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On Gain Initialization and Optimization of
Reduced-Order Adaptive Filter

Hong Son Hoandgvember, IAENGand Rémy Baraille

Abstract—Despite all the progress in filtering algorithms to reduce, explicitly or not, the set of estimated parameters.
for state estimation in very high dimensional systems, the This is seen in the widely used variational approach [12],
technology is delicate and sometimes difficult to apply. Good [13] where seeking an optimal trajectory in the phase space

initialization of filter gain, appropriate choice of tuning pa- LY . ; L
rameters and their optimization are the key factors to achieve is replaced by finding an optimal estimate for the initial

robust high-performance filtering algorithms. In this paper the ~System state. For the class of sequential algorithms, the
authors propose a method for properly initializing the filter  different approximate (or suboptimal) KFs algorithms were
gain, and for efficient optimization of the filter performance. developed. These include, e.g., the Ensemble KF (EnKF,
Numerical experiments W|I_I l_3e given to illustrate th(_e algorithm see [14],[15]) in which the covariance is approximated by
and to demonstrate the efficiency of the proposed filter for state | . timated f 100 | f th
estimation problems in classical low dimensional as well as in a SamP e Covarlgnce estimated frani100) samp es. orthe
very high dimensional systems. prediction and filtered errors and evolved according to the
L T KF formalism. Another class of the Reduced-Rank KFs is
Index Terms—Adaptive filtering, data assimilation, dynam- d by 16
ical systems, numerical prediction, real Schur decomposition, proposed by [16]. ) .
stability. The concept developed in the ROAF approach is to make
reduction not of the model order [17] but of the dimension
of the space spanned by the columns of the filter gain [2].
|. INTRODUCTION In such situation, the question on a filter stability is of the

N a series of papers [1]-[5] a new technique known dyst importance. This issue has been studied in many works

a reduced-order adaptive filter (ROAF) is developed fdpr the full KF, for example, in [18]. For the ROAF, as
solving the problem of state and parameter estimation ¥aund in [3],[5], under detectability condition, it is possible to
very high dimensional systems. The very high dimension@nsure a stability of the filter if the reduced-rank subspace is
systems we mean here are those having the state ve&@mposed from unstable and neural eigenvectors (or singular
of the dimension of orde0% — 107. Theoretically, these Vectors) of the system dynamics. For illustration of these
tasks can be solved in the framework of the theory dgsults, see the experiments in [19]. In the light of the
Bayesian statistics, in particular, by the Kalman filter (KFmportant requirement for stability of the ROF, it is strongly
and/or its extensions [6]. However, application of the KF tgdvisable to approximate the ECM in the full space in such
very high dimensional systems is an extremely difficult tasR Way that the space spanned by the columns of the ECM
Even under ideal conditions for applicability of the KF, itshould cover the subspace of unstable eigenvectors or that
implementation is simply impossible due to insurmountab®f unstable singular vectors of the system dynamics.
memory and computational requirements : it requires the The steps in the design of a ROAF are following: First a
solution of an enormous number of additional equatior$®t Of filters is chosen which are defined up to a vector of
(order 0f 1012 — 1014). unknown parameters in the filter gain. Next the optimization

To overcome the mentioned above difficulties, differer® Performed by adjusting the tuning parameters to minimize
approximation approaches are proposed among which {he mean prediction error (MPE)f the system output.
nudging, optimal interpolation, kriging, variational methJ0o better understand the basic features of the ROAF, in
ods ... [7]. To handle more general state and observatidable | the differences between two approaches, ROAF and
equations, the filters based on the sequential Monte Cafigur-Dimensional Variational approach (4D-Var) [12] are
approach like bootstrap filtering, the condensation algorithifesented.
particle filtering, interacting particle approximations ... [8]- Itis evident that the performance of the ROAF depends on
[11] are recently proposed and tested. Here the posterﬁ)ﬁelected class of filters and its parameterization. This paper
probability density function is represented by a collectioWill focus the efforts on the way to well initialize the filter
of random points. As the dimension of numerical model igain and its parameterization. For example, in [4] the initial

very high, in all practically realizable algorithms one ha§@in is chosen on the basis of the well-known Cooper-Haines
filter (CHF) [20] whose gain is derived by assuming several

