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Abstract—A new approach to generalize Principal Compo-
nents Analysis in order to handle nonlinear structures has been
recently proposed by the authors: quasi-linear PCA (qlPCA).
It includes spline transformation of the original variables and
the qualifier quasi was chosen to emphasize the exclusive use
of linear splines. Alternating least squares fitting of a suitable
objective loss function is the mechanism for achieving spline
optimal transformation and nonlinear principal components.
Optimal transformations are explicitly known after convergence
and allow a straightforward projection of new observations
onto the nonlinear principal components space as well as
reconstruction the original variables. QlPCA reports model
summary in a linear PCA fashion and allows the introduction
of the piecewise loadings concept. This paper provides further
details on qlPCA and its properties. Results of a simulation
study are also presented.

Index Terms—nonlinear principal components analysis,
qlPCA, linear PCA, CATPCA.

I. INTRODUCTION

PRINCIPAL Components Analysis (PCA) being probably
the most common descriptive multivariate technique

for seeking linear structure in data, it is unsurprising to
find a number of attempts at generalizing it in order to
handle nonlinear structures. The concept behind PCA is to
project the original data, which includes noise and redundant
variables, into a latent space with the objective of capturing
its true dimensionality.

All descriptive methods for dimension reduction share the
same basic premise and general objectives: the original data
can be viewed as a collection of n points in some high
m-dimensional space, the points corresponding to sample
individuals and the dimensions to measured variables, and we
seek for a suitable low p-dimensional approximation in which
the points are positioned such that as much information as
possible is retained from the original space. By reducing the
dimensionality, one can interpret few components rather than
a large number of variables. Different interpretations of the
phrase “as much information as possible” lead to the different
multivariate techniques for dimension reduction.

One technique can be described as linear when the high-
dimensional set of coordinates is replaced by another in a
one-to-one linear relation with it. All attempts to generalize
PCA in order to handle nonlinear structures, the gener-
ally denominated Nonlinear Principal Components Analysis
(NLPCA), share the basic premise and general objectives
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mentioned, but they address the nonlinearity problem by
relaxing the linear restrictions between spaces.

An early attempt to generalize PCA was made by
Gnanadesikan and Wilk in the ‘60’s. The idea was to extend
the m-dimensional space by adding nonlinear functions of
the original variables (quadratic and higher order terms) and
then perform PCA on the expanded set of variables [1].
The key to this approach was to decide on the appropriate
dimensionality of the extended space as well as the non-
linear relationships between the original variables needed
to describe the system. This drawback was removed in the
‘90’s by Schölkopf [2] using a function from the original
m-dimensional space onto an arbitrarily high-dimensional
space (known as feature space in the machine learning
community) which “automatically” carries out the nonlinear
mapping. It turns out that this mapping can be performed
implicitly by using kernel functions and therefore does not
need to be specified. This approach, known as kernel PCA,
applies linear PCA on the feature space. Recently, Kruger
[3] reviews existing work on NLPCA and points out that it
can be divided into the utilization of autoassociative neural
networks, principal curves and manifolds, kernel approaches
or the combination of these approaches.

NLPCA’s most known approaches among researchers deal-
ing with continuous variables do not include the state-of-
the-art to perform NLPCA for ordinal and nominal data,
CATegorical PCA (CATPCA). We refer to a continuous
variable as one with small marginal frequencies on every
value, typically one or two. CATPCA performs quite well
when applied to categorical variables and is more appropriate
when [4]: (1) the data at hand contains categorical variables,
and/or (2) the variables in the data are (or may be) nonlin-
early related to each other. If the variables are nonlinearly
related, CATPCA will be able to account for more of the
variance in the data, and may enhance the interpretation of
the solution compared to linear PCA. CATPCA’s algorithm
was developed in the ‘90’s as an algorithm for categorical
data analysis, thus for dealing with integer valued variables.
Continuous data need to undergo a discretization process
before the algorithm starts. Various discretization options are
available for recoding continuous data within the procedure
and one can always recode data beforehand. Our proposal is
to adjust the algorithm to allow continuous values directly
so that researchers dealing with continuous variables avoid
thinking that some information is being neglect.

A new approach on generalizing PCA in order to handle
nonlinear structures have been recently proposed by the au-
thors [5], quasi-linear PCA (qlPCA). The proposed approach
was inspired by the Gifi system [6], also called Homogeneity
Analysis, in particular by its natural successor CATPCA.
QlPCA recovers the spline based algorithm in CATPCA, and
introduces continuous variables into the framework directly
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without the need of any discretization process. Thus, this
approach is more precise with regard to continuous variables
and provides a better approximation of a strictly nonlinear
analysis, becoming a valid option to perform NLPCA for
those variables.

