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Abstract—In this paper we use the continuation theorem of
coincidence degree theory and analysis techniques. We establish
the existence and uniqueness of a T-periodic solution for
the third-order delay differential equation with two deviating
arguments.

A new result on the existence and uniqueness of a periodic
solution of this equation is obtained. In addition an example is
given to illustrate the main result.
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I. INTRODUCTION

TO our knowledge, most exciting results on the existence
of periodic solutions of delay differential equations are

usually obtained by the technique of bifurcation, by fixed-
point theorems or by coincidence degree theory. In general
it is more difficult to study the uniqueness of the periodic
solutions.

Continuation theorem of coincidence degree theory plays
a significant role in the investigation of the existence and
uniqueness of periodic solutions of differential equations
with delay.

In recent years, by using continuation theorem of co-
incidence degree theory, the existence and uniqueness of
periodic solutions for some types of first and second-order
delay differential equations with a deviating argument or
two deviating arguments were studied, for example, [7 −
10, 12 − 16], etc. But the corresponding problem of third-
order delay differential equations with a deviating argument
or two deviating arguments was discussed far less often, for
example, [3, 11, 16]. In 2006, Gui [3] established criteria for
existence of positive periodic solutions to the following third-
order neutral delay differential equation with a deviating
argument

x(3)(t) + aẍ(t) + g(ẋ(t− τ(t))) + f(x(t− τ(t))) = p(t),

where a is a positive constant; g, f and p are real continuous
functions and are defined on R; τ(t), p(t) are periodic with
period ω.

The main purpose of this paper is to provide new sufficient
conditions for guaranteeing the existence and uniqueness of a
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T-periodic solution to third-order delay differential equation
with two deviating arguments

x(3)(t) + ψ(ẋ(t))ẍ(t) + f(x(t))ẋ(t)
+g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t))) = p(t),

(1)

where ψ, f, τ1, τ2, p : R → R and g1, g2 : R × R → R are
continuous functions; τ1, τ2 and p are T-periodic, g1 and g2

are T-periodic in their first argument and T > 0.

II. PRELIMINARIES

For convenience we define

|x|k = (
∫ T

0
|x(t)|kdt)

1
k , k ≥ 1, |x|∞ = maxt∈[0,T ] |x(t)|,

|p|∞ = maxt∈[0,T ] |p(t)| and p̄ = 1
T

∫ T

0
p(t)dt.

Let

X = {x|x ∈ C2(R, R), x(t + T ) = x(t), forall t ∈ R}
and

Y = {y|y ∈ C(R, R), y(t + T ) = y(t), forall t ∈ R}
be two Banach spaces with the norms

‖x‖X = max{|x|∞, |ẋ|∞, |ẍ|∞} and ‖y‖Y = |y|∞.

Define a linear operator L : D(L) ⊂ X → Y by setting

D(L) = {x|x ∈ X, x(3)(t) ∈ C(R, R)},
and for x ∈ D(L),

Lx = x(3)(t). (2)

We also define a nonlinear operator N : X → Y by setting

Nx = −ψ(ẋ(t))ẍ(t)− f(x(t))ẋ(t)
−g1(t, x(t− τ1(t)))− g2(t, x(t− τ2(t))) + p(t). (3)

Then we notice that KerL = R, dim(KerL) = 1;
ImL = {y|y ∈ Y,

∫ T

0
y(s)ds = 0} is a subset of

Y and dim(Y/ImL) = 1, which imply codim(ImL) =
dim(KerL).
Thus the operator L is a Fredholm operator with index zero.
Define the continuous projectors P : X → KerL and
Q : Y → Y/ImL by

Px(t) = x(0) = x(T ) and Qy(t) =
1
T

∫ T

0

y(s)ds,

hence ImP = ImQ = KerL = R and KerQ = ImL.
Let LP := LD(L)∩KerP : D(L) ∩KerP → ImL, then LP

has a continuous inverse L−1
P on ImL defined by

(L−1
P y)(t) =

∫ T

0
G(s, t)y(s)ds,

G(s, t) =
{ − s

T (T − t), 0 ≤ s ≤ t;
− t

T (T − s), t ≤ s ≤ T.
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By using Ascoli-Arzela theorem we have from the above
equation, that L−1

P (I − Q)N(Ω̄) is compact. On the other
hand, QN(Ω̄) is bounded by continuity of function QN .
Thus N is L-compact on Ω̄, where Ω is an open bounded
subset in X .
In view of (2) and (3) the operator equation

Lx = λNx, λ ∈ (0, 1);

is equivalent to the following equation

x(3)(t) + λ{ψ(ẋ(t))ẍ(t) + f(x(t))ẋ(t)
+g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))} = λp(t).