Manuscript received May 26, 2011; revised September 20, 2011.  physical hypotheses on water properties. The approach to
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TABLE | : . . . .
4D-VAR AND ROAF is (nxm) matrix, u(k) is the m-dimensional known deter-
ministic signal,z(k) is thep-dimensional observation vector,
Approach 4D-VAR ROAF H is the (pxn) observation matrixw, e are the model and
Control vector Initial system state Gain parameters observation noises. We assumxék),e(k) are uncorrelated

sequences of zero mean and time-invariant covarighaad
Cost function Distance in phasq MPE of system out- R respectively. Without loss of generality, for simplicity, let

space put B = 0. For the class of filters of the structure
Optimization Batch-vector, iterative| Sequential, SPSA
#(k+1) = &(k+1/k)+ K (k+1)C(k+1), 2(k+1/k) = ®3 (k)
Gr_adient compu-| Integration of qu(_al Integration of n_wogjel (3)
tation gﬁoﬁeﬂ\ﬁ assimi- fﬁs;ﬁfh assimilation where((k+1) = z(k+1)— Hz(k+1/k) is the innovation

vector,i(k + 1) is the filtered (or analysis) estimate(k +
1/k) is the prediction forz(k+ 1), the gain which will yield

an unbiased minimum variance (MV) estimate for the system
state is given by [22]

demonstrate that it is possible to optimize the ROAR\bgy
time integrationof the numerical model at each assimilation
instant. That is feasible due to introduced optimality in thg (1 4-1) = Eley(k+1)¢T(k+ DE[C(k+1)¢T (k+1)] 7
MPE sense and the use of the simultaneous perturbation (4)
stochastic approximation (SPSA) algorithm. Compared to theE(.) is the mathematical expectation,(k + 1) = & (k +
4D-VAR approach, this advantage is very significant sincg k) — z(k + 1) is the PE for the system statek + 1),
the latter requires a number of iterations (about 20), eag(j, 4+ 1) is the transpose of(k + 1)
of which includes one integration of the direct model and The gainK (k + 1) takes the form
one backward integration of the adjoint equation (AE) of the
tangent linear model (TLM), over all the assimilation period.

In the section that follows, first a brief outline of the K(k+1)=M(k+1)H [HM(k+1)H" +R|™" (5)

difficulties encountered in solving the filtering problems for where M(k + 1) is the ECM fore,(k + 1). The filtered

very high dimensional systems as well as the algorithmic pro- O
cedure of the ROAF are given. The numerical procedure %Srror (FE) expressed by’ (k + 1) = Eles(k + 1)es(k +
I

T A P .
generating the samples of the prediction error (PE), propo %l{tfifl(zlfqtalt)ic;;(xA(sg)l) —z(k+1) satisfies the Algebraic
in [21], is described in section 3. These PE samples wi
participate in approximation or estimation of the parameters
of the ECM needed in initialization of the filter gain. It M(k+1) = @P(k+1)2" +Q, 6)
is shown in section 4 that implementation of the ROAF is Pk+1)=[I - K(k+ 1)H|M(k +1).
greatly simplified thanks to the SPSA algorithm. To illustrate
all steps in the ROAF algorithm, first the classical problem
on estimating the position and velocity of a vehicle based The system of equations (3),(5),(6) constitutes the famous
on position observations is considered in details in sectiét
5. Application of the ROAF to high dimensional system is It is seen that for the state(k) of dimension of order
presented in sections 6-7 where the problem of estimatiéf’ — 107, it is impossible to apply the KF since the system
of the North Atlantic Ocean circulation using the satellitéd) in fact is composed from0'? — 10'* equations for
sea-surface height (SSH) is considered. The performancedgfermining the elements of the matdX(k) and M (k).
the ROAF will be compared with that of the CHF studied in