This paper provides further details on qlPCA and its
properties. A brief review on splines is provided in the next
section followed by an overview of the Gifi system and
CATPCA in section III. A suitable objective (loss) function
is defined in section IV as well as details on qlPCA’s
algorithm. The main properties of qlPCA are reported in
section V: model summary, choosing the appropriate num-
ber of components, projecting new observations onto the
nonlinear principal components’ space, reconstruction and
piecewise loadings’ definition. Results of a simulation study
are provided on section VI.

II. SPLINE’S BRIEF REVIEW

Low order polynomial spline functions play an important
roll in our quasi-linear PCA (qlPCA) proposal. In this section
it will be provided the main results on spline functions
that will be useful for our purposes. For a comprehensive
overview see [7], [8].

A function f over [a, b], is a polynomial spline of degree
v if within any subinterval is defined by a polynomial of
degree v that join smoothly with adjacent ones. Although it
is possible to define several degrees of smoothness at the
boundaries of each subinterval [9], in the most common
situations adjacent polynomials have matching derivatives up
to order v−1 at each boundary point in the interior of [a, b].
Examples:

1) The first order (or zero degree) spline is a piecewise
constant function, discontinuous at the interior knots;

2) The second order spline is a continuous piecewise
linear function;

3) The third order spline is a piecewise quadratic function
with matching first derivatives at the interior knots.

It can be shown [7], [8] that the set of splines of degree
v with r interior knots is a linear space of functions, with
dimension w = v + 1 + r, equal to the spline’s order plus the
number of interior knots. In 1966, Curry and Schoenberg [7]
have built a basis, what they called B-splines, which revealed
to be especially convenient for computation.

In order to provide a spline’s representation convenient
from the points of view of application and computation,
smoothness conditions are incorporated into a knot sequence
{t} = {t1, . . . , t2v+r+2} where:

1) t1 ≤ . . . ≤ t2v+r+2;
2) t1 = . . . = tv+1 = a;
3) tv+r+2 = . . . = t2v+r+2 = b;
4) tv+2, . . . , tv+r+1 are the r interior knots.
Given the knot sequence {t}, spline’s basis of order v+1

is defined, for all q = 1, 2, . . . , w, by the recursive relation

B[1]
q (x) =

{
1 , tq ≤ x < tq+1

0 , otherwise ,

B[v+1]
q (x) =

x− tq
tq+v − tq

B[v]
q (x) +

tq+v+1 − x

tq+v+1 − tq+1
B

[v]
q+1(x),

where
x− tq

tq+v − tq
B[v]

q (x) and
tq+v+1 − x

tq+v+1 − tq+1
B

[v]
q+1(x)

are equal to zero when the denominators are zero.
Another set of basis splines particularly appealing to

statisticians is the M-spline basis,

M [v+1]
q =

v + 1

tq+v+1 − tq
B[v+1]

q , q = 1, . . . , w. (1)

It can be shown [8] that M
[v+1]
q is positive and less

than 1 over ]tq, tq+v+1[, zero elsewhere and also that∫ ∞

−∞
M [v+1]

q (x) dx = 1. Thus M
[v+1]
q is a probability den-

sity function. Monotone transformations can be obtained
using a monotone splines’ basis together with nonnegative
coefficients. Since each M-spline has the properties of a prob-
ability density function, another basis can be obtained using
the corresponding distribution function: integrated splines or
I-splines [10].

Given the knot sequence {t} the I-spline of order v+2 is
defined, for all q = 1, 2, . . . , w by

I [v+2]
q (x) =

∫ x

−∞
M [v+1]

q (u) du. (2)

Since each M-spline is a piecewise polynomial of degree
v, the associated I-spline is a piecewise polynomial of degree
v + 1. Thus, the related space has dimension w + 1, being
w the associated M-spline’s dimensionality. However, by
construction, there are only w independent I-splines, thus
we can only get the subspace spanned by those. From now
on w refers to this subspace’s dimension being w = v + r
for a degree v spline with r interior knots.

From definition it follows that I [v+2]
q is non-constant over

]tq, tq+v+1[, zero bellow tq and one above tq+v+1. I-splines’
definition by a recurrence relation provides a convenient
computational approach. As an illustrative example on how
to write a I-spline on a given basis let’s consider linear splines
with one interior knot at the median and an input continuous
variable x with minimum m1, median m2 and maximum m3.
The basis elements are the following:

I1(x) =


0, x < m1

x−m1

m2−m1
, m1 ≤ x < m2

1 x ≥ m2

I2(x) =


0, x < m2

x−m2

m3−m2
, m2 ≤ x < m3

1 x ≥ m3

To obtain a spline function of degree one with one interior
knot by recurrence it will be necessary in the first place to
compute the set of two M-splines basis functions of degree
zero with one interior knot. As these basis functions are
piecewise polynomial of degree zero, each Ii will be a
piecewise polynomial of degree one as needed. Therefore
this set of I-splines basis functions will have two elements.
As the entire space of degree one spline functions with one
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interior knot is three-dimensional, the referred set can only
generate one of its subspaces.