(4)

The following Mawhin’s continuation theorem is useful in
obtaining the existence of T-periodic solution of (1) [2].

Theorem 2.1: (Mawhin’s continuation theorem) Let X
and Y be two Banach spaces. Suppose that L : D(L) ⊂
X → Y is a Fredholm operator with index zero and
N : X → Y is L-compact on Ω̄, where Ω is an open
bounded subset in X . Moreover assume that all the following
conditions are satisfied:

(a) Lx 6= λNx, forall x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);
(b) Nx 6∈ ImL, forall x ∈ ∂Ω ∩KerL;
(c) The Brower degree

deg{QN,Ω ∩KerL, 0} 6= 0.

Then Lx = Nx has at least one solution on Ω̄ ∩D(L).
Lemma 2.1: It is convenient to introduce the following

assumptions:
(i) Assume that there exist non-negative constants

a1, a2, b1, b2, c1 and c2 such that

|ψ(y)| ≤ a1, |ψ(y1)− ψ(y2)| ≤ a2|y1 − y2|
for all y, y1, y2 ∈ R,

|f(x)| ≤ c1, |f(x1)− f(x2)| ≤ c2|x1 − x2|
for all x, x1, x2 ∈ R and

|gi(t, u)− gi(t, v)| ≤ bi|u− v|
for all t, u, v ∈ R, i = 1, 2.

(ii) Suppose that the following conditions are satisfied:
(H1) One of the following conditions holds
(1) (gi(t, u)− gi(t, v))(u− v) > 0 for all

t, u, v ∈ R, u 6= v, i = 1, 2,
(2) (gi(t, u)− gi(t, v))(u− v) < 0 for all

t, u, v ∈ R, u 6= v, i = 1, 2;
(H2) There exists d > 0 such that one of the following
conditions holds
(1) x{g1(t, x) + g2(t, x)− p̄} > 0 for all t ∈ R, |x| > d,
(2) x{g1(t, x) + g2(t, x)− p̄} < 0 for all t ∈ R, |x| > d;

If x(t) is a T-periodic solution of (4), then

|x|∞ ≤ d + 1
2

√
T |ẋ|2. (5)

(iii) Assume that (i) and (ii) hold such that

a1
T
2 + c1

T 2

4 + (b1 + b2)T 3

8 < 1. (6)

If x(t) is a T-periodic solution of (1), then

|ẍ|∞
≤ [(b1+b2)d+max{|g1(t,0)|+|g2(t,0)|:0≤t≤T}+|p|∞]T

2{1−a1
T
2 −c1

T2
4 −(b1+b2)

T3
8 }

:= k.

(7)

(iv) Suppose that (i) − (iii) hold. Also let the following
condition holds

a1
T
2 +

(
a2k + c1

)
T 2

4

+
(

b1 + b2 + c2k
T
2

)
T 3

8 < 1.
(8)

Then (1) has at most one T-periodic solution.
Proof of (ii). Let x(t) be an arbitrary T-periodic solution
of (4). Then by integrating (4) from 0 to T we have

∫ T

0
{g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))
−p(t)}dt = 0,

(9)

which implies that there exists t1 ∈ R such that

g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))
−p̄ = 0.

(10)

Next we show that the following claim is true.
Claim. If x(t) is a T-periodic solution of (4), then there
exists t2 ∈ R such that

|x(t2)| ≤ d. (11)

Assume by the way of contradiction that (11) does not hold.
Then

|x(t)| > d forall t ∈ R, (12)

which together with (H1), (H2) and (10) imply that one of
the following four relations holds:

x(t1 − τ1(t1)) > x(t1 − τ2(t1)) > d, (13)

x(t1 − τ2(t1)) > x(t1 − τ1(t1)) > d, (14)

x(t1 − τ1(t1)) < x(t1 − τ2(t1)) < −d, (15)

x(t1 − τ2(t1)) < x(t1 − τ1(t1)) < −d. (16)

