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Abstract—This paper is concerned with Monte Carlo simu-
lation of generalized Asian option prices where the underlying
asset is modeled by a geometric (finite-activity) Lévy process.
A control variate technique is proposed to improve standard
Monte Carlo method. Some convergence results for plain Monte
Carlo simulation of generalized Asian options are proven, and a
detailed numerical study is provided showing the performance
of the variance reduction compared to straightforward Monte
Carlo method.

Index Terms—Lévy process, Asian options, Minimal-entropy
martingale measure, Monte Carlo method, Variance Reduction,
Control variate.

I. INTRODUCTION

THe pricing of Asian options is a delicate and interesting
topic in quantitative finance, and has been a topic of

attention for many years now. Asian options are commonly
traded: they were introduced to avoid a problem common
for European options, where the speculators could drive
up the gains from the option by manipulating the price of
the underlying asset near to the maturity date.They have
become very attractive for investors since they provide a
customized cheap way to hedge periodic cash flows [24].
In spite of such advantages there is no closed form solution
for the price of an Asian option, even when the underlying
follows a Geometric Brownian model. As a remedy to this
difficulty, many approaches and numerical approximations
are proposed. For instance, in continuous markets, [27]
provided tight analytic bounds for the Asian option price,
[12] computed the Laplace transform of the Asian Option
price, [17] used Monte Carlo simulations, [16] investigated
a method based on binomial trees, [1] used Fast Fourier
Transform technique. The authors of [9] introduced change
of numeraire technique and those of [26] used it to reduce the
PDE problem in two variables. They got a lower bound for
the price. [15] used lattices to price fixed-strike European-
style Asian options that are discretely monitored. [7] derived
a closed-form solution for the price of an average strike as
well as an average price geometric Asian option, by making
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use of the path integral formulation. [19] studied a cer-
tain one-dimensional, degenerate parabolic partial differential
equation with a boundary condition which arises in pricing
of Asian options. [25] considered the approximation of
the optimal stopping problem associated with ultradiffusion
processes in valuating Asian options. The value function is
characterized as the solution of an ultraparabolic variational
inequality.

For discontinuous markets, [8] generalized Laplace trans-
form for continuously sampled Asian option where under-
lying asset is driven by a Lévy Process, [18] presented a
binomial tree method for Asian options under a particular
jump-diffusion model. But such Market may be incomplete.
Therefore, it will be a big class of equivalent martingale
measures (EMMs). For the choice of suitable one, many
methods have been proposed: Esscher martingale measure
[13, 3], Minimal martingale measure [10], which can be
viewed as time-honored Esscher transform and minimal
entropy martingale measure (MEMM) introduced in [11],
[28] developped a simple network approach to American
exotic option valuation under Lévy processes using the fast
Fourier transform (FFT). Finally, [22] derived bounds for the
price of a discretely monitored arithmetic Asian option when
the underlying asset follows an arbitrary Lévy process.

In this paper, we placed in a financial market driven by a
finite-activity Lévy process and we study the pricing of gen-
eralized Asian options under the MEMM. The choice of such
measure is justified by the fact that it preserves the Lévy and
the statistical properties of the process. To estimate prices,
we propose a control variate variance reduction technique to
improve the Monte Carlo method and illustrate numerically
its improvement for particular examples of generalized Asian
options. The use of Monte Carlo techniques is an established
approach when dealing with this kind of problems both in
theory and practice, and the paper makes a contribution to
the literature.

Our paper is structured as follows: In section (II), we
recall the main properties of a geometric (finite activity)
Lévy process and give some particular generalized Asian
options. In section (III), we introduce the minimal entropy
martingale measure under which we study the properties of
the stock price. In section (IV), we study the convergence
of Monte Carlo price estimator in L2 using the Reimann
scheme and propose a particular control variate variance
reduction technique to improve the Monte Carlo method.
Such amelioration is illustrated numerically for particular
examples of generalized Asian options in section (V). Finally,
section (VI) deals with concluding remarks.
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II. THE FRAMEWORK

A. The market model
Let (Ω,F ,P) be a given complete probability space. We

consider a market which consists of a bond with price process
given by Bt = ert, where r denotes the (constant) interest
rate and a non-dividend paying risky asset (the stock or
index). The price process (St)0≤t≤T of the risky asset is
modeled by the following geometric Lévy process:

St = S0 exp(rt+ Lt), 0 ≤ t ≤ T, (1)

where Lt is a Lévy process given by:

Lt = µt+ σBt +

Nt∑
j=1

Uj , (2)

here µ is a drift, σ is the underlying volatility supposed to be
positive and (Nt)0≤t≤T is a Poisson process with intensity
λ. The jump sizes (Uj)j≥1 are i.i.d. P-integrable r.v. with a
distribution F and independent of (Nt)0≤t≤T . We denote by
Ŝt = e−rtSt the discounted underlying price process.
We assume that the σ-fields generated respectively by
(Bt)0≤t≤T , (Nt)0≤t≤T and (Uj)j≥1 are independents and
we take Ft := σ(Bs, Ns, Uj1{j≤Ns}; s ≤ t, j ≥ 1), t ≥ 0 as
filtration.