Figure 1 displays the family of I-splines of degree one
defined on [0, 1] with one interior knot at the median. Each I-
spline is piecewise linear and non-constant over one interval.
It also displays an example of the images obtained by each
of the three functions (two basis functions and one spline)
for a value of x above the median (x = 0.58, I1(0.58) = 1,
I2(0.58) = 0.29 and f(0.58) = 1.37).
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Fig. 1. Spline of degree one with one interior knot at the median. I1 and
I2 are the basis spline functions. Stars represent the images of x through
the spline obtained as a linear combination of I1 and I2 with coefficients
1.2 and 0.6, respectively.

A degree n polynomial is determined by n + 1 points.
Therefore, each spline’s segment in Figure 1 can be defined
using the points associated with the minimum/median and
median/maximum. However, qlPCA algorithm will search
for the optimal (as defined in section IV) linear combination
of I-splines by means of a multivariate linear regression with
I1 and I2 as predictor variables and thus involving whole data
and not only those two points.

III. GIFI SYSTEM AND CATPCA
For a comprehensive overview on the Gifi system see [6],

a recent review is given by [11] and [4].
The central idea of the Gifi system is the notion of optimal

scaling and its implementation through an alternating least
squares (ALS) algorithm. The optimal scaling process as
defined by the Gifi system is a transformation of variables by
assigning quantitative values to qualitative variables in order
to optimize a fixed criterion. Optimality is a relative notion,
however, because it is always obtained with respect to the
particular data set being analyzed and also depends on the
class of admissible transformations. This process (optimal
quantification, optimal scaling, optimal scoring) allows non-
linear transformations of variables. Variable transformation
has become an important tool in data analysis over the last
decades. For an historical overview see [4].

One of the optimal scaling procedures for dimension
reduction and its SPSS implementation - CATPCA - was de-
veloped by the Data Theory Scaling System Group (DTSS),
consisting of members of the departments of Education and
Psychology of the Faculty of Social and Behavioral Sciences
at Leiden University.

The CATPCA algorithm is the state-of-the-art to perform
nonlinear PCA for ordinal and nominal data [4] and is

available since 1999 within SPSS Categories 10.0 onwards
[12]. The traditional crisp coding of the categorical variables
was maintained and the least squares estimation of the spline
coefficients is performed by a multivariate regression on each
iteration of the ALS procedure. This approach performs quite
well when applied to categorical variables, but it needs an
a priori discretization process for quantitative variables or
categorical not coded in the traditional way. And by so it is
no longer precise with regard to quantitative variables.

CATPCA procedure simultaneously quantifies m categor-
ical variables while reducing the dimensionality of the data.
The technique consists of finding object scores X of order
n × p (i.e. n = number of cases-objects, p = number of
dimensions) and sets of multiple category quantifications Yj

of order kj × p (i.e. kj = number of categories of each
variable and j = 1, . . . ,m) so that the loss function:

σ(X,Y) = n−1
∑
j

tr
[
(X−GjYj)

′
(X−GjYj)

]
(3)

is minimal, under the normalization restriction X
′
X = nI,

where:
• Gj is an indicator matrix for variable j, of order n×kj ,

whose elements are 0 when the i-th object is not in the
r-th category of variable j and 1 when the i-th object
is in the r-th category of variable j;

• I is the p× p identity matrix.
The algorithm uses ALS to minimize the loss function.

It consists of two phases, a model estimation phase and an
optimal scaling phase, iteratively alternated until convergence
is reached. Both object scores and category quantifications
are alternately updated until the optimum is found.

IV. QUASI-LINEAR PCA

CATPCA’s algorithm was developed in the ‘90’s as an
algorithm for categorical data analysis, thus for dealing with
integer valued variables. Continuous data need to undergo
a discretization process before the alternating least squares
(ALS) algorithm starts. Various discretization options are
available for recoding continuous data within the procedure
and one can always recode data beforehand. Our proposal is
to adjust the algorithm to allow continuous values directly
so that researchers dealing with continuous variables avoid
thinking that some information is being neglect.

The obvious advantages of incorporating continuous vari-
ables directly are:

• the user does not need to care about any discretization
process;

• the relative distances within each variables’ values are
respected from the start without discretization losses of
information.

Although defined and implemented for any given spline’s
order and number of interior knots, quasi-linear PCA
(qlPCA) refers to linear splines. This approach allows mod-
eling several degrees of nonlinear relationships between
variables by increasing the number of knots while maintain-
ing the transformations stepwise linear. Using this kind of
splines, relative distances are not going to be lost during the
optimization process being proportional after convergence

IAENG International Journal of Applied Mathematics, 41:4, IJAM_41_4_14

(Advance online publication: 9 November 2011)

 
______________________________________________________________________________________ 



within any two consecutive interior knots. The main advan-
tages of this approach are related to explicitly defining the
nonlinear optimal transformation and to identify piecewise
loadings (section V).