Suppose that (13) holds, in view of
(H1)(1), (H1)(2), (H2)(1) and (H2)(2) we consider
four cases as follows:
Case I: If (H1)(1) and (H2)(1) hold, according to (13) we
have

0 < g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− p̄
< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p̄,

which contradicts (10). Thus (11) is true.
Case II: If (H1)(2) and (H2)(1) hold, according to (13) we
have

0 < g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− p̄
< g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p̄,

which contradicts (10). Thus (11) is true.
Case III: If (H1)(1) and (H2)(2) hold, according to (13) we
have

0 > g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ1(t1)))− p̄
> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p̄,

which contradicts (10). Thus (11) is true.
Case IV: If (H1)(2) and (H2)(2) hold, according to (13) we
have

0 > g1(t1, x(t1 − τ2(t1))) + g2(t1, x(t1 − τ2(t1)))− p̄
> g1(t1, x(t1 − τ1(t1))) + g2(t1, x(t1 − τ2(t1)))− p̄,
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which contradicts (10). Thus (11) is true.
Suppose (14) (or(15), or(16)) holds; using the methods
similarly to those used in Case I-IV we can show that (11)
is true.
This completes the proof of the above claim.
Let t2 = mT + t0, where t0 ∈ [0, T ] and m is an integer,
then from (11) and for any t ∈ [t0, t0 + T ] we obtain

|x(t)| = |x(t0) +
∫ t

t0
ẋ(s)ds|

< d +
∫ t

t0
|ẋ(s)|ds.

Also

|x(t)| = |x(t0 + T ) +
∫ t

t0+T
ẋ(s)ds|

≤ d +
∫ t0+T

t
|ẋ(s)|ds.

By combining the above two inequalities we find

|x(t)| ≤ d + 1
2

∫ T

0
|ẋ(s)|ds.

Using the Cauchy-Schwarz inequality yields

|x(t)| ≤ d + 1
2

√
T (

∫ T

0
|ẋ(s)|2ds)

1
2

= d + 1
2

√
T |ẋ|2.

Therefore we have
|x|∞ = maxt∈[0,T ] |x(t)|

≤ d + 1
2

√
T |ẋ|2.

This completes the proof of condition (ii) in Lemma 2.1.
Proof of (iii). Let x(t) be a T-periodic solution of (1) for
a certain λ ∈ (0, 1). Multiplying (1) by x(3)(t) and then
integrating it over [0, T ] and by using condition (i), we find

|x(3)(t)|22 ≤ a1

∫ T

0
|ẍ(t)||x(3)(t)|dt

+c1

∫ T

0
|ẋ(t)||x(3)(t)|dt +

∫ T

0
|p(t)||x(3)(t)|dt

+
∫ T

0
{|g1(t, x(t− τ1))− g1(t, 0)|+ |g1(t, 0)|}|x(3)(t)|dt

+
∫ T

0
{|g2(t, x(t− τ2))− g2(t, 0)|+ |g2(t, 0)|}|x(3)(t)|dt.

Then we get

|x(3)(t)|22 ≤ a1

∫ T

0
|ẍ(t)||x(3)(t)|dt

+c1

∫ T

0
|ẋ(t)||x(3)(t)|dt

+b1

∫ T

0
|x(t− τ1(t))||x(3)(t)|dt

+
∫ T

0
|g1(t, 0)||x(3)(t)|dt

+b2

∫ T

0
|x(t− τ2(t))||x(3)(t)|dt

+
∫ T

0
|g2(t, 0)||x(3)(t)|dt +

∫ T

0
|p(t)||x(3)(t)|dt

≤ a1

∫ T

0
|ẍ(t)||x(3)(t)|dt

+c1

∫ T

0
|ẋ(t)||x(3)(t)|dt

+b1|x|∞
∫ T

0
|x(3)(t)|dt + |p|∞

∫ T

0
|x(3)(t)|dt

+b2|x|∞
∫ T

0
|x(3)(t)|dt

+ max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T} ∫ T

0
|x(3)(t)|dt.

Thus from (5) we obtain

|x(3)(t)|22 ≤ a1

∫ T

0
|ẍ(t)||x(3)(t)|dt

+c1

∫ T

0
|ẋ(t)||x(3)(t)|dt

+ 1
2 (b1 + b2)

√
T |ẋ|2

∫ T

0
|x(3)(t)|dt

+[(b1 + b2)d + max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}
+|p|∞]

∫ T

0
|x(3)(t)|dt.