Let τ1, · · · , τj , · · · be the dates of jumps of the stock price
St; i.e. the jump times of (Nt)0≤t≤T and V1, · · · , Vj , · · · their
proportions of jumps at these times, respectively; i.e.

∆Sτj = Sτj − Sτ−
j

= Sτ−
j
Vj for all j ≥ 1,

where Vj = eUj − 1. The r.v.’s (Vj)j≥1 are i.i.d. with a
common distribution G and takes its values in the interval
(−1,+∞).

Recall that Lt is a Lévy process with the characteris-
tic triplet (µ +

∫
|x|≤1

xνL(dx), σ2, νL), where νL(dx) =

λF (dx). The Lévy-Itô decomposition of Lt takes the form:

Lt = µ+

∫
|x|≤1

xνL(dx)t+ σBt∫
[0,t]

∫
|x|>1

xJL(ds, dx) +

∫
[0,t]

∫
|x|≤1

xJ̃L(ds, dx),(3)

where JL(dt, dx) =
∑
j≥1

δ(τj ,∆Lτj ) is the random Poisson

measure of L on [0,+∞[×R with intensity νL(dt, dx) :=
νL(dx)dt and J̃L(dt, dx) := (JL − νL)(dt, dx). Set Xt :=
Lt+rt, then Xt is a Lévy process with characteristic triplets
(b, σ2, νL), where

b = µ+

∫
|x|≤1

xνL(dx) + r. (4)

According to proposition 8.22 of [6], there exists a Lévy
process X̂ such that St is the Doleans-Dade exponent of
X̂t: S = E(X̂). The process X̂ is given by

X̂t = Xt +
σ2

2
t+

∑
0≤u≤t

(1 + ∆Xu − e∆Xu) (5)

= Lt +

(
r +

σ2

2

)
t+

∑
0≤u≤t

(1 + ∆Lu − e∆Lu)

and satisfies the stochastic differential equation

St = S0 +

∫ t

0

Su−dX̂u.

B. Generalized Asian options

Let Yt be the arithmetic average value of the underlying
(St)t∈[0,T ] on the life time interval [0, t]:

Yt =
1

t

∫ t

0

Sudu.

Consider an Asian option maturing at time T based on YT
with an FT -measurable payoff H having the form:

H = ϕ(ST , YT ),

where ϕ satisfies the following Lipchitz assumption:

(A1) ∃a > 0;∀(S, S′, Y, Y ′) ∈ R4
+,

|ϕ(S, Y )− ϕ(S′, Y ′)| ≤ a[|S − S′|+ |Y − Y ′|].
Such option is called generalized Asian option. As ex-

amples we can cite the payoffs ϕ(ST , YT ) = |ST − YT |
of a straddle Asian option and the payoff ϕ(ST , YT ) =
(ζ. (YT −K1ST −K2))

+
, which is a fixed strike Asian

option, for K1 = 0, and a floating strike Asian option for
K2 = 0. The constant ζ = ±1 determines whether the option
is call or put.

The price Vt of such option at time t depends on t, St
and on the path that the asset price followed up to time t. In
particular, we can not invoke the Markov Property to claim
that Vt is a function of t and St because H is not a function
of T and ST ; H depends on the whole path of S.

To overcome this difficulty, we increase the state St
by defining a second process Yt following the stochastic
differential equation:

dYt =
St − Yt

t
dt. (6)

The process (St, Yt) is governed by the pair of equations
(1) and (6) constitutes a two-dimensional Markov process.
Furthermore, the payoff H = ϕ(ST , YT ) is a function of T
and the final value (ST , YT ) of this process. Thus, there exists
some function φ(t, S, Y ) such that the generalized Asian
option price under a particular probability P∗ is given by

φ(t, St, Yt) = E∗[e−r(T−t)ϕ(ST , YT )/Ft].

III. MINIMAL ENTROPY MARTINGALE MEASURE AND
GEOMETRIC LÉVY PROCESSES

A. Minimal entropy martingale measure

In this section, we denote by P(S) the set of all EMM of
Ŝ; i.e. the set of all probability measures Q on (Ω,FT ) such
that the process {Ŝt, 0 ≤ t ≤ T} is an (Ft,Q)-martingale
and Q ∼ P.

Definition 1: The relative entropy of Q ∈ P(S), with
respect to P, is defined by:

H(Q|P) :=


∫

Ω

log

[
dQ
dP

]
dQ, if Q� P;

∞ otherwise.

If an EMM P∗ satisfies the following condition:

H(P∗|P) ≤ H(Q|P), for all Q ∈ P(S),

then, P∗ is called the minimal entropy martingale measure
(MEMM) of (Ŝt)0≤t≤T .
A general feature of the MEMM is that its statistical proper-
ties resemble the original process so the specification of the
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prior is quite important. It has also the advantage that the
Lévy property is preserved for geometric Lévy processes.
The following theorem resumes the main properties and
results concerning the MEMM.

