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Abstract—This paper proposes an asymmetric smooth
transition GARCH model, which allows for an asymmetric
response of volatility to the size and sign of shocks, and
an asymmetric transition dynamics for positive and negative
shocks. We apply our model to the empirical financial data:
the NASDAQ index and the individual stock IBM daily returns.
The empirical evidence shows that the new model outperforms
many existing GARCH specifications in the literature. .
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I. INTRODUCTION

Given its importance in modern pricing and risk manage-
ment theories, volatility in financial time series is one of the
most popular topics in financial econometrics. Over the years,
a number of different features of financial volatility have
emerged, such as positive dependence in the volatility pro-
cess, volatility clustering, high persistence, and nonlinearity.
Many specifications, including the autoregressive conditional
heteroskedasticity (ARCH in [6]) and generalized autoregres-
sive conditional heteroskedasticity (GARCH in [3]) model
have been proposed in the literature.

The key criticism of the GARCH specifications comes
from the modeling of conditional variance as a function of
past squared residuals, which makes the sign of the residuals
irrelevant in predicting volatility. The symmetric treatment of
positive and negative residuals contradicts the stylized fact,
first noted in [2], that stock market returns become more
volatile after a negative shock, than they do after a positive
shock of the same magnitude. One possible explanation,
known as the “leverage effect”, is that negative excess returns
reduce the equity value, hence raise the leverage ratio, of a
given firm, thus raising its riskiness and the future volatility
of its assets.

This sign asymmetry effect has motivated a large num-
ber of different volatility specifications in the literature.
Exponential GARCH (EGARCH) model in [14] is one
of many specifications, the threshold GARCH (TGARCH)
model proposed in [15], and the asymmetric power ARCH
model developed in [5], to name only a few, all involve
asymmetric functions of the residuals. It is well known that
the specifications which allow for ”leverage effect” dominate
the standard GARCH specifications.

Until Recently, several authors have introduced smooth
transition specifications (“unpublished” [11],[9] and [12]),
to model the asymmetric response of conditional variance to
positive and negative news. The smooth transition model can
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be thought of as a regime switching model with a continuum
of regimes, which overcomes the limitation of linear and
binary (Markov switching) switching models. For certain
parameter values, the smooth transition model nests with the
threshold specifications that only allows finite regimes. The
model in some sense generalizes the modeling of asymmetry
in variance and empirical evidence in favor of the smooth
transition specification are also reported by these authors.

The main purpose of this paper is to propose a new
smooth transition GARCH model, which allows for both sign
asymmetry and transition asymmetry. The smooth transition
specifications in the volatility literature generally assume a
transition function that is symmetric around its midpoint,
which implies that negative shocks and positive shocks will
have the same transition phases. However, the symmetry
in the transition phases may be too restricted for practical
purposes. Following [13] and [16]), we will make use of
the generalized logistic function that allows for both sign
asymmetry and transition asymmetry, to model conditional
variance.

The remainder of this paper is organized as follows. In
section 2, we introduce the asymmetric smooth transition
GARCH (ASTGARCH for abbreviation) model. In section
3, we address the statistical properties of the new model. In
section 3, we offer an application to NASDAQ index daily
returns and IBM daily returns, and in section 4, we conclude
the paper and summarize this work.

II. THE MODEL

Let rt denote the return of a financial asset from time
t − 1 to time t and let Ψt−1 be the investors’ information
set which contains relevant information at time t. The
unexpected shock εt is defined as rt − E(rt|Ψt−1). The
conditional variance of the return, first proposed in [6],
ht = V ar(rt|Ψt−1), is a measure of volatility.

In the literature, for ease of exposition, εt|Ψt−1 is gener-
ally assumed to follow a normal distribution with mean zero
and variance ht. The distribution, however, can be relaxed
to a more general one, such as, the standardized distribution
(in [3] or the generalized error distribution in [14]). We
will assume conditional normality of εt|Ψt−1 in this paper.
Furthermore, we assume

εt = ut
√
ht, (1)

where ut is a normal i.i.d sequence with zero mean and
unit variance. The first volatility model that incorporates the
smooth transition specification is in [9] and “unpublished”
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[11], which is given

ht = w0 +

p∑
i=1

α0iε
2
t−i

+

(
p∑
i=1

α1iε
2
t−i

)
F (st−1, γ) +

q∑
i=1

β0iht−i. (2)

The smooth transition model generalizes the modeling in
variance with the introduction of a smooth transition speci-
fication in the sense that it allows for intermediate transition
states. Also, it encompasses a big array of ARCH specifica-
tions, such as the DGE model in [5], the GJR model in [8],
and the threshold ARCH model in [15].

As addressed in [7], the main restriction of the smooth
transition model is that the effects of εt−1 and ht−1 on the
volatility are additively separable. In other words, the impact
of εt−1 on the conditional variance does not depend on past
volatility values and is always the same for a given valued
of εt−1. Reference [1] introduces an asymmetric nonlinear
smooth transition GARCH model that extends the smooth
transition GARCH model and allows the nonlinearity in both
the GARCH parameters and the ARCH parameters, which
is given by

ht = w0 +

p∑
i=1

α0iε
2
t−i +

q∑
i=1

β0iht−i + F (st−1, γ)

×

[
w1 +

(
p∑
i=1

α1iε
2
t−i

)
+

q∑
i=1

β1iht−i

]
. (3)

In this paper, we make use of an asymmetric transition
function: the generalized logistic function in [13] and [16],
and propose the following new specification.