By using Cauchy-Schwarz inequality we find

|x(3)(t)|22 ≤ a1|ẍ|2|x(3)|2 + c1|ẋ|2|x(3)|2
+ 1

2 (b1 + b2)T |ẋ|2|x(3)|2 + [(b1 + b2)d
+ max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}
+|p|∞]

√
T |x(3)|2.

(17)

Since x(0) = x(T ), there exists a constant ξ ∈ [0, T ] such
that ẋ(ξ) = 0 and

|ẋ(t)| = |ẋ(ξ) +
∫ t

ξ
ẍ(s)ds|

≤ ∫ t

ξ
|ẍ(s)|ds, t ∈ [ξ, T + ξ].

(18)

Again

|ẋ(t)| = |ẋ(ξ + T ) +
∫ t

ξ+T
ẍ(s)ds|

≤ |ẋ(ξ + T )|+ ∫ ξ+T

t
|ẍ(s)|ds

=
∫ ξ+T

t
|ẍ(s)|ds, t ∈ [0, T ].

(19)

The inequalities (18) and (19) imply

2|ẋ(t)| ≤ ∫ t

ξ
|ẍ(s)|ds +

∫ ξ+T

t
|ẍ(s)|ds

=
∫ T

0
|ẍ(s)|ds.

Therefore by using Cauchy-Schwarz inequality we have

|ẋ(t)| ≤ 1
2

√
T (

∫ T

0
|ẍ(s)|2ds)

1
2 , forall t ∈ [0, T ], (20)

so

|ẋ|∞ ≤ 1
2

√
T |ẍ|2, (21)

|ẋ|2 ≤
√

T maxt∈[0,T ] |ẋ(s)|
≤ 1

2T (
∫ T

0
|ẍ(s)|2ds)

1
2

= 1
2T |ẍ|2.

(22)

Since x(t) is periodic function for t ∈ [0, T ] and by using
the above similar technique, we find

|ẍ(t)| ≤ 1
2

∫ T

0
|x(3)(t)|dt.

Which together with Cauchy-Schwarz inequality imply

|ẍ|∞ ≤ 1
2

√
T (

∫ T

0
|x(3)(s)|2ds)

1
2

= 1
2

√
T |x(3)|2,

(23)

|ẍ|2 ≤
√

T maxt∈[0,T ] |ẍ(s)|
≤ 1

2

√
T

∫ T

0
|x(3)(s)|ds

≤ 1
2T |x(3)|2.

(24)

By substituting from (24) in (22) we get

|ẋ|2 ≤ 1
4T 2|x(3)|2. (25)

By substituting from (24) in (21) we have

|ẋ|∞ ≤ 1
4T

3
2 |x(3)|2. (26)

From (5) and (25) we obtain

|x|∞ ≤ d + 1
8T

5
2 |x(3)|2. (27)

Then by substituting from (24) and (25) in (17) we find

|x(3)|22 ≤ a1
T
2 |x(3)|22 + c1

T 2

4 |x(3)|22 + (b1 + b2)T 3

8 |x(3)|22
+[(b1 + b2)d + max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}
+|p|∞]

√
T |x(3)|2.

Therefore we obtain

|x(3)|2
≤ [(b1+b2)d+max{|g1(t,0)|+|g2(t,0)|:0≤t≤T}+|p|∞]

√
T

1−a1
T
2 −c1

T2
4 −(b1+b2)

T3
8

.
(28)

By substituting from (28) in (23) and (26) we find

|ẍ|∞ ≤ [(b1+b2)d+max{|g1(t,0)|+|g2(t,0)|:0≤t≤T}+|p|∞]T

2{1−a1
T
2 −c1

T2
4 −(b1+b2)

T3
8 }

:= k,
(29)
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|ẋ|∞
≤ [(b1+b2)d+max{|g1(t,0)|+|g2(t,0)|:0≤t≤T}+|p|∞]T 2

4{1−a1
T
2 −c1

T2
4 −(b1+b2)

T3
8 }

:= T
2 k.