Theorem 1: [11] Suppose there exists a constant β∗ such
that the following assumptions hold:
(A2)∫
x>1

exeβ
∗(ex−1)ν(dx) = λEP

[
1U1>1e

U1eβ
∗(eU1−1)

]
<∞

(A3) µ+

(
1

2
+ β∗

)
σ2 +

∫
R
(ex−1)eβ

∗(ex−1)νL(dx) = 0

then,
1) Define a probability measure P∗ on FT by:

dP∗

dP

∣∣∣∣
Ft

:= eβ
∗X̂t−b0t, for every t ∈ [0, T ],

where (X̂t) is defined by (5), and

b0 =
β∗

2
(1 + β∗)σ2 + β∗b

+

∫
R
(eβ

∗(ex−1) − 1− β∗x1{|x|≤1})νL(dx).

where b is given by (4).
2) The probability measure P∗ is actually in P(S). In

addition, P∗ is the MEMM of (St)t≥0 and the relative
entropy of P∗ with respect to P has the form:

H(P∗|P) = −T
[
β∗µ+

β∗(1 + β∗)

2
σ2

+

∫
R

(eβ
∗(ex−1) − β∗1{|x|≤1})νL(dx)

]
.

3) The Stochastic process (Lt) remains a Lévy process
under P∗ with the following Lévy-Itô decomposition:

Lt = µ∗t+ σB∗t +

∫ t

0

∫
|x|≤1

x(JL − ν∗L)(ds, dx)

+

∫ t

0

∫
|x|>1

xJL(ds, dx), (7)

where µ∗ = µ + β∗σ2 +
∫
|x|≤1

xeβ
∗(ex−1)νL(dx),

ν∗L = eβ
∗(ex−1)νL(dx) and B∗t = Bt − σβ∗t is a

P∗-Brownian motion. The Lévy process L is a P∗-
square integrable martingale with characteristic triplet
(µ∗, σ2, ν∗L).

Remark 1: Assumption (A2) ensures that the first expo-
nential moment of Lt under P∗ is finite, i.e. (Ŝt)0≤t≤T is
P∗-integrable. Consequently, the r.v. V1 = eU1 + 1 is also
P∗-integrable.

Remark 2: Set

f(β) = µ+

(
1

2
+ β

)
σ2 +

∫
R
(ex−1)eβ(ex−1)νL(dx). (8)

(i) The function f is an increasing continuous function with
lim
−∞

f = −∞ and lim
+∞

f = +∞. Thus, the function (8)
has a unique root β∗.

(ii) f(0) and β∗ have opposite sign (if β∗ 6= 0).

B. The geometric Lévy process under the MEMM

The decomposition (7) of L can be rewritten as:

Lt = µ∗t+ σB∗t +

 Nt∑
j=1

Uj − tλκ

 .

where κ = E∗[U11{|U1|≤1}] and E∗ denotes the expectation
under P∗. The expression of St is finally given by:

St = S0 exp(µ0t+ σB∗t )

Nt∏
j=1

(1 + Vj),

where

µ0 = µ+ β∗σ2 +

∫
|x|≤1

xeβ
∗(ex−1)νL(dx)− λκ+ r

= µ+ β∗σ2 + r.

IV. PRICING OF GENERALIZED ASIAN OPTIONS WITH
MONTE CARLO METHOD

Monte Carlo methods [4, 5, 17, 20] are known to be
useful as the state space is large. This motivates us to use
Monte Carlo simulations in order to approximate numerically
the (initial) price of a generalized Asian option under the
MEMM. To this end, we approximate the integral of the
underlying asset price by the standard Reimann scheme.
The Monte Carlo method will be improved by the use
of a control variate variance reduction technique. We will
choose the underlying price process itself (at maturity) as a
control variate. In order to apply the control variate approach,
we choose as control variable the underlying asset itself
following [23] for European call option.

A. Standard Monte Carlo technique

In this section, we present briefly the Monte Carlo Method
using the Riemann scheme. Since we are able to approximate
AT =

∫ T
0
Sudu, we consider the subdivision (tk)k∈{0,1,...,n}

of [0, T ] where tk = k Tn = kh, k = 0, ..., n. The Reimann
scheme can be described by:

AnT = h
n−1∑
k=0

Stk .

The price of the generalized Asian option with payoff
ϕ(ST , YT ) is approximated using the Monte Carlo Method
by:

V0 ≈
e−rT

M

M∑
j=1

ϕ

(
SjT ,

1

n

n−1∑
k=0

Sjtk

)
,

where M is the number of Monte Carlo and
Sj = (Sj0, S

j
t1 , . . . , S

j
T ) denote a realization of

S = (S0, St1 , . . . , ST ) in the jth iteration.
The complexity of the last algorithm is O

(
1
Mn

)
, which

is in fact true for every kind of Monte Carlo method. It
involves two kinds of errors: the Monte Carlo error which is
of order O

(
1
M

)
and the time step error which is harder to

evaluate and expressed in proposition (1). This convergence
result is original and contributes to the literature of Asian
option pricing.