A smooth transition GARCH model with asymmetric
transition phases, is defined by

ht = w0 + α0ε
2
t−1 + β0ht−1

+ F (st−1, λ, γ)(w1 + α1ε
2
t−1 + β1ht−1) (4)

where

F (st−1, λ, γ) = [1 + exp(λst−1/γ)]
−γ (5)

is the transition function, st−1 is the transition variable and
λ is the smooth parameter. Possible transition asymmetry is
introduced through the parameter γ, where γ = 1 implies no
asymmetry.

Figure 1 displays the shape of the transition function for
several values of γ and λ.

III. PROPERTIES OF THE NEW MODEL

Positivity of the variance is achieved by imposing restric-
tions that w0 > 0, α0 > 0, β0 > 0, w0+w1 > 0, α0+α1 > 0,
and β0 + β1 > 0.

It is too restrictive for practical purposes to assume that
the transition function is symmetric around its mid-point,
which would imply that positive and negative shocks will
have the same transition phases. Our model departs from
most of the existing GARCH specifications by making use of
the asymmetric transition function. The intuition behind this
assumption resides in two asymmetries found in the volatility
literature, i.e, the “leverage effect” and the reversion of asym-
metry. With these two features, positive and negative shocks

in generally have different impacts on volatility dynamics.
Our model can easily capture these two asymmetries. In this
paper, we will focus on the asymmetric smooth transition
GARCH (1,1) model (abbreviated as ASTGARCH(1,1)).
Other variations can also be obtained following the same
methodology. For convenience, we denote the parameter
vector θ ≡ (w0, α0, β0, w1, α1, β1, λ, γ, ).

It is straightforward to establish the equivalence of our
ASTGARCH(1,1) with several well-known specifications
that follow:
• The GARCH(1,1) model if w1 = 0, α1 = 0, and β1 = 0.
• The ANTSGARCH(1,1) model if γ = 1.
• The ST-GARCH(1,1) model if α1 = 0 and β1 = 0.
• The threshold GARCH(1,1) model if γ →∞.
• The asymmetric power model of DGE with power equal

to 2 if γ →∞.

IV. APPLICATION

In this section, we apply the asymmetric smooth transition
GARCH model to financial data, as well as the smooth
transition GARCH and GARCH(1,1), which are used as
benchmarks. The first data set contains daily returns of the
valued weighted NASDAQ index from January 2, 1990 to
December 31, 2007, consisting of 4540 observations. The
second data set is comprised of 4792 daily observations for
IBM stock, from January 2, 1990 to December 31, 2008.
These data are extracted from the Center for Research on
Stock Prices(CRSP) database.

Table 1
Summary Statistics

Mean Median Skewness Kurtosis
NASDAQ 0.00 0.00 0.26 6.64

IBM 0.00 0.00 0.16 6.38

Table 1 reports the summary statistics for the NASDAQ
index daily returns and the IBM daily returns. We find
common results that the distribution of the daily returns
departs from the Gaussian distribution by their skewness and
leptokurtosis, two key stylized facts of stock returns.

Table 2
Estimation of conditional variance : NASDAQ index

ASTGARCH STGARCH GARCH
ω0 0.00 0.00 0.00∗∗

α0 0.06∗∗ 0.05∗∗ 0.08∗∗

β0 0.90∗∗ 0.77∗∗ 0.92∗∗

ω1 0.00∗∗

α1 0.04∗∗ 0.04∗∗

β1 0.00
λ 495.69 133.00∗∗

γ 0.53∗∗

Log Likelihood 13785.09 13459.10 13761.42

Notes: ASTGARCH denotes our new model. STGARCH denotes the smooth transition GARCH model. Asterisks indicate

parameters are statistically significant at the 5% level under robust standard error.

Table 2 presents the estimated coefficients and likelihoods
of the NASDAQ index for our new model, as well as the
smooth transition model and the GARCH(1,1) model. It is
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apparent that there is a smooth transition between volatility
regimes. We also test for the significance of the coefficients
λ and γ and find that the null λ = 0 and γ = 1 are both
rejected at the 5% significance level.

Table 3
IBM daily returns
ASTGARCH STGARCH GARCH

ω0 0.00∗∗ 0.00∗∗ 0.00∗∗

α0 0.05∗∗ 0.05∗∗ 0.05∗∗

β0 0.92∗∗ 0.77∗∗ 0.94∗∗

ω1 0.00∗∗

α1 0.02∗∗ 0.08∗∗

β1 0.01∗

λ 56.21∗ 133.00∗∗

γ 0.09∗∗

Log Likelihood 12667.60 12397.97 12650.30
Notes: See notes for Table 2.

Table 3 presents the estimation of the conditional variance
of IBM stock’s daily returns. In this case, the null hypotheses
λ = 0 and γ = 1 are again rejected at the 5% significance
level, which is in support of a smooth transition between
volatility regimes.

V. CONCLUSION

The asymmetric response of volatility to positive and
negative shocks, best known as the “leverage effect” has
been well addresses in the financial econometrics literature.
A lot of empirical models have been proposed to capture
this effect with applications to stock returns, exchange rates,
and other financial data. In this paper, we have introduced
an asymmetric smooth transition model, which permits both
asymmetric responses and asymmetric transition dynamics
for the shocks on volatility. This model is a generalization
of the asymmetric nonlinear smooth transition model of
[1], [9] and [11]. Under certain conditions, many existing
specifications can be nested within our model, such as
the threshold model of [15], the widely used asymmetric
power model of DGE, and the GJR model. The empirical
results also show the advantage of our new model, which is
more flexible in capturing dynamic features of stock return
volatility.
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