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Abstract—In this paper, we focus on constructing
optimal portfolios of variance swaps based on a vari-
ance Gamma correlated (VGC) model. Each variance
swap has two legs: a fixed leg (also called the variance
strike) and a floating leg (also called the realized vari-
ance). The value of a variance swap is the discounted
difference between the realized variance and the vari-
ance strike. The portfolios of the variance swaps are
optimized based on maximizing the distorted expec-
tation given the index of acceptability.
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1 Introduction

This paper focuses on introducing the variance swaps and
constructing optimal portfolios following the theory pro-
posed in [11], and developed in [1]. The variance swap
contract contains two legs; one is the fixed leg, also called
the variance strike; the other is the floating leg, also called
the realized variance. The variance strike is calculated
from the option surface calibration. The realized variance
is calculated through the Hardy-Littlewood-Gauss trans-
form, and a linear regression model considering the highly
correlated autocorrelation and dependencies of cross as-
sets. Two non-Gaussian model Varanance Gamma Corre-
lated (VGC) is employed to describe the residuals in the
regression model. Optimal portfolios of variance swaps
are constructed in a new performance measure called ac-
ceptability indices.

Our approach is broadly similar to the classical portfolio
theory for stock investment first proposed in [10]. Refer-
ence [11] first introduces the portfolio theory of Variance
Swap, however, his method to deal with the realized vari-
ance is based on the Fully Gaussian Copula (FGC), pro-
posed by [6]; while we apply another non-Gaussian model:
Variance Gamma Correlated (VGC) model developed in
[10], [5]. Reference [3] introduces the optimization theory
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of performance evaluation, as well as distortion functions.
Several ways of optimization are applied in [4], [10], such
as maximizing the index of acceptability, and maximizing
the expected distortion given fixed acceptable index. In
our paper, we make the index fixed and seek a portfolio
that maximizes the expected distortion.

The remainder of the paper are organized as follows. Sec-
tion 2 describes the definition of variance swaps and gives
a brief introduction on how to calculate the cash flow of
the swap. Section 3 describes and derives the variance
strike. Section 4 describes and derives the realized vari-
ance. Section 5 explains the distortion function and index
of acceptability, and shows which methodology we will
choose to run the optimization and get the optimal port-
folio. Section 6 shows the numerical results in the process
and the optimal portfolio given the index of acceptability.

2 Introduction to Variance Swaps

Variance swaps have been used to trade equity-index
volatility and have demonstrated some advantages over
other volatility-based assets. A variance swap is an in-
strument that allows investors to trade future realized
(or historical) volatility against current implied volatil-
ity. Through a variance swap, investors can achieve long
or short exposure to market volatility. For example, when
a stock investor wants to speculate on the possible change
direction of the stock market, or a bond investor thinks
he can foresee the probable change direction of interest
rates, he can buy or sell the stocks or bonds. Similarly,
investors may also have some thoughts about the change
direction of the volatility.

The features of a variance swap include the variance
strike, which is also called fixed leg, the realized vari-
ance, i.e., the floating leg and the notional amount. The
floating leg of the swap will pay an amount based on
the realized variance of the price changes of the underly-
ing product. The fixed leg of the swap will pay a fixed
amount which is the strike quoted at the deal’s inception.
In general, the payoff of a variance swap would be:

P × (σ2
r − σ2

k),

where P is the notional pricipal, σ2
r is the annualized

realized variance, and σ2
k is the variance strike. Reference

[8] shows that σ2
r = 252

T

T
∑

t=1
x2
t , and σ2

k = k2, where xt =

log( St

St−1
), St is the stock price of the underlying asset
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at the end of day t, and k is the annualized volatility
quotation. Thus, the variance swap pays at the end of
day T is:

P × (
T
∑

t=1

x2
t

T
252− k2). (1)

Moreover, r is the constant continuously compounded in-
terest rate.

3 Fixed Leg

Before we go to calculate the fixed leg, also called the vari-
ance strike, let us introduce the Variance Gamma Specific
Self-Decomposable Model (VGSSD), which is often used
to calibrate the option surface. Thus, we calibrate this
model to estimate the price of variance strike.

3.1 Variance Gamma Specific Self Decom-
posable Model

If Y (t) follows VGSSDmodel [2] show that the law of Y (t)
is equivalent to the law of tγX(1) by the scaling property,
where X(t) follows the VG process and X(1) = X(t)

∣

∣

t=1
.