Let us then study the L2 convergence of the Reimann
scheme. We show that it is of order O

(
1
n

)
. We have the

following result:
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Proposition 1: (Convergence in L2) Under the MEMM,
we have: √

E∗ |YT − Y nT |
2 (9)

=
S0√

6

√(
3(1− erT ) +

(
2− r

c

)
(ecT − 1)

) 1

n

+
S0T

4
√

6

(
erT − 1 + (r − 1)(ecT − 1)

)√
3(1− erT ) +

(
2− r

c

)
(ecT − 1)

1

n2

+ o
(
n−2

)
.

Proof: The proof is put in Appendix (B) and based of
the following Lemma the proof of which is put in Appendix
(A):

Lemma 1: For all 0 ≤ u ≤ v, we have E∗[Ŝ2
u] = S2

0e
c.u

and E∗[SuSv] = S2
0e
rveu(c−r) where

c = σ2 +

∫
R

(ex − 1)2ν∗L(dx). (10)

B. Variance reduction with control variate technique

Variance reduction techniques are used to increase accu-
racy in the estimated variable by decreasing sample standard
deviation, instead of large samples. The method of control
variate, first introduced by [2], takes the advantages of
random variables with known expected value and positively
correlated with the variable under consideration.

The price of a generalized Asian option with payoff
ϕ(ST , YT ) is approximated by

V0 ≈ E∗[Zn],

where Zn is given by expression

Zn = e−rTϕ

(
ST ,

h

T

n−1∑
k=0

Stk

)
, (11)

with ϕ a function satisfying hypothesis (A1).
For n large enough, we have to determine the mean of the

random variable Zn through simulation. In order to apply
the control variate approach, we choose as control variable
the price at maturity of the underlying asset itself following
[23] for European call option. Each discretized sample path
Sj(n) = (S0, S

j
t1 , . . . , S

j
tn−1

, SjT ) generates a sample of Zjn.
The control variate estimator V̄CV of E∗[Zn] is given by:

V̄CV = Z̄n − S̄T + E∗[ST ]

=
1

M

M∑
j=1

[
e−rTϕ

(
SjT , hn

n−1∑
i=0

Sjti

)
− SjT + S0e

rT

]
.

We can show that the control variate estimator V CV is
unbiased and consistent (see [14, 23]). Its variance is given
by

Var(V̄CV ) =
1

M

[
σ2
Zn + σ2

ST − 2ρSTZnσZnσST
]
.

This shows that the control variate estimator V̄CV , will have
lower variance than Z̄n if and only if

Cov(ST , Zn)

Var(ST )
>

1

2
.

To fully take advantage of control variate, a parameter ς is
introduced and optimized to minimize the variance of V̄CV .
The parameterized control variate estimator is defined as
follows:

V̄CV (ς) = Z̄n − ς(S̄T − S0e
rT ).

The resulting variance is:

Var(V̄CV (ς)) =
1

M

[
σ2
Zn + ς2σ2

ST − 2ςρSTZnσZnσST
]
.

(12)
The optimal parameter ς∗n that minimizes this variance is
given by:

ς∗n =
σZn
σST

ρSTZn =
Cov(ST , Zn)

Var(ST )
. (13)

Inserting (13) in (12), we get

Var(V̄CV (ς∗n)) =
(
1− ρ2

STZn

) σ2
Zn

M
. (14)

The variance reduction is then highly dependent on the
correlation between the simulated variable Zn and the control
variate ST . In practice, Cov(ST , Zn) is never known and has
to be simulated. Although Var(ST ) is known explicitly, it has
to be simulated since its expression involves some integrals.
The sample estimators

SSTST =
1

M − 1

M∑
j=1

(SjT − S̄T )2

SSTZn =
1

M − 1

M∑
j=1

(SjT − S̄T )(Zjn − Z̄n)

give the estimator of ς∗n as follows:

ς̂∗n = SSTZnS−1
STST .

Thus,

Var(V̄CV (ς̂∗n)) =
1

M
[Var(Zn) + ς̂∗nVar(ST ) (ς̂∗n − 2ς∗n)] .

As ς̂∗n converges almost surely to ς∗n, ς̂∗n − 2ς∗n < 0 a.s., for
M large enough. Consequently, we get

Var(V̄CV (ς̂∗n) <
1

M
Var(Zn) = Var(Z̄n),

for M large enough. In order to estimate ς∗n, there are two
possible scenarios:
(1) We can first estimate ς∗n by a small number of simulations,
and next use many additional simulations to approximate the
control variate estimator itself.
(2) Another alternative is to use the totality of simulations
to estimate ς∗n.

The second approach has the disadvantage that a bias
arises in the estimation of E∗[Zn] since ς̂∗n, ST and Zn are
dependent. This bias does not allow to calculate the variance
directly from (14). Besides, the r.v.

V̄CV (ς̂∗n)− E∗[Zn]

σ(V̄CV (ς̂∗n)

is not a t-distribution and consequently confidence intervals
based on t-distrubution can not be used directly.
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According to [21], the variance of the control variate
estimator in the case where (ST , Zn) follows a multivariate
normal distribution, is given by the expression:

Var(V̄CV (ς̂∗n)) =
M − 2

M − 3

(
1− ρ2

STZn

) σ2
Zn

M
.

which can be used to derive a valid confidence interval.
Since the normality assumption of (ST , Zn) is not sat-

isfied, we have to proceed by approximation. So that an
asymptotically valid variance and confidence interval for Zn
is obtained, since ς̂∗n converges to the true value ς∗n. Hence, as
the sample size M is large enough, we can use the variance
approximation

Var(V̄CV (ς̂∗n)) ≈ M − 2

M − 3

(
1− ρ2

STZn

) σ2
Zn

M
.