A. Optimal scaling revisited

Let H be n×m standardized data matrix, p the number of
retained principal components and fj = fj(hj) be the image
vector of hj under the function fj , j = 1, . . . ,m. The loss
funtion (3) can be re-written in a more general format into
the loss function σ : Mn×p×Mpm×n →IR so that

σ (X,F) = n−1
∑
j

tr
[
(X− Fj (hj))

′
(X− Fj (hj))

]
,

(4)
with normalization restriction X

′
X = nI where:

• Fj =
[
fj1 . . . fjp

]
is the n × p matrix collecting

the p (different) images of the (same) vector hj ;
• fjt is the transformed variable j associated with dimen-

sion t, t = 1, . . . , p;
• F =

[
F1 . . . Fm

]′
is an nm× p matrix.

Notice that the matrix Fj contains the images of the
same vector hj , subject to p different transformations. If no
restrictions are imposed upon the matrix Fj , then each value
of the jth variable receives p different quantifications, one
for each retained dimension, in what is commonly called
Multiple quantification [6], [12], [13].

Usually, for continuous variables, order and distance re-
strictions are required, which can be imposed by the splines’
parameters (degree, number of interior knots and its place-
ment). A familiar way to implement those restrictions starts
by imposing rank one restrictions on the matrix Fj , on what
is usually called Single quantification [6], [12], [13]. Details
on Single quantification implementation in the proposed
algorithm are given in the next section.

Having fixed the class of admissible transformations for
each variable, the purpose is to find the object scores and
the transformations that minimize the loss function (4).
The main differences between the existing algorithms to
solve the loss minimization problem are within the class of
admissible transformations. In what splines are concerned,
each class of transformations depends on the number of
knots, spline’s degree and knots placement. However, while
the fitting problem is linear in the basis coefficients, it is
highly nonlinear in the knots, and therefore it is desirable
to avoid much optimization with respect to them [10]. The
choice of a particular spline could be targeted according
to the percentage of explained variance (section V.A), by
trying different sets of parameters. However, like in all
statistical models, nonlinear PCA via splines is susceptible to
overfitting when there are too many parameters in the model.
In order to prevent overfitting a reasonable amount of data
should be in the vicinity of any interior knot [10].

Let fj be the image vector of hj under a spline of degree
v with r interior knots, spanned by w = v + r I-splines

fj =
w∑
i=1

αjiI
[v]
ji (hj) =

w∑
i=1

αjiI
[v]
ji = G△

j yj , (5)

where: G△
j is the pseudo-indicator matrix for variable j, of

order n × w whose columns are the image vectors of the
variable j by each of the I-splines basis functions; yj is a
vector of length w whose elements are the linear combination
coefficients yj = [α1α2 . . . αw]

′
.

In the previous section the optimal scaling or optimal
quantification process was defined within categorical analysis
as the transformation of variables by assigning quantitative
values to qualitative variables in order to optimize equation
(3). Using equation (5) it is possible to re-define the optimal
quantification process as a ALS phase that, given the object
scores, optimize the vectors yj in order to minimize the loss
function, or analogously, as the ALS phase that seeks to find
the optimal linear combination for each basis spline, given
the object scores from the model estimation phase, therefore
obtaining the optimal spline transformation to each variable.

Notice that if the chosen class of admissible transforma-
tions are splines of degree one without interior knots the ALS
optimization of equation (4) yields the traditional (linear)
PCA solution.

B. QlPCA Algorithm Outline

Let H be n ×m standardized data matrix, p the number
of retained principal components, r the number of interior
knots and v the spline’s degree.

The qlPCA algorithm uses ALS to minimize (4) using rank
one matrices Fj . It consists of two phases iteratively alter-
nated until convergence is reached, an optimal quantification
phase and a estimation of object scores phase.

Let H, p, r and v be the algorithm’s inputs. The initial
configuration is set as follows.
I. Initialization

1: Zn×p ← linearPCA(H)

2: [K,Λ1/2,W ]← svd(Z)

3: X←
√
nKW

′

4: aj ←
1

n
X

′
hj , j = 1, . . . ,m

5: [G△
1 . . .G△

m]← createIspline(H, v + 1, r)

Initialization starts by performing a linear PCA on H
retaining p principal components on the object scores matrix
Z. This matrix is then orthonormalized (steps 2 and 3, being
svd a singular value decomposition) such that X

′
X = nI.