Therefore, the characteristic function of Y (t) is:

φY (t)(u) = E[eiuY (t)]

= E[eiut
γX(1)]

= (
1

1− iuθνtγ + 0.5× σ2νu2t2γ
)−

1
γ .

Then the risk-neutral stock price S(t) could be defined
by:

S(t) = S(0)e(rt)
eY (t)

E[eY (t)]
. (2)

The price of a variance swap contract σ2
k = k2 could be

calculated as:

σ2
kt = 2i

∂φM (u, t)

∂u

∣

∣

∣

∣

u=0

, (3)

where φM (u, t) = EQ[exp(iuln(M(t)))]. Denoting r the
risk-free interest rate and q the dividend rate, we could
define the stock price in the risk-neutral measure by
S(t) = S(0)e(r−q)tM(t). Therefore, We could get the
characteristic function of M(t) from the characteristic
function of S(t), which can be calculated from equation
2. We would have

σ2
kt = −2E[lnM]

= −2E[lnSt − lnS0 − (r − q)t]

= −2qt− 2θtγ − 2

ν
ln(1− θνtγ − 1

2
σ2νt2γ),

where r = 0, q = 0 to make Equation (4) equivalent to the
variance strike as proposed in [8]. Therefore, the variance
strike is

σ2
k = (−2θtγ − 2

ν
ln(1− θνtγ − 1

2
σ2νt2γ))t−1.

The calibrated parameters are in Table 1, and the prices
of the variance strike are in Table 2.

4 Floating Leg

We download the data from the Wharton Research Data
Services (WRDS) of the ten stock prices whose ticker are:
xom, aapl, mmm, c, adbe, amzn, gs, coh, goog, bac on
the S&P500 index as on November 18, 2007. Let Si,t

denote the price of asset i at market close on day t for
i = 1, ..., 10. As defined above, the daily realized variance
for asset i on day t defined as vi,t is:

vi,t = (ln(
Si,t

Si,t−1
))2. (4)

4.1 Hardy-Littlewood-Gauss Transform

Recognizing the squared log returns are highly autocor-
related and will subject to some levels of clustering, we
follow [11] and apply the ’similar to linear’ transform:
Hardy-Littlewood transform to the squared daily log re-
turns. This transform can deal with the highly correlated
autocorrelation, as well as map the vi,t from positive val-
ues to all real values, which is required by the linear
regression model, since it is rather difficult to keep the
linear regression model positive in the future simulation.
We thought of the transform of taking the log of the vi,t,
however this would make a double exponent and result
in pretty bad data for the linear regression.

Let f(x) be any symmetric density on the real line hav-
ing finite expectation of absolute value of x. The Hardy-
Littlewood transform is defined as:

g(x) =

∫∞

x
uf(u)du

∫∞

x
f(u)du

. (5)

As x → −∞, g(x) would be close to 0; while when x is
large enough, g(x) would behave like x, which means this
transformation is close to ’linear’. It is easy to show the
g(x) is always positive, so that the inverse of g(x) could
transform the positive squared log return vi,t to all real
values, which satisfies our requirement. In this paper,
we set the density f(x) be the standard normal density:

f(x) = 1√
2π

e−
x2

2 , then we could get the so-called Hardy-

Littlewood Gauss transform:

g(x) =

1√
2π

e−
u2

2

∫∞

x
1√
2π

e−
u2

2 du
(6)

To calculate the realized variance, we suggest the follow-
ing steps.

• Take historical data of stock prices of the 10 assets
from Mar.18, 2007 to Nov.18, 2007 to calculate the
series of real data of squared log-return vi,t.
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• Take the Inverse Hardy-Littlewood Gauss transform
to the historical data of vi,t

xi,t = g−1(vi,t)

to get the series of newly generated data xi,t.

• Considering the highly correlated autocorrelation of
the series of data xi,t, we take the linear regression
to the newly generated time series data xi,t :

xi,t = ai +

5
∑

j=1

bi,jxi,t−j + ui,t. (7)

The results of the lags of the linear regression model are
in Table 3.