V. NUMERICAL COMPUTATIONS

In this section, we approximate the price of particular
generalized Asian options (fixed strike call and straddle)
under the MEMM P∗. First, we will characterize the MEMM
in terms of the Lévy measure ν. We consider two cases:
• νL is supported by a finite set.
• νL is absolutely continuous with respect to the Lebesgue

measure on R.
In a second part, we compare the approximation of the
price using Monte Carlo with and without variance reduction
technique in each case.

A. Numerical approximation of β∗

The root β∗ of the function (8) characterizes the MEMM.
From now on, we take these parameters: µ = 0.1, σ = 0.3
and λ = 1 and we focus on the following cases:

1) Case 1: νL is supported by a finite set:

νL = λ

N∑
i=1

piδai where
N∑
i=1

pi = 1, pi ∈]0, 1[, ai ∈ R,

and N ∈ N∗. It is easy to see that:

ν∗L = λ∗
N∑
i=1

p∗i e
β∗(eai−1)δai ,

where λ∗ = λ
∑N
j=1 pje

β∗(eaj−1) and p∗i =

pie
β∗(eai−1)∑N

j=1 pje
β∗(eaj−1)

. Note that
∑N
i=1 p

∗
i = 1.

Under P, U1 ∼ νL
λ =

∑N
i=1 piδai and under P∗,

U1 ∼ ν∗
L

λ∗ =
∑N
i=1 p

∗
i δai . Therefore,

κ = E∗[U11{|U1|≤1}] =
N∑
i=1

p∗i ai1{|ai|≤1}.

Function (8) becomes

f(β) = µ+

(
1

2
+ β

)
σ2 + λ∗

n∑
i=1

p∗i (e
ai − 1).

To generate atoms a = (a1, a2, . . . , aN ), for example in the
range [−1.5, 1.5], we use the MATLAB code:

a=rand(1,N)*3-1.5;

and their corresponding masses p = (p1, p2, . . . , pN ) can be
generated by the code:

R=rand(1,N); p=R/sum(R);

We will take the case of N = 5 atoms.2 The root of the
function (8) is found using Dichotomy method.

For the atoms

a = (1.0222,−0.7372, 0.9429,−0.7694, 1.2878) (15)

with the corresponding masses

p = (0.2422, 0.0822, 0.1631, 0.2253, 0.2872), (16)

we obtain

β∗ = −0.9300 and f(0) = 1.4216.

Thus p∗ = (0.0754, 0.2175, 0.0618, 0.6045, 0.0407),
λ∗ = 0.6139 and µ∗ = 0.0958. If we take
a = (−0.4500,−0.9102,−0.7467, 0.3481,−0.0801)
with the same masses, then,

β∗ = 0.0253 and f(0) = −0.0060.

2) Case 2: νL is absolutely continuous: We take the case,
as in Merton’s model, where νL = λF with F is the standard
normal distribution. We use a combination of Monte Carlo
and Dichotomy methods. For the same parameters of µ, σ, r
and λ, we obtain:

β∗ = −0, 4986 and µ∗ = 0.0972.

B. Approximation of Asian option prices

In order to give numerical simulations of the prices
of generalized Asian options using Monte Carlo method
(with and without variance reduction technique), we take as
model’s parameters: µ = 0.1, σ = 0.3, λ = 1, T = 1,
r = 0.1, S0 = 100 and K = 100. As in the previous
subsection, we focus on fixed strike Asian call and Asian
straddle.

1) Case 1: νL is supported by a finite set: We consider
the case of subsection V-A1, where νL is supported by the
set a given by Eq. (15) and with probability masses p of
Eq. (16). The drift value of Ŝ under P∗ is µ∗ = 0.0958.

Table I shows that the variance reduction with control
variate technique enhances the Monto Carlo approximation.
For the fixed strike call case, we see that, even if we use
M = 10000 loops with a variance reduction technique, we
obtain more accuracy for the confidence intervals than the
classical one with 20000 loops. That’s means less material
resources are used and less time is consumed. However in
the case of straddle, we obtain a similar results (up to 0.05%)
when 50% of loops are used. But, for the same number of
Monte Carlo M , the improvement of the estimator become
more and more noticeable.

Table II reveal the contribution of variance reduction
technique to the Monte Carlo approximation. We see that
the confidence band is decreasing when the number of Monte
Carlo is increasing, for a call as for a straddle. This result is
predictable since Var(V̄CV (ς∗n)) and Var(Ȳn) tend to zero as
M goes to ∞. Furthermore, the approximation of the price
using variance reduction technique improve the confidence
intervals for the two cases, since Var(V̄CV (ς∗n)) < Var(Ȳn).
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2) Case 2: νL is absolutely continuous: We consider the
case 2 of subsection V-A2. We found:

β∗ ' −0.4986, κ = −0.4173, and µ∗ = 0.0972.