[4]. The conclusions are given in section 8. B. Full-order adaptive filter (FOAF)
Remark that in Eg. (3) all variables are well defined except
Il. ROAF APPROACH the gaink (k). The idea in the FOAF [1],[2] is outlined as

A. Kalman filter. Difficulties for high dimensional systemsfollows : 1) To introduce a new criteria of “optimality” for
Consider a Standard f||ter|ng prob|em for |inear Umethe f||ter Wh|Ch relates direCtly ItS Optlmallty to the Choice
invariant system of the gain; 2) This criteria should be such that it allows to
design a low cost procedure for computing the optimal gain.
Consider the filter (3) subject to a time-invariant gdin
z(k+1) = ®x(k) + Bu(k) + w(k),k =0,1,2,... (1) Note that under mild conditions, the galifi(k) in the KF will
dk+1) = He(k+1) + ek +1),k=0,1,2,... (2) converge in a§ymptotic tq a constant g&iR, too. To satisfy
the two mentioned requirements, first somelements (or
here z(k) is the n-dimensional system state at:= ¢, parameters) of the gain are selected which form a control
assimilation instant® is the (xn) fundamental matrix 3 vector to be optimized. The gain is supposed then to be
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defined up to a vector of unknown parametérse R? |ll. NUMERICAL PROCEDURE FOR CONSTRUCTION OF,

saisfying If there is no difficulty in numerical computation of eigen-
vectors for low-dimensional systems, the problem becomes
K = K(0),the filters (3) are stable for all € © (7) unrealizable for the systems of state-space dimension of
order 1¢-107. Determining characteristic polynomial of a
matrix by calculating its determinant is expensive. Compu-
tation of determinant ofn x n) matrix requiresn/3 multi-
plications. Another difficulty concerns possible existence of
J = J[0] = E[Y(¢(k))] — ming, ¥(¢(k)) := [|¢(k)]]? complex eigenvalues. In addition, the problem of computing
(8) eigenvectors is unstable : small errors in specification of
here||.|| is thely vector norm. The optimal filter will be the initial matrix may result to large errors in estimation
MPE since((k) is a one-step prediction error. The algorithnif the eigenvector and eigenvalue. As to the singular vectors
of the FOAF is given in [2]. This algorithm requires to solveapproach, there exists an efficient Lanczos algorithm [24] for
the adjoint equation (AE) associated with the TLM of theomputing the leading singular vectors of very large sparse
filtering Eq. (3). As the filter is stable and the forcing insystems. The advantages of singular vectors approach are
the AE is nonzero only at the current assimilation instant, fihat they (singular vectors) are all real and their computation
is sufficient to make only a few iterations in the backwargg numerically stable. However the computation requires

The optimal gain is defined a&* = K (6*) wheref* is
the solution of

integration of the AE. the TLM and its adjoint code. The third approach dealing
) with leading real Schur vectors, enjoys all advantages of
C. Structure of the gain the singular vectors approach. Moreover, it does not require

Selecting improper structures for the filter gain may lead tan adjoint code for the TLM. For these reasons in [21] a
its instability and fast growth of estimation error : as the gainumerical procedure for generating the PE samples on the
elements are functions of the random estimite), there is basis of DScVs (Dominant Schur vectors) is proposed. It is
a high risk that the filter becomes unstable if no special gashown that the generated PE samples (referred to as DPE
structure is taken to ensure its stability during optimizatioflominant PE) samples) will develop in the direction of

process. DScVs. These samples are very helpful for initializing the
In [2] a ROF is introduced to reduce the number ofinknown parameters in the filter gain.
unknown elements to be estimated in the filter gain, Compared to the ensemble-based filtering algorithms
(EnBF) (see [14],[15]), we remark that if in the EnBF
ze(k+1) = Pexe(k) + K((k+1) (9) algorithms the PE patterns are sampled randomly according