4.2 Variance Gamma Correlated Model

Recognizing that the time series of ui,t, i = 1, ...,M have
excess kurtosis and possible skewness, we consider the
newly generated data ui,t as correlated multi-dimensional
variance gamma process. We apply Variance Gamma
Correlated(VGC) proposed in [5] to deal with the residual
data ui,t, which can also be written as multi-dimensional
correlated non-Gaussian process Ui(t), i = 1, ..., N. With
the given series of data ui,t,, we demean the original data
first. Like the variance gamma process, ui(t) could be
expressed as a gamma time changed Brownian motion
which is subordinated by the gamma process Gi(t). Note
that Gi(t) is a subordinating process which is a positive
independent identical increasing process with unit expec-
tation at a unit time. Therefore,

Ui(t) = θi(Gi(t)− t) + σiWi(Gi(t)), (8)

where θi, σi > 0. As Ui(t) is correlated non-Gaussian pro-
cess, we have to also put the correlation into the expres-
sion above. Reference [5] showed that we can put the
correlation in the time-changed Brownian motion. We
can write the process at the unit time that Ui = Ui(1)
and:

Ui

(d)
= θi(gi − 1) + σi

√
giZi,

where gi = Gi(1) and Zi are standard normal variates
with correlation ρij between Zi and Zj for i 6= j, and
gi are independent gamma variates with unit mean and
variance νi. We will have E(Zi) = 0 and Var(Zi) = 1.
Hence,

Cov(Zi, Zj) = Corr(Zi, Zj) = ρij ,

and
Cov(Ui, Uj) = σiσjE(

√
gi)E(

√
gj)ρij . (9)

We could use the series of ui(t) derived from the historical
data and estimate the parameters σi, νi, θi and calculate
the covariance from Equation (9). Then we could sim-
ulate the multi-dimensional non-Gaussian process Ui(t)
which are correlated with each other. The estimating
procedure for applying the VGC model to the residual
variates is summarized as following:

• Apply MLE to the time series data U =
ui,t, i = 1, ..., N, in each dimension separately; each
would follow variance gamma distribution with the
corresponding parameters σi, νi, θi.

• Apply the calculated covariance of ui,t to the Equa-
tion (9) to get the correlation ρi,j of the standard
normal variable Zi.

• Simulate the N-dimensional correlated standard nor-
mal variable Ẑ with the correlation ρi,j between dif-
ferent assets.

• Use the parameters we estimated and the newly sim-
ulated Zi, and plug back into the equation 8, we will
get the newly simulated series data Û .

The estimated parameters of the independent VG vari-
ates Y are in Table 4, and the covariance matrix of the
standard normal variable Z are in Table 5.

Therefore, we will simulate 10000 times, and the annu-
alized unit realized variance of the asset i on day t on
sample path s is

σ2
i,t,s =

252

21

t+21
∑

j=t+1

vi,j,s, (10)

and T = 21 in this paper. Note that we are using trading
day, which means that each year has 252 days and each
month has 21 days.

The simulated cash flow to asset i on the variance swap
on path s is then obtained as

ci,s = σ2
i,t,s − k2i,t,s. (11)

5 Optimization

Reference [4] show that concave distortion function φγ(y)
is defined on the unit interval with values in the unit inter-
val that is point wise increasing in the level of the distor-
tion γ. A random variable X with distribution function
F (x) is accepted at level γ if

∫ ∞

−∞

xdφγ(F (x)) ≥ 0, (12)

which means that the expected value of the cash flow un-
der the distortion φγ is nonnegative. Reference [3] pro-
pose the MINMAXVAR distortion function φγ at level γ
as:

φγ(u) = 1− (1− u
1

1+γ )1+γ , 0 ≤ u ≤ 1.

We optimize the portfolios to maximize the distorted ex-
pectation in Equation (12), given some acceptability in-
dex γ. The distorted expectation would be

∫ ∞

∞

cdφγ(F (c)), (13)
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where F is the cumulative distribution function of the
portfolio cash flow c. The computation of distorted ex-
pectation is facilitated in terms of an ordered sample from
the relevant distribution with c(1) < c(2) < ... < c(N) as:

N
∑

i=1

c(i)(φ(
i

N
)− φ(

i− 1

N
)).

When we do the optimization, we restrict the portfolios
on the unit sphere by the condition that:

51
∑

i=1

a2i = 1.

Moreover, the aggregated portfolio is zero dollar:

51
∑

i=1

k2i,tai = 0.

In addition, we have to have a zero Vega constraint as:

51
∑

i=1

ki,tai = 0.

Therefore, we can apply the restrictions above to do the
optimization showed above. We set the acceptable in-
dex to be some constant, i,e, γ = 0.6 and maximize the
expected distortion value.