As in table I, table III shows that the variance reduction
with control variate technique improves the Monte Carlo
approximation, with the same interpretations for the fixed
strike call case as well for the straddle one.

Also as in table II, table IV shows that the control
variate variance reduction technique improves the Monte
Carlo method. The two tables are commented with the same
arguments.

C. Convergence of Monte Carlo schemes

To be able to get a real price, we use zero strike Asian call
option, with the same other parameters as above. The value
of the option’s price is V0 = 94.1733. Fig. (1) and Fig. (2)
below illustrates the convergence of the Monte Carlo method,
when the Lévy measure is absolutely continuous, without and
with variance reduction respectively.

Fig. (1) shows the convergence of the no variance re-
duction estimator as the number of Monte Carlo increases.
We see that the band of the confidence interval becomes,
as the Monte Carlo number M increases, close to the real
price. This show the convergence of the no variance reduction
method. But to obtain a more accuracy estimated value, the
number M should be taken very large.

However, in Fig. (2) we clearly see that the Monte
Carlo method with variance reduction technique improves
the approximation of the real price. Indeed, the convergence
of the control variate variance reduction estimator to the real
price becomes faster and more accurate that the no variance
reduction one, as the Monte Carlo number M becomes large.
For instance, with M = 10000 iterations, we observe that
the approximated variance reduction price is very close to
the real price, while the approximated no variance reduction
one deviates in a significant way, for the same Monte Carlo
number, from the exact option’s value.

VI. CONCLUDING REMARKS

This paper is focused on Asian option pricing in Geometric
Lévy market under the minimal entropy martingale measure.
This choice of such EMM is appropriate, since it preserves
statistical properties of the market measure as much as
possible. The main contribution is a control variate variance
reduction technique to improve the Monte Carlo method and
an illustration of its improvement for particular examples of
generalized Asian options. The convergence of Monte Carlo
Asian price estimator in L2 using the Reimann scheme is
also a contribution to the literature. There exits many other
schemes in the literature, for example trapezoidal scheme,
Simpson scheme etc ... In fact there are no options written
on the integral of St in practice, but only on some (possibly
weighted) average of St. Thus the Reimann scheme approxi-
mation of the integral represents a possible ”market option”,
whereas the integral itself is an approximation of this. Hence,
the integral of St over some period is only an approximation
of an Asian option which has very many sampling points.
The introduction of other numerical integration schemes may
be questionable namely from this point of view.

A possible continuation of this work is to compare our
approach with other existing methods (e.g. binomial tree
method [18]) and to extend the work to the case of infinite
activity market models.

APPENDIX A
PROOF OF LEMMA 1

The process Ŝ is a P∗-martingale. Therefore, for all t ≥ 0,
E∗[Ŝt] = S0. From the Lévy-Khintchine representation of
the Lévy process, we get

E∗[S2
u] = S2

0E∗[e2Lu ] = S2
0e
uc,

where c = 2µ∗ + 2σ2 +
∫
|x|<1

(e2x − 1 − 2x)ν∗(dx) +∫
|x|≥1

(e2x−1)ν∗(dx). Taking account of the condition (A3),
we can deduce that c is given by expression (10). For all
0 ≤ u ≤ v, we have

E∗ [SuSv] = E∗
[
S2
u

Sv
Su

]
= E∗

[
S2
u

Sv−u
S0

]
=

1

S0
E∗
[
S2
u

]
E∗[Sv−u] = er(v−u)E∗[S2

u] = S2
0e
rveu(c−r).

APPENDIX B
PROOF OF PROPOSITION 1

We have

E∗
[
(AT −AnT )

2
]

= E∗
(∫ T

0

Sudu− h
n−1∑
k=0

Stk

)2


= E∗
(∫ T

0

Sudu

)2
+ h2E∗


n−1∑
j=0

Stj

2


−2hE∗
 n−1∑
j,k=0

∫ tj+1

tj

SuStkdu

 .
Each part is computed as follows: First we have

E∗
(∫ T

0

Sudu

)2


=

∫ T

0

∫ T

0

E∗[SuSv](1u<v + 1v<u)dudv

= 2

∫ T

0

∫ T

0

E∗[SuSv]1u<vdudv

= 2S2
0

∫ T

0

erv
[∫ v

0

eu(c−r)du

]
dv

= 2
S2

0

c− r

(
ec.T − 1

c
− er.T − 1

r

)
.
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Next we have using Lemma (1):

h2E∗


n−1∑
j=0

Stj

2


= 2h2
∑

0≤j<k≤n−1

E∗[StjStk ] + h2
n−1∑
j=0

E∗[S2
tj ]

= 2h2S2
0

∑
0≤j<k≤n−1

ertketj(c−r)

+ h2S2
0

n−1∑
j=0

ectj .

and finally we have

− 2hE∗
 ∑

0≤j<k≤n−1

∫ tj+1

tj

SuStkdu


= −2h

n−1∑
j,k=0

∫ tj+1

tj

E∗[SuStk ]du

= −2h

 ∑
0≤j<k≤n−1

∫ tj+1

tj

E∗[SuStk ]du

+

n−1∑
j=0

∫ tj+1

tj

E∗[SuStj ]du

+
∑

0≤k<j≤n−1

∫ tj+1

tj

E∗[SuStk ]du


= −2hS2

0

 ∑
0≤j<k≤n−1

∫ tj+1

tj

ertke(c−r)udu

+
n−1∑
j=0

∫ tj+1

tj

erue(c−r)tjdu

+
∑

0≤k<j≤n−1

∫ tj+1

tj

erue(c−r)tkdu


= −2hS2

0

(
e(c−r)h − 1

c− r
+
erh − 1

r

)
×

∑
0≤j<k≤n−1

ertke(c−r)tj

− 2hS2
0

r
(erh − 1)

n−1∑
j=0

ectj .