(30)

This completes the proof of condition (iii) in Lemma 2.1.
Proof of (iv). Suppose that x1(t) and x2(t) are two T-
periodic solutions of (1), then we have

x
(3)
1 (t)− x

(3)
2 (t) + ψ(ẋ1(t))ẍ1(t)− ψ(ẋ2(t))ẍ2(t)

+f(x1(t))ẋ1(t)− f(x2(t))ẋ2(t)
+g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))
+g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t))) = 0.

Set

z(t) = x1(t)− x2(t).

Then we find

z(3)(t) + {ψ(ẋ1(t))ẍ1(t)− ψ(ẋ2(t))ẍ2(t)}
+{f(x1(t))ẋ1(t)− f(x2(t))ẋ2(t)}
+{g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))}
+{g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))} = 0.

(31)

Since x1(t) and x2(t) are two T-periodic solutions, by
integrating (31) over [0, T ] we obtain
∫ T

0
{g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))

+g2(t, x1(t− τ2(t)))− g2(t, x2(t− τ2(t)))}dt = 0.

By using the integral mean-value theorem, it follows that
there exists a constant γ ∈ [0, T ] such that

g1(γ, x1(γ − τ1(γ)))− g1(γ, x2(γ − τ1(γ)))
+g2(γ, x1(γ − τ2(γ)))− g2(γ, x2(γ − τ2(γ))) = 0.

(32)

But (H1) and (32) imply

z(γ − τ1(γ))z(γ − τ2(γ))
= (x1(γ − τ1(γ))− x2(γ − τ1(γ)))(x1(γ − τ2(γ))

−x2(γ − τ2(γ))) ≤ 0.

Since z(t) = x1(t)− x2(t) is a continuous function in R, it
follows that there exists ξ ∈ R such that

z(ξ) = 0.

Set ξ = nT + γ̄, where γ̄ ∈ [0, T ] and n is an integer then
we get

z(γ̄) = z(nT + γ̄) = z(ξ) = 0. (33)

Thus for any t ∈ [γ̄, γ̄ + T ] we obtain

|z(t)| = |z(γ̄) +
∫ t

γ̄
ż(s)ds|

≤ ∫ t

γ̄
|ż(s)|ds,

and

|z(t)| = |z(γ̄ + T ) +
∫ t

γ̄+T
ż(s)ds|

≤ ∫ γ̄+T

t
|ż(s)|ds.

Combining these two inequalities and using Cauchy-Schwarz
inequality yield

2|z(t)| ≤ ∫ γ̄+T

γ̄
|ż(s)|ds

=
∫ T

0
|ż(s)|ds

≤ √
T (

∫ T

0
|ż(s)|2ds)

1
2

=
√

T |ż|2.

Therefore

|z|∞ ≤ 1
2

√
T |ż|2. (34)

Multiplying (31) by z(3)(t) and then by integrating it over
[0, T ] it follows

|z(3)(t)|22 = − ∫ T

0
{ψ(ẋ1(t))ẍ1(t)− ψ(ẋ2(t))ẍ2(t)}z(3)(t)dt

− ∫ T

0
{f(x1(t))ẋ1(t)− f(x2(t))ẋ2(t)}z(3)(t)dt

− ∫ T

0
{g1(t, x1(t− τ1(t)))− g1(t, x2(t− τ1(t)))}z(3)(t)dt

− ∫ T

0
{g2(t, x1(t− τ1(t)))− g2(t, x2(t− τ1(t)))}z(3)(t)dt.

From (i) we get

|z(3)(t)|22 ≤
∫ T

0
|ψ(ẋ1(t))||ẍ1(t)− ẍ2(t))||z(3)(t)|dt

+
∫ T

0
|ψ(ẋ1(t))− ψ(ẋ2(t))||ẍ2(t))||z(3)(t)|dt

+
∫ T

0
|f(x1(t))||ẋ1(t)− ẋ2(t))||z(3)(t)|dt

+
∫ T

0
|f(x1(t))− f(x2(t))||ẋ2(t))||z(3)(t)|dt

+b1

∫ T

0
|x1(t− τ1(t))− x2(t− τ1(t))||z(3)(t)|dt

+b2

∫ T

0
|x1(t− τ2(t))− x2(t− τ2(t))||z(3)(t)|dt

≤ a1

∫ T

0
|z̈(t)||z(3)(t)|dt + a2

∫ T

0
|ż(t)||ẍ2(t)||z(3)(t)|dt

+c1

∫ T

0
|ż(t)||z(3)(t)|dt + c2

∫ T

0
|z(t)||ẋ2(t)||z(3)(t)|dt

+b1

∫ T

0
|z(t− τ1(t))||z(3)(t)|dt

+b2

∫ T

0
|z(t− τ2(t))||z(3)(t)|dt.