6 Numerical Results

Setting index of acceptability γ = 0.6, and maximizing
the expected distortion, we will get the maximized ex-
pected distortion 0.2136 and the optimal portfolio results
are in Table 6. All the tables of results are on the last
pages.
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Table 1: VGSSD Parameters on 20071019
ticker σ ν θ γ RMSE APE

xom 0.2511 0.3708 -0.2480 0.4961 0.0511 0.0320

aapl 0.4207 0.0648 -0.3021 0.3912 0.2460 0.0413

mmm 0.2013 0.1177 -0.4167 0.4685 0.0518 0.0395

c 0.2978 0.3147 -0.3405 0.4427 0.0348 0.0432

adbe 0.3182 0.2501 -0.2370 0.5628 0.0277 0.0289

amzn 0.4711 0.1265 -0.6917 0.4135 0.1993 0.0492

gs 0.3236 0.4495 -0.3659 0.4406 0.1526 0.0241

coh 0.3566 0.1027 -0.7032 0.4132 0.0658 0.0372

goog 0.3006 0.3513 -0.1737 0.4954 0.3885 0.0341

bac 0.2540 0.5081 -0.2585 0.5405 0.0425 0.0419

Table 2: One Month Variance Strike on 20071019
xom aapl mmm c adbe amzn gs coh goog bac

0.06919 0.28499 0.05088 0.13431 0.07342 0.35493 0.13865 0.23385 0.11399 0.05944

Table 3: Regression Results
ticker Constant Lag1 Lag2 Lag3 lag4 Lag5

xom -3.0442 0.122 -0.0228 0.1332 0.034 0.0120

aapl -2.7226 0.0780 -0.0223 0.0903 0.1602 0.0150

mmm -4.6246 -0.0619 0.1056 -0.0015 -0.0569 -0.0326

c -2.2779 -0.0688 0.0501 0.1408 0.1890 0.1441

adbe -4.4866 -0.1239 -0.0198 0.0488 0.0286 -0.0014

amzn -2.9798 0.1353 -0.0407 0.1019 0.1125 -0.0511

gs -2.6134 -0.0168 0.0634 0.2381 0.1593 -0.0886

coh -2.8390 0.0439 0.0903 0.0030 0.2077 -0.0610

goog -3.7481 0.0254 -0.0263 0.0812 -0.0984 0.1390

bac -2.8081 0.1144 0.1606 0.0322 0.0054 0.0402

Table 4: VG estimates for variates Y for VGC
ticker σ ν θ

xom 0.3462 0.1181 -1.0660

aapl 0.4027 0.2765 -0.8307

mmm 0.3991 0.1179 -0.6366

c 0.5070 0.3379 -0.1823

adbe 0.1812 0.1576 -1.0970

amzn 0.5842 0.4243 -0.1553

gs 0.2868 0.1080 -1.3080

coh 0.3933 0.4173 -0.5764

goog 0.4962 0.0540 -0.4227

bac 0.2112 0.0883 -1.4846

Table 5: The Covariance Matrix for Standard Normal Variates Z
2.3313 0.1848 0.2617 0.2570 0.5993 0.2871 0.6386 0.1729 0.1490 0.9059

0.1848 2.2776 0.2799 0.1420 0.5811 0.5530 0.2907 0.0289 0.1640 0.4178

0.2617 0.2799 1.3459 0.1469 0.4177 0.1317 0.2606 0.1992 0.1948 0.6956

0.2570 0.1420 0.1469 0.8496 0.3184 0.2681 0.6036 0.2162 0.2105 1.0608

0.5993 0.5811 0.4177 0.3184 6.9588 0.0314 0.3632 0.2397 0.4339 1.3021

0.2871 0.5530 0.1317 0.2681 0.0314 1.1467 0.2536 0.1850 0.1943 0.4705

0.6386 0.2907 0.2606 0.6036 0.3632 0.2536 3.3790 0.3895 0.3428 1.3985

0.1729 0.0289 0.1992 0.2162 0.2397 0.1850 0.3895 1.9780 0.2554 0.3340

0.1490 0.1640 0.1948 0.2105 0.4339 0.1943 0.3428 0.2554 0.9470 0.5116

0.9059 0.4178 0.6956 1.0608 1.3021 0.4705 1.3985 0.3340 0.5116 5.3622

Table 6: Portfolio to Maximize the Expected Distortion
xom aapl mmm c adbe amzn gs coh goog bac

-0.1584 -0.1187 -0.2532 0.2937 0.0700 0.0024 0.7776 -0.1848 -0.3749 -0.1618
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