Thus

E∗ |AT −AnT |
2

= 2
S2

0

c− r

(
ec.T − 1

c
− er.T − 1

r

)
+ hS2

0

(
h− 2

r
(erh − 1)

) n−1∑
j=0

ectj

+ 2hS2
0

(
h− e(c−r)h − 1

c− r
− erh − 1

r

)
×

∑
0≤j<k≤n−1

ertke(c−r)tj .

On the other hand, we have the following obvious result:
Lemma 2: For all c, r ∈ R∗ sucht that c 6= r

1)
∑

0≤j<k≤n−1

ertke(c−r)tj =
ecT − 1

(erh − 1)(ehc − 1)
+

1− e(c−r)T

(erh − 1)(e(c−r)h − 1)
.

2)
∑

0≤j≤n−1

ectj =
ecT − 1

ehc − 1
.

Using Lemma (2), we get the Taylor expansion.

E∗ |AT −AnT |
2

= S2
0

(
3(1− erT ) +

(
2− r

c

)
(ecT − 1)

) h2

6

+ S2
0

(
erT − 1 + (r − 1)(ecT − 1)

) h3

12
+ o(h3).

Therefore the expression (9) follows. Proposition 1 is thus
proved.
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nance and Stochactics, vol. 7, pp. 509-531, 2003.

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_05

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 



[12] H. Geman and M. Yor,“Bessel Processes, Asian options,
and Perpetuities,” Mathematical Finance, vol. 3, pp. 349-
375, 1993.

[13] H.U. Gerber and E.S.W. Shiu,“Option Pricing by Ess-
cher Transforms,” Transactions of the society of Actuar-
ies XLVI, pp. 99-191, 1994.

[14] P. Glasserman, Monte Carlo methods in Financial En-
gineering, Springer-Verlag, New York, 2004.

[15] W. W.Y. Hsu and Y.-D. Lyuu, “Efficient Pricing of
Discrete Asian Options,” Applied Mathematics and Com-
putation, vol. 217, no. 24, pp. 9875-9894, August 2011.

[16] J. Hull and A. White, “The Pricing of Options on
Assets with Stochastic Volatilities,” Journal of Finance,
American Finance Association, vol. 42, no. 2, pp. 281-
300, 1987.

[17] A. Kemna and A. Vorst,“A Pricing Method for Options
Based on Average Asset Values, ” Journal of Banking
and Finance, vol. 14, pp. 113-129, 1990.

[18] K. Kim and X. Qian, “Convergence of the binomial
tree method for Asian options in jump-diffusion models,”
Journal of Mathematical Analysis and Applications, vol.
330, no. 1, pp. 10-23, 2007.

[19] S. Kim, “On a degenerate parabolic equation arising
in pricing of Asian options, ” Journal of Mathematical
Analysis and Applications, vol. 351, no. 1, pp. 326-333,
1 March 2009.

[20] B. Lapeyre and E. Temam, “Competitive Monte Carlo
methods for the pricing of Asian options,” Journal of
Computational Finance, vol. 5, pp. 39-59, Jul. 2001.

[21] S.S. Lavenberger, T.L. Moeller and P.D. Welch, “Sta-
tistical results on Control Variables with application to
Quewing Network Simulation, ” Operations Research,
vol. 30, pp. 182-202, Jul. 1982.

[22] D. Lemmens, L.Z.J. Liang, J. Tempere and A. De
Schepper, “Pricing bounds for discrete arithmetic Asian
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Fig. 1. Price approximation of zero-strike call when νL
λ

follow a standard normal law with no variance reduction.

Fig. 2. Price approximation of zero-strike call when νL
λ

follow a standard normal law with variance reduction.

TABLE I
PRICE CONFIDENCE INTERVALS OF FIXED STRIKE ASIAN CALL AND ASIAN STRADDLE IN TERMS OF TIME STEP NUMBER n, WHEN νL IS SUPPOTED

BY N = 5 ATOMS.