By using Cauchy-Schwarz inequality we have

|z(3)|22 ≤ a1|z̈|2|z(3)|2 + a2|ż|2|ẍ2|∞|z(3)|2
+c1|ż|2|z(3)|2 + c2|z|∞|ẋ2|∞

√
T |z(3)|2

+b1|z|∞
√

T |z(3)|2 + b2|z|∞
√

T |z(3)|2.
From (25), (26), (27), (29) and (30) we obtain

|z(3)|22 ≤ 1
2a1T |z(3)|22 + 1

4a2kT 2|z(3)|22 + 1
4c1T

2|z(3)|22
+ 1

16c2kT 4|z(3)|22 + 1
8 (b1 + b2)T 3|z(3)|22

≤ {a1
T
2 + (a2k + c1)T 2

4 + (b1 + b2 + c2k
T
2 )T 3

8 }|z(3)|22.
Since z(t), ż(t), z̈(t) and z(3)(t) are continuous T-periodic
functions, by (iv), (22), (33), (34) and the above inequality
we have

z(t) ≡ ż(t) ≡ z̈(t) ≡ z(3)(t) = 0, forall t ∈ R.

Thus x1(t) ≡ x2(t), for all t ∈ R. Hence (1) has at most
one T-periodic solution.
This completes the proof of condition (iv) in Lemma 2.1.
So the proof of Lemma 2.2 is now complete.

III. MAIN RESULT

Theorem 3.1: Suppose that (i) and (iv) hold, then (1) has
a unique T-periodic solution.
Proof. Condition (iv) of Lemma 2.1 states that (1) has at
most one T-periodic solution. Thus to prove Theorem 3.1 it
suffices to show that (1) has at least one T-periodic solution.
To do this, we shall apply Theorem 2.1.
First we will claim that the set of all possible T-periodic
solutions of (4) is bounded.
Let x(t) be a T-periodic solution of (4). Multiplying (4) by
x(3)(t) and then by integrating it over [0, T ] we obtain
∫ T

0
|x(3)(t)|2dt = −λ

∫ T

0
ψ(ẋ(t))ẍ(t)x(3)(t)dt

−λ
∫ T

0
f(x(t))ẋ(t)x(3)(t)dt

−λ
∫ T

0
g1(t, x(t− τ1(t)))x(3)(t)dt

−λ
∫ T

0
g2(t, x(t− τ2(t)))x(3)(t)dt + λ

∫ T

0
p(t)x(3)(t)dt.
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In view of (i), (5) and the inequality of Cauchy-Schwarz we
have

|x(3)|22 ≤ {a1
T
2 + c1

T 2

4 + (b1 + b1)T 3

8 }|x(3)|22
+[(b1 + b1)d + max{|g1(t, 0)|+ |g2(t, 0)| : 0 ≤ t ≤ T}

+|p|∞]
√

T |x(3)|2,
which together with condition (iii) imply that there exists
M0 > 0 such that

|x(3)|2 < M0.

This together with (23), (26) and (27) leads to

|ẍ|∞ ≤ 1
2

√
TM0,

|ẋ|∞ ≤ 1
4T

3
2 M0,

|x|∞ ≤ d + 1
8T

5
2 M0.

Let M = max{d + 1
8T

5
2 M0,

1
4T

3
2 M0,

1
2

√
TM0}, then we

have Ω = {x|x ∈ X, ‖x‖ < M} as a non-empty open
bounded subset of X .
So condition (a) in Theorem 2.1 holds.
In view of (H2)(1) and (H2)(2) we will consider two cases:
Case (i): If (H2)(1) holds. Since

QNx = − 1
T

∫ T

0
{ψ(ẋ(t))ẍ(t) + f(x(t))ẋ(t)

+g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p̄}dt,

for any x ∈ ∂Ω∩KerL = ∂Ω∩R, then x is a constant with
x(t) = M or x(t) = −M . Then

QN(M) = − 1
T

∫ T

0
{g1(t,M) + g2(t,M)− p̄}dt

< 0,

QN(−M) = − 1
T

∫ T

0
{g1(t,−M) + g2(t,−M)