On step 4, aj = [a1j . . . asj . . . apj ]
′

for each j, being
asj the Pearson correlation between variable j and the sth

principal component, also known as component loading. Step
5 computes the n×mw matrix G△ = [G△

1 . . .G△
m] by the

iterative procedure described in section II.
II. Alternating Least Squares: optimal quantification phase

(loop across variables j):
1: ỹj ← Xaj

2: yj ←
1

n
((G△

j )
′
G△

j )−1(G△
j )

′
ỹj

3: fj = fj (hj)← G△
j yj

4: fj ← fj − f ju
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5: fj ←
√
n

fj
∥fj∥

6: aj ←
1

n
X

′
fj

Optimal quantification phase updates each variables’ quan-
tification fj (steps 1 to 5) and the vectors aj (step 6). Least
squares estimation is being used in order to minimize the
sum of the squares of the residuals between Xaj and the
transformed variable j (step 2). Notice that step 2 performs
a multivariate linear regression with Xaj as the dependent
variable and the columns of G△

j as predictors. This updates
yj , a vector whose elements are the linear combination
coefficients for the I-splines’ basis, which in turn will update
each variables’ quantification fj . Each transformed variable
is mean centered (step 4) and normalized to

√
n (step 5) so

that its variance will be one. On step 6, aj is updated, being
now asj , the Pearson correlation between the transformed
variable j and the sth nonlinear principal component, from
now on called nonlinear component loading.
III. Alternating Least Squares: estimation of object scores
phase

1: Z←
∑
j

Fj where Fj = fja
′

j

2: [K,Λ1/2,W]← svd(Z)

3: X←
√
nKW

′

The estimation of object scores phase updates X. Rank
one restrictions (Single quantification) are imposed on the
n × p matrix Fj by defining Fj = fja

′

j = [fja1j . . . fjapj ],
therefore each column of Fj being collinear to fj . In its
general format the loss function (4) used the nm× p matrix
F to store multiple quantifications for each variable. This al-
gorithm, using single quantification on every variable allows
a re-definition of F to a n×m matrix where F = [f1 . . . fm].
Thus, by the previous definition, F is the transformed data
matrix. Step 1 assigns to Z the sum of Fj over j (thus Z is
a centered matrix). Matrix Z is then orthonormalized (steps
2 and 3) such that X

′
X = nI; thus object scores will have

unitary variance.
IV. Convergence test

The convergence test is performed by testing the difference
between two successive values of the loss function (4) against
0.1× 10−5. The algorithm goes back to II if convergence is
not reached or stops if the maximum number of iterations is
reached.

After convergence, qlPCA will produce the following
outputs:

• X - n×p matrix containing the nonlinear objects scores;
• F - n×m matrix containing the optimally transformed

variables;
• A = [a1 . . .am] - p×m matrix with nonlinear loadings;
• y - mw-vector with optimal coefficients associated with

m I-splines basis.

C. Some notes on the computer program
QlPCA algorithm has been implemented through (freely

downloadable) MATLAB m-files. MATLAB version 2009b
was used and a MATLAB GUI (Graphical User Interface)
and can be obtained from the correspondent author.

The computer program is in a preliminary form since at
the moment it only allows the same type of splines for all
variables.

For the computation of the I-splines basis we have de-
signed our own program based on the theoretical foundations
in [7], [8] and [10]. At the moment nothing in our algorithm
ensures that a nondecreasing spline is obtained. However
the basis coefficients are computed so that they minimize
the loss function. Therefore, if a nondecreasing spline is
the optimal transformation for the existing structure, it will
emerge naturally. This will be exemplified in section VI.

Applying qlPCA involves trying out different options
regarding spline’s order and the number of interior knots.
Linear splines have several advantages (see next section)
but the user can always try higher order splines. The actual
implementation does not allow users to choose specific
locations for knots: they are always placed at equally spaced
percentiles and thus each interval contains approximately the
same number of data points. It was already mentioned that
in order to prevent overfitting a reasonable amount of data
should be in the vicinity of any interior knot [10]. The cause
of overfitting is related to step II.2 of qlPCA’s algorithm,
where a multivariate regression with w = v + r (spline’s
degree plus the number of interior knots) predictor variables
is performed. With our knots placement option, preventing
overfitting is a matter of the number of available individuals,
n, versus w. There is no consensus in the literature regarding
the minimum number of available observations per predictor
on linear multivariate regression, but a value of 10 to 15 ob-
servations per predictor is commonly referred. Whatever the
rule of thumb chosen, its adaption to the qlPCA framework
implies multiplying that number by w.

V. PROPERTIES OF QUASI LINEAR PCA

The qlPCA algorithm will take advantage of low order
splines, without limitation concerning the number of interior
knots, in order to achieve nonlinear PCA as a straightforward
generalization of the traditional PCA including its measures
of performance and interpretation. In this section, results
on model summary, projecting new observations onto the
nonlinear principal components space and reconstruction of
the original variables are introduced. A new concept is also
defined - piecewise loadings - as (piecewise) correlations
between nonlinear principal components and the original
variables.

Given a training n×m data matrix H the representation
in the nonlinear principal components space can be found
by minimizing the loss function (4) using the algorithm
described in the previous section. Given the qlPCA param-
eters (p the number of retained principal components, r the
number of interior knots and v the spline’s degree and by
consequence w = v+ r the linear space of spline functions’
dimension), once the optimization is completed the following
matrices and vectors, as defined in the previous section, can
be considered known: X,F,A and y.