where &, € R"*" is the fundamental matrix of the [0 the KF formalism, the procedure for simulating DPE
equation for the reduced staie € R":. By assuming: = Samples (called DPE sampling procedure (SP-DPE)) is aimed
P.a., n. << n, P, € R"" is given, the estimate for the at generating patterns to develop in the direction of rapid

full state = is recovered byi: = P,i. [23]. We have then growth of the PE error (DScVs subspace). It is therefore not
surprising that the gain is usually well estimated on the basis

A . of an ensemble of small-size of DPE samples. In fact, from
a(k +1) = ®i(k) + K((k +1), K =P K. (10) (4, the termE[e, (k)¢T (k)] maps the innovation vectgrk)
By this way, the number of unknown parameters imto the space spanned by samplescgfk). Secondly, the
K. is dramatically reduced. From (9)(10) the correctiogain (7) stabilizes the filter (4) if the columns &f. belong
K((k + 1) is an element of the linear spade[P,]. The to adominant Schur subspaced@fThus, the "optimal” low-
choice of the operataP,. € R"*"- hence plays an essentialrank subspace for the gain is based on: 1) an ensemble of
role in providing the extent to which the filter can minimizepatterns ofe,(k); 2) this ensemble should be as close as
the estimation error. The question on stability of the ROpossible to a dominant Schur subspacebof
is studied in [3],[5]. One of the simplest stabilizing gain

structures is given by A. Sampling procedure based on orthogonal iteration
method

The procedure for generating patterns developed in the

K =P,OK., K. =H![H.H +R]"',H. = HP,, (11) direction of a dominant Schur subspace is proposed in [21].
O = diag[6s,...,0,,],0; € (0,2) Given an(n x L) matrix X, with orthonormal columns,

1 < L < n, the method of orthogonal iteration generates a

] B sequence of matriceX;,
A detailed study on stability of the ROAF [3] reveals that

for ensuring its stability, the spade[P,] should belong to a

subspace spanned by the leading eigenvectors or Schur vec- S, = DX, . X:Gy = S;.i=1,2 (12)
tors of the system dynamics. Recently the similar conclusion ! e T

has been proved in [5] for leading singular vectorsof
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where X; is orthonormal. One sees that the columns ofstandard deviations. For simplicity of the presentation we
keep the notatioy;; unchanged, understanding that some-
S; := Si(L) (13) times they may be the results obtained through corresponding
renormalization procedure.

Comment 3.3 The definition ofz¢(k + 1) depends on
whether it is applied in theff-line (SP1) or in theon-line
(SP2) fashion. The off-line procedure assumesk + 1) :=

XToX =T =diag\) + N, M| > |Xa| > ... > | A\ zp(k+1). On the other hand, by applying the SP-DPE during

the filtering process, the on-line SP2 assume@:) = &(k),
A L o A(k:) is the filtered estimate, and it integrates the model from

Let X = [X, X®], X' isn x L sub-matrix, V' is a block 3 1y anq its perturbed estimaigk)-+dz!, (k). The renormal-
uppertrlangular Then roughly speaking theAijlslta_lnce betwqe tion process can be performed then more precisely if there
Dy (®) := R[X'] and R[X,] is of orderO(| =) where s 5 yossibility to get some information on the ECM matrix

R[X;] denotes the linear space spanned by the columns §fyy o the filtered errore ; (k). For P, (k) - square-root of
X, (see [24], section 7.3)). Thus the orthogonal |terat|ol@,(k), P(k) = Pl(k)PiI'(k), the FE sample is obtained from
method allows us to generate the columnskgfapproaching the relationsz! (k:) = Py(k)ozl (k),l = 1,2, ..., L. The PE

P ) ) ) .

the dominantZ Schur vectors. In the future the columns o
S; = ®X;_, are referred to aBPE sampledor the system
dynamics (1).

belong to the space spanned by the columnX pof
Consider the Schur decomposition

atterns generated during assimilation process can be used to
correct the ECM obtained by the off-line SP1 and to improve
the performance of the PEF. In the future we will use the
notationsé! (k) := éxl (k) if the PE sample is generated
B. DPE sampling procedure [21] by the on-line SP2.