Without V.R. (M=20000) With V.R. (M=10000) With V.R. (M=20000)
n Price Conf. Int.(95%) Price Conf. Int.(95%) Price Conf. Int.(95%)

ca
ll

10 19.918 [19.618 20.217] 16.860 [16.634 17.0868] 16.948 [16.789 17.107]
50 13.299 [13.049 13.550] 11.433 [11.202 11.6642] 11.346 [11.184 11.509]
100 12.568 [12.324 12.813] 10.743 [10.514 10.9721] 10.709 [10.546 10.872]
500 11.968 [11.726 12.209] 10.559 [10.327 10.7919] 10.626 [10.460 10.792]
1000 11.868 [11.630 12.106] 9.989 [ 9.757 10.2207] 10.365 [10.200 10.531]

st
ra

dd
le

10 11.123 [10.972 11.275] 9.194 [ 8.983 9.406] 9.314 [ 9.164 9.464]
50 12.609 [12.402 12.816] 11.619 [11.338 11.900] 11.718 [11.517 11.919]
100 13.567 [13.348 13.786] 9.061 [ 8.782 9.339] 9.064 [ 8.867 9.261]
500 13.892 [13.676 14.108] 9.743 [ 9.468 10.018] 9.658 [ 9.464 9.851]
1000 14.052 [13.829 14.275] 9.541 [ 9.264 9.818] 9.664 [ 9.466 9.862]
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TABLE II
PRICE CONFIDENCE INTERVALS OF FIXED STRIKE ASIAN CALL AND ASIAN STRADDLE IN TERMS OF MONTE CARLO NUMBER M , WHEN νL IS

SUPPOTED BY N = 5 ATOMS (n = 100).

Without Variance Reduction With Variance Reduction
M Price Conf. Int.(95%) Price Conf. Int.(95%)

ca
ll

100 14.571 [10.410 18.732] 12.1077 [ 9.277 14.937]
1000 12.497 [11.425 13.570] 11.212 [10.475 11.949]
10000 12.737 [12.391 13.084] 11.043 [10.811 11.275]
20000 12.561 [12.316 12.806] 10.968 [10.806 11.131]
50000 12.575 [12.421 12.730] 11.246 [11.139 11.352]

st
ra

dd
le

100 15.880 [12.742 19.018] 11.753 [ 8.788 14.718]
1000 13.650 [12.641 14.658] 11.691 [10.752 12.630]
10000 13.414 [13.113 13.718] 9.609 [ 9.333 9.885]
20000 13.567 [13.348 13.786] 9.064 [ 8.867 9.261]
50000 13.386 [13.251 13.521] 9.454 [ 9.332 9.576]

TABLE III
PRICE CONFIDENCE INTERVALS OF FIXED STRIKE ASIAN CALL AND ASIAN STRADDLE IN TERMS OF TIME STEP NUMBER n, WHEN νL CORRESPONDS

TO MERTON’S MODEL.

Without V.R. (M=20000) With V.R. (M=10000) With V.R. (M=20000)
n Price Conf. Int. (95%) Price Conf. Int.(95%) Price Conf. Int.(95%)

ca
ll

10 19.646 [19.349 19.943] 17.144 [16.928 17.353] 17.085 [16.932 17.247]
50 13.312 [13.062 13.563] 11.630 [11.398 11.861] 11.671 [11.507 11.835]
100 12.439 [12.194 12.684] 11.116 [10.875 11.356] 11.270 [11.098 11.443]
500 11.984 [11.746 12.221] 10.253 [10.022 10.484] 10.201 [10.038 10.364]
1000 11.867 [11.630 12.103] 9.722 [ 9.486 9.958] 9.820 [ 9.652 9.988]

st
ra

dd
le

10 11.154 [11.002 11.307] 8.869 [ 8.653 9.085] 8.817 [ 8.666 8.969]
50 12.480 [12.273 12.687] 9.435 [ 9.157 9.712] 9.296 [ 9.105 9.487]
100 13.383 [13.166 13.600] 8.737 [ 8.462 9.011] 8.740 [ 8.546 8.935]
500 13.790 [13.578 14.002] 6.660 [ 6.381 6.939] 6.717 [ 6.519 6.915]
1000 14.214 [13.990 14.439] 8.660 [ 8.378 8.941] 8.652 [ 8.456 8.849]

TABLE IV
PRICE CONFIDENCE INTERVALS OF FIXED STRIKE ASIAN CALL AND ASIAN STRADDLE IN TERMS OF MONTE CARLO NUMBER M ,WHEN νL

CORRESPONDS TO MERTON’S MODEL (n = 100).

Without Variance Reduction With Variance Reduction
M Price Conf. Int.(95%) Price Conf. Int.(95%)

ca
ll

100 16.371 [12.381 20.362] 9.714 [ 6.741 12.687]
1000 18.162 [16.831 19.494] 8.681 [ 7.756 9.606]
10000 12.313 [11.969 12.656] 8.975 [ 8.682 9.268]
20000 11.013 [10.780 11.246] 10.965 [10.799 11.130]
50000 12.555 [12.401 12.709] 11.251 [11.145 11.357]

st
ra

dd
le

100 11.165 [ 8.706 13.624] 10.285 [ 7.876 12.694]
1000 12.949 [12.010 13.887] 9.469 [ 8.604 10.335]
10000 13.456 [13.157 13.756] 7.334 [ 7.059 7.609]
20000 13.383 [13.166 13.600] 8.740 [ 8.546 8.935]
50000 13.466 [13.331 13.602] 9.388 [ 9.265 9.511]
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