A. Model summary

As in linear PCA, one is usually interested about the
model’s ability to account for the total variation in the
original data matrix. However, PCA nonlinear varieties only
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report the nonlinear model’s ability to account for the total
variation in the optimally transformed data matrix.

Let’s define Variance Accounted For per dimension (s =
1, . . . , p) as

V AFs =

m∑
j=1

a2sj , (% of variance is V AFs × 100/m)

where asj is the Pearson correlation between variable j
and the sth principal component, also known as component
loading.

Let R be the correlation matrix of F. Each transformed
variable is mean centered and normalized to

√
n, thus R =

n−1F
′
F. It can be shown that the first p eigenvalues of R

equal V AFs, s = 1, . . . , p and that the sth diagonal element
of Λ1/2 (step III.2) equals

√
nV AFs.

Therefore VAF’s definition introduces the concept of
eigenvalues within qlPCA and is a straightforward general-
ization from linear PCA on the nonlinear model’s ability to
account for the total variation in the optimally transformed
data matrix.

B. Choosing the appropriate number of components
As in linear PCA, the user must decide the adequate

number of components to be retained in the solution. One
of the most well-known criteria for this decision is to retain
all principal components with eigenvalues greater than 1.0.
However, there is broad consensus in the literature that this
is among the least accurate methods [12], [14]. Alternative
criterions include the scree plot, parallel analysis, Velicers
partial correlation technique, cross-validation among others
[14]. Being available in the most frequently used statistical
software as well as more accurate than the “eigenvalues
greater than 1.0” criterion, the scree plot criterion may well
be the user’s best available choice.

The scree test involves examining the plot of components’
identification (on the x-axis) versus eigenvalues (on the y-
axis) and looking for the break point, or “elbow”, where the
curve flattens out. The number of points above the “break”
(i.e. not including the point at which the break occurs) is
usually the appropriate number of components to retain,
although it can be unclear if there are data points clustered
together near the bend.

Since qlPCA algorithm minimizes the loss function for a
given number p of retained principal components its solutions
are usually not nested for different values of p. The first p
eigenvalues obtained from the correlation matrix among the
optimal transformed variables by qlPCA with p as input are
usually not equal to the first p eigenvalues obtained from the
correlation matrix among the optimally transformed variables
by qlPCA with p + 1 as input. Therefore, scree plots differ
for different dimensionalities and the scree plots of the p, the
p − 1 and p + 1 dimensional solutions should be compared
[12]. The scree plots’ “break” associated with qlPCA with p
as input should be consistent with the scree plots’ “break”
associated with qlPCA with p + 1 as input, so that the
appropriate number of components to retain is p [12].

C. Projecting new observations onto the nonlinear pc space
Let h

′

new be a m-vector with new observations on the
m variables from the same process as the original data

matrix. The problem of projecting the new observations onto
the nonlinear principal components space is to find the p-
vector x

′

new, the corresponding nonlinear object scores. If the
original data matrix is not standardized, mean and variances
vectors should be recorded and qlPCA algorithm applied on
the standardized data matrix. A correction on h

′

new is applied
using those vectors.

Notice that step III.3 can be re-written as
X←

√
nZWΛ−1/2W

′
since by the singular value

decomposition Z = KΛ1/2W
′
. Let A be the nonlinear

loadings matrix, notice that (step III.1),

Z = FA
′
, (6)

thus

X =
√
nFA

′
WΛ−1/2W

′
, (7)

where W and Λ−1/2 derive from the singular value decom-
position on step III.2.

New observations’ representation on the nonlinear prin-
cipal components space is achieved in two steps. Firstly
transformed values of h

′

new are computed (loop across
variables j, j = 1, . . . ,m):

if min(hj) ≤ hnew,j ≤ max(hj) then
fnew,j ← interp(hj , fj , hnew,j),

else
fnew,j ← extrap(hj , fj , hnew,j),

end if
For within range values linear interpolation is performed

to find fnew,j , the value of the underlying optimal spline
function fj at the value hnew,j , the new observation on
variable j. Notice that after convergence the optimal linear
spline with r interior knots is completely defined with
r + 2 points: r associated with the interior knots at two
associated with the minimum and maximum of each variable.
Therefore interpolation only needs those r + 2 points to
achieve the exact spline’s value. For out of range values linear
extrapolation is performed.

Secondly, nonlinear object scores for the new observations
are obtained using equation (7) with the 1 × m optimal
transformed matrix Fnew = [fnew,1 . . . fnew,m].

D. Reconstruction

The problem of reconstruction the original data is con-
cerned with finding an estimate Ĥ of H using its nonlinear
object scores representation. This process includes two steps:
firstly from nonlinear object scores X to an approximation
F̂ of the transformed data; secondly from F̂ to an estimate
Ĥ of the original data.