Suppose we want to simulafg patterns for each of the
first L Schur vectors of the system dynamids At the . Estimation of error statistics

moment: = 0, ¢ := ¢;, let z¢(¢) be an initial estimate ,

for (7). Suppose we are given the orthogonal matkix, ane the PE patterns; = 5;(L), i =12, o T beceme

X7 X, — I, whose columns ar& orthonormal perturbations available, they can be used to estimate error statistics or
Y L parameters of the ECM. For example, if all the elements

), l=1,..., L. . . .
Msge)pll Forz < T Let z;(i) and X, be given. Integrate * of the matrix M have to be estimated, the following formula

the modelL + 1 times for producmgz;p(z +1) = ®(x(9)) is appropriate for their estimation
and /(i + 1) = ®(xy(i) + 624 (i)),1 = 1,..., L. The new

matrix Siy1(L) := [0z (i + 1), ..., 625 (i + 1)] is performed

1 L
whose columns are Z Bj, B i= 5,0¢5] = =7 Z ()&day ™ (3),
- (15)
dzl(i41) = ®(as(i)+02 (1)~ @(af (i), L = 1,..., L (14) N (15)O¢ = diag[é, ... &n], & are given positive values
or to be esumated during adaptation. I'—Er> 1,L > 1,

Step 2 Apply the Gram-Schmidt orthogonalization prothe term— 1 smuld be replaced byT_' - to provide
cedure (see [24]X;11Gis1 = Siy1 to the matrixSi1. The  an unbiasedness of the estimate. The filter with the gain
resulting orthonormal perturbatiogz’,(i+1),l = 1,..., L}  constructed on the basis of the DPE patterns is referred to
are the columns of the matriX; ;; = [53’f(2+1) 5l’f (i+ in the future as a Prediction Error Filter (PEF).

D). If it is easy to simulate an ensembfg(L) with size L

Step 3 If i +1 > T Stop the procedure. Otherwise setlose or equal to the state dimension of small dimensional
i:=1i+1and goto Step 1 subject tor(i + 1) and X;11. systems (see experiments with 2 dimensional system in

Comment 3.1 The SP-DPE algorithm can be applied to @ection 5), serious difficulties arise when working with very
nonlinear system dynamics whefgx) stays instead obx  high dimensional systems. Using patterns withl << n
with the modification®éx (i) ~ Flxz(i) + dx(i)] — F[z(i)]. is insufficient for estimating the ECM. In such situation, the
The columns ofX; then tend to DScVs of the TLM. filter either diverges or produces rather poor estimates. It is

Comment 3.2By normalizing the columns oK1, the therefore of interest to introduce in addition a "reguralizing”
generated samples; ., represent only the direction but notterm to compensate the lack of information contained.in
the amplitude of PE. For the real physical problems theg samples. We have then
state vector may include different physical variables (layer
thicknessh, velocity (u,v), temperaturel’ ...) and usually M, = (1-a)Q(0) +aM (16)
the filter is constructed first on the basis of the normalized
variables (having a unit variance, for example). The columnswhere 2 is a constant matrix of a given parameterized
of S;11 then represent not real but normalized physicatructure (see (19)) € [0 : 1] reflecting our confidence
variables. The non-normalized PE samples are obtainedoif 2. The matrix M/ may be estimated using the samples
we multiply the normalized ones by corresponding estimatggnerated by SP1 or SP2. The vector of parameteran
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be chosen as a control vector to be adjusted to optