ct =

∫ t

0

∫
R

[
ϕ̂(s, Ss−e

u, Ys)− ϕ̂(s, Ss−, Ys)
]

× (JL − ν∗L)(ds, du).

We have
Lemma 2: The process Ct is a P∗-square integrable mar-

tingale.
Proof: See Appendix (D).

Then it comes from Proposition 8.8 of [8], that the
compensated Poisson integral Ct is a P∗-square integrable
martingale.
Now, from Equation (19) we obtain:

Ĥ − V̂T (K) = ϕ̂(T, ST , AT )− V̂T (K) = αT + γT ,

where

αt =

∫ t

0

(
∂ϕ

∂S
(u, Su, Yu)−∆u

)
σŜudB

∗
u

γt = Ct −
Nt∑
j=1

∆τjVjŜτ−
j
+ λE∗[V1]

∫ t

0

du∆uŜu.

= Ct −
Nt∑
j=1

∆τjVjŜτ−
j
− (µ+ β∗σ2)

∫ t

0

du∆uŜu.

since λE∗[V1] = −(µ+β∗σ2) by assumption (A3). We can
easily verify that:

Nt∑
j=1

∆τjVjŜτ−
j
=

∫ t

0

∫
R
∆sŜs−(e

u − 1)JL(ds, du).
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It follows that:

γt =

∫ t

0

∫
R

[
ϕ̂(s, Ss−e

u, Ys)− ϕ̂(s, Ss−, Ys)

− ∆sŜs−(e
u − 1)

]
(JL − ν∗L)(ds, du).

Since the processes αt and γt are two P∗-zero-mean square
integrable martingales, it comes that αtγt is a martingale
null at time t = 0. Hence, according to the isometry formula
given by Proposition 8.8 of [8] we get:

E∗
[(

Ĥ − V̂T (K)
)2]

= E∗[α2
T ] + E∗[γ2

T ]

= E∗

[∫ T

0

(
∂ϕ

∂S
(u, Su, Yu)−∆u

)2

σ2Ŝ2
udu

]
+ E∗[γ2

T ].

We have

E∗[γ2
T ] = E∗

[∫ T

0

∫
R
[ϕ̂(t, St−e

u, Yt)

− ϕ̂(t, St−, Yt)−∆tŜt−(e
u − 1)]2ν∗L(du)dt

]
.

The quadratic risk is finally written as:

RT (K) = E∗

[∫ T

0

(
∂ϕ

∂S
(t, St, Yt)−∆t

)2

σ2Ŝ2
t dt

+

∫ T

0

∫
R
[ϕ̂(t, St−e

u, Yt)− ϕ̂(t, St−, Yt)

−∆tŜt−(e
u − 1)]2ν∗L(du)dt

]
.

The optimal strategy K̄ = (∆̄0, ∆̄) is obtained by differenti-
ating the last quadratic expression, and should satisfy P∗-a.s.(

∂ϕ

∂S
(t, St, Yt)− ∆̄t

)
σ2Ŝ2

t

+ Ŝt−

∫
R
(eu − 1)[ϕ̂(t, St−e

u, Yt)

−ϕ̂(t, St−, Yt)− ∆̄tŜt−(e
u − 1)]ν∗L(du) = 0,

which is rewritten again as:(
∂ϕ

∂S
(t, St, Yt)− ∆̄t

)
σ2St

2

+ St−

∫
R
eβ(e

u−1)(eu − 1)[ϕ(t, St−e
u, Yt)

−ϕ(t, St−, Yt)− ∆̄tSt−(e
u − 1)]νL(du) = 0.

Since the process (∆̄t)t≥0 is left-continuous, we obtain:

∆̄t = ∆̄(t, St− , Yt), (25)

where ∆̄ is given by Equation (22).

APPENDIX D
PROOF OF LEMMA 2

The process (St)0≤t≤T is P∗-square integrable. Indeed,

E∗[S2
t ] = S2

0e
2µ0tE∗[e2σB

∗
t ]E∗

 Nt∏
j=1

(1 + Vj)
2


= S2

0e
2µ0t+2σ2t exp

(
λt
[
E∗[(1 + V1)

2]− 1
])

= S2
0 exp

(
2µ0t+ 2σ2t+ 2λtE∗[V1] + λtE∗[V 2

1 ]
)

Since λE∗[V1] = −(µ + β∗σ2) by assumption (A3) and
µ0 = µ+ β∗σ2 + r it comes that

E∗[S2
t ] = S2

0 exp
(
2(σ2 + r)t+ λtE∗[V 2

1 ]
)
. (26)

Denote:

ρ(t, u) := ϕ(t, St−e
u, Yt)− ϕ(t, St−, Yt).

Taking account of assumptions (A1) and (A2), we have for
all (t, S, S′, Y ) ∈ [0, T ]× R3:

|ϕ(t, S, Y )− ϕ(t, S′, Y )|

≤ a

S0
|S − S′|E∗

[
ST−t +

1

T

∫ T−t

0

Sudu

]

≤ a

S0
|S − S′|

(
E∗[ST−t] +

1

T

∫ T−t

0

E∗[Su]du

)
≤ b|S′ − S|,

where b = a
[
erT + 1

rT (e
rT − 1

]
< ∞. Hence

E∗

[∫ T

0

∫
R
ρ2(t, u)ν∗L(du)dt

]

≤ b2E∗

(∫ T

0

S2
t dt

)∣∣∣∣∫
R
(eu − 1)2eβ

∗(eu−1)ν(du)

∣∣∣∣
= b2

(∫ T

0

E∗[S2
t ]dt

)
E∗[V 2

1 ]

≤ b2TS2
0 exp

(
2(σ2 + r)T + λTE∗[V 2

1 ]
)
E∗[V 2

1 ] < ∞,

where the last inequality is obtained thanks to (26).
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