When p < m nonlinear principal components are used
Xaj is an approximation of the optimal transformed variable
fj (qlPCA’s algorithm step II.2), thus XA is an estimate F̂
of F. Therefore

F = XA+ (F− F̂) (8)

where the first term on the right-hand side of the equation
represents the contribution due to the retained nonlinear
principal components and the second term represents the
amount that is not explained by the qlPCA model - the
residual.
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Having used qlPCA with linear splines each column of
XA is thus an approximation of the optimal linear spline’s
images. Inverse linear interpolation gives the exact inverse
function of a stepwise linear function. Therefore, using
inverse linear interpolation, with values of Xaj within the
range of the jth spline and inverse linear extrapolation for
values outside, Ĥ is achieved.

E. Piecewise Loadings

Let x ← xs be the sth principal component, f ← fj
the jth transformed variable and h ← hj the jth (original)
variable. Within qlPCA, as within any other nonlinear PCA
approach, the term loading refers to the Pearson correlation
between x and f . In this section, xi, fi and hi will denote the
truncated vectors obtained from x, f and h, respectively, with
elements from the ith piece of those vectors, i = 1 . . . r+1,
defined by two consecutive knots (minimum, interior knots
and maximum). The idea of piecewise loadings is to achieve
(piecewise) correlations between truncated vectors xi and
hi by means of fi. Therefore, piecewise loadings can reveal
stepwise behavior between nonlinear principal components
and the original variables.

The authors have shown in [5] an analytic expression of
piecewise loadings for the particular case of linear splines
with one interior knots. However, analytic expressions on
piecewise loadings with more interior knots demands the use
of the related analytic expression of those optimal spline
transformation. Those expressions are not available as a
direct algorithm output, thus results should refer not to the
analytic expressions but to the truncated vectors xi, fi and
hi.

Consider the following auxiliar result: let y and z be two
vectors (not necessarily mean centered neither standardized)
of the same dimension and g a linear function, being g =
g(z) = mz+ bu the image vector of z throughout g, where
u is a vector with ones. It can be shown that:

corr(y, g(z)) =

 corr(y, z), m > 0

−corr(y, z), m < 0
(9)

After qlPCA convergence x and f are available, thus
corr(xi, fi) can be computed for every piece i. Since linear
splines are being used, within each piece fi and hi are related
by fi = mihi + biu for a known mi and bi. Therefore by
the previous result:

corr(xi,hi) =

 corr(xi, fi), mi > 0

−corr(xi, fi), mi < 0
(10)

VI. SIMULATION STUDY

We now discuss an example in which known nonlinear
functions are simulated. A version of this problem, called
the cylinder problem, has been used by [10], [6] and several
other authors to test their nonlinear approaches to principal
components analysis.

Consider twelve variables, where ten of them are defined
as nonlinear functions of the remaining two.

All variables with the exception of 8 and 9 are log-
linear while 8 and 9 can be put into linear form by the

TABLE I
CYLINDER PROBLEM.

Variable Formula
1. Altitude a
2. Base Area b

3. Base Perimeter 2
√
bπ

4. Side Area 2a
√
bπ

5. Volume ab
6. Moment of Inertia ab2/2π

7. Slenderness Ratio a/
√
2bπ

8. Diagonal-Base Angle arctan[a
√
π/(2

√
b)]

9. Diagonal-Side Angle arccot[a
√
π/(2

√
b)]

10. Electrical Resistance a/b
11. Conductance b/a
12. Torsional Deformability 2aπ/b2

transformations log ◦ tan and log ◦ cot, respectively. Thus,
there exists a set of twelve monotone transformations which
will cause the transformed data matrix to have a two-
dimensional structure with scores for each observation being
log altitude and log base area.

As a consequence, it is expected that a nonlinear PCA over
the original data matrix (as well as an ordinary PCA over the
transformed data matrix) reveals an almost perfect fit with
only two dimensions and that the optimal spline transforma-
tions behave approximately like logarithmic functions.

A. Design

There were made three simulations, having as a starting
point 51 different cylinders defined by using uniformly
distributed pseudorandom numbers for the altitudes and base
areas. For each of these 51 cylinders values of the remain
ten variables listed in table I were computed.

We wanted to illustrate our procedure with data having
some level of noise and consequently we added normal, zero-
mean, pseudorandom disturbances. Each variable was first
transformed by the appropriate linearizing transformation,
then a disturbance was added to this value, and finally
the disturbed value inversely transformed. The dispersion of
the noise term varies from variable to variable, as it is a
proportion of the standard deviation of each variable. Two
sets of disturbed data were generated, one with a 10% noise
level, and the other with a 25% noise level.

Having in mind the suggestion on prevent overfitting (sec-
tion IV.C) and since there are 51 available individuals results
of qlPCA are based on linear splines with two interior knots
(chosen to be approximately at the 33rd and 67th percentiles)
and three interior knots (chosen to be approximately at the
quartiles) for each variable.