−p̄}dt > 0,

(35)

which implies that condition (b) of Theorem 2.1 is satisfied.
Furthermore define a continuous function H(x, µ) by setting

H(x, µ) = −µx + (1− µ)QNx

= −µx− (1− µ) 1
T

∫ T

0
{ψ(ẋ(t))ẍ(t) + f(x(t))ẋ(t)

+g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p̄}dt,

in view of (35) we get xH(x, µ) < 0 for all x ∈ ∂Ω∩KerL
and µ ∈ [0, 1].
Thus H(x, µ) is a homotopic transformation.
By using the homotopy invariance theorem we have

deg{QN,Ω ∩KerL, 0} = deg{−x, Ω ∩KerL, 0} 6= 0,

so condition (c) of Theorem 2.1 is satisfied.
Case (ii): If (H2)(2) holds. Since

QNx = − 1
T

∫ T

0
{ψ(ẋ(t))ẍ(t) + f(x(t))ẋ(t)

+g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p̄}dt,

for any x ∈ ∂Ω∩KerL = ∂Ω∩R, x(t) = M or x(t) = −M ,
we obtain

QN(M) = − 1
T

∫ T

0
{g1(t,M) + g2(t,M)− p̄}dt

> 0,

QN(−M) = − 1
T

∫ T

0
{g1(t,−M) + g2(t,−M)

−p̄}dt < 0,

(36)

which implies that condition (b) of Theorem 2.1 is satisfied.
Define
H(x, µ) = µx + (1− µ)QNx

= µx− (1− µ) 1
T

∫ T

0
{ψ(ẋ(t))ẍ(t) + f(x(t))ẋ(t)

+g1(t, x(t− τ1(t))) + g2(t, x(t− τ2(t)))− p̄}dt,

in view of (36) we get xH(x, µ) > 0 for all x ∈ ∂Ω∩KerL
and µ ∈ [0, 1].
Thus H(x, µ) is a homotopic transformation.
By using the homotopy invariance theorem we have

deg{QN, Ω ∩KerL, 0} = deg{x, Ω ∩KerL, 0} 6= 0,

so condition (c) of Theorem 2.1 is satisfied. Therefore it
follows from Theorem 2.1 that (1) has at least one T-periodic
solution. This completes the proof.

IV. EXAMPLE

Example 4.1. In this section we apply the main result
obtained in the previous section to an example.

Consider the existence and uniqueness of a π-periodic
solution of the third-order delay differential equation with
two deviating arguments

x(3)(t) + 1
20 (sin ẋ)ẍ(t) + 1

16 (cos x)ẋ(t)
+g1(t, x(t− cos 2t)) + g2(t, x(t− sin 2t))

= 1
π cos 2t,

(37)

where

T = π, τ1(t) = cos 2t, τ2(t) = sin 2t,
g1(t, x) = 1

80π(1+cos2 t) tan−1 x,

g2(t, x) = 1
120π (1 + sin2 t) tan−1 x and

p(t) = 1
π cos 2t.

By (37) we find

a1 = a2 = 1
20 , b1 = 1

80π , b2 = 1
60π ,

c1 = c2 = 1
16 ,

noticing that

p̄ = 1
T

∫ T

0
p(t)dt = 1

π

∫ π

0
1
π cos 2tdt = 0,

|p|∞ = 1
π ,

we can get d = 1
10 , (d is an arbitrary small positive constant).

Then we can obtain
[(b1+b2)d+max{|g1(t,0)|+|g2(t,0)|:0≤t≤T}+|p|∞]T

2{1−a1
T
2 −c1

T2
4 −(b1+b2)

T3
8 }

= {( 1
80π + 1

60π ) 1
10+ 1

π }π
2{1− 1

20
π
2− 1

16
π2
4 −( 1

80π + 1
60π ) π3

8 }
:= k = 0.68,

a1
T
2 +

(
a2k + c1

)
T 2

4 +
(

b1 + b2 + c2k
T
2

)
T 3

8

= 1
20

π
2 +

(
0.68
20 + 1

16

)
π2

4 +
(

1
80π + 1

60π + 0.68
16

π
2

)
π3

8

= 0.62 < 1.

It is obvious that all the assumptions (ii)-(iv) hold.
Hence by Theorem 3.1, equation (37) has a unique π-
periodic solution.
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