B. Results

In the following table are given the results obtained after
applying the proposed algorithm (qlPCA) using linear splines
with two interior knots (qlPCA2), linear splines with three
interior knots (qlPCA2) and linear Principal Components
Analysis (PCA) on the three data sets (no noise, 10% noise
and 25% noise). The fit is expressed in terms of percentage
of variance accounted for two dimensions.

In all cases the proposed algorithm (qlPCA) performed
much better than linear PCA. The theoretical structure im-
posed on data makes reasonable to assume that a two-
dimensional structure should be considered. In order to test
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TABLE II
VARIANCE ACCOUNTED FOR TWO DIMENSIONS (%).

Algorithm No noise 10% noise 25% noise
qlPCA2 97.77 96.90 92.59
qlPCA3 98.43 97.68 94.41
PCA 82.16 80.18 72.62

it on the worst situation, data with 25% noise level, scree
plots analysis have been conducted to check this assumption
on both PCA and qlPCA. Regarding linear PCA’s scree plot,
presented in Figure 2, eigenvalues of the correlation matrix
of the original variables were used. This plot does not show
a clear “elbow” like the ones on Figure 3 for qlPCA, as the
slope changes abruptly not once but twice on the third and
on the sixth component. Therefore based on the referred plot,
either two or five components solutions are defendable.
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Fig. 2. Scree plot from linear PCA on cilinder data with 25% noise level.
On the y-axis are the eigenvalues of the correlation matrix of the original
variables.

Regarding qlPCA’s scree plot, it used eigenvalues of the
correlation matrix of the transformed variables from a two-
dimensional solution to check this assumption that two
components were the appropriate number of components to
retain. From this plot, presented in Figure 3 (upper plot), we
concluded that the elbow is located at the third component.
Remember that qlPCA solutions are not nested (section V.B),
so a scree plot for a three-dimensional solution can be
different from a scree plot for a two-dimensional solution,
with the position of the elbow moving from the third to
the second component. In the present analysis, different
dimensionalities consistently place the elbow at the third
component, as shown in Figure 3. Therefore, the information
from both scree plots suggests that two is the appropriate
number of components to retain as expected.

Figure 4 displays the optimal spline transformation of
variable 6 from a two dimensional qlPCA on cilinder data
without noise. This plot is the typical one among the twelve
transformations plots. This type of logarithmic shaped plots
was, as expected, the most commonly obtained among the
twelve transformation plots. However, an exception - trans-
formation of variable twelve - was observed, as it can be
seen in Figure 5.
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Fig. 3. Scree plot from a two and three dimensional qlPCA on cilinder data
with 25% noise level. On the y-axis are the eigenvalues of the correlation
matrix of the transformed variables.
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Fig. 4. Optimal spline transformations with three interior knots of variable
6 from a two dimensional qlPCA on cilinder data without noise.

Further inspection of this variable shows that the interior
knots are placed at 3.85, 10.32 and 25.38 (the quartiles) and
that its maximum is 6498.7. This is an example where an al-
ternative knot placement could have improved the variable’s
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transformation.
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Optimal linear spline transformation on var. 12, three interior knots

Fig. 5. Optimal spline transformations with three interior knots of variable
12 from a two dimensional qlPCA on cilinder data without noise.

VII. CONCLUSION

A new approach on Nonlinear Principal Components Anal-
ysis, so-called quasi-linear PCA (qlPCA) was presented in
detail in this paper. The qualification quasi emphasize that
it refers to the use of linear splines. QlPCA algorithm uses
alternating least squares to minimize a suitable objective loss
function. It consists of two phases iteratively alternated until
convergence is reached, an optimal quantification phase and
a estimation of object scores phase.

Nonlinear PCA techniques usually report its solution with
relational measures between the nonlinear transformed vari-
ables obtained after convergence and the associated objects
scores. Considering low order splines some relations between
nonlinear principal components and the original variables can
be revealed. Optimal transformations are explicitly known
after convergence and it was shown that optimization over
linear splines have several advantages. It allows projecting
new observations onto the nonlinear principal components’
space and reconstruction the original observations. A new
concept was also defined - piecewise loadings - as (piece-
wise) correlations between nonlinear principal components
and the original variables.

QlPCA recovers a spline based algorithm designed for cat-
egorical variables (CATPCA) and introduces continuous vari-
ables into the framework without the need for a discretization
process. It should be emphasized that the proposed algorithm
is not intended to be a competitor of CATPCA but rather a
different approach.

Nonlinear PCA’s most known approaches among re-
searchers dealing with continuous variables are autoasso-
ciative neural networks, principal curves and manifolds,
kernel approaches or the combination of these [3]. Therefore,
comparisons studies with qlPCA will be taken.

Applying qlPCA involves trying out different options
regarding spline’s order and the number of interior knots.
Researchers are invited to try it out using a MATLAB GUI
(Graphical User Interface) that can be obtained from the
correspondent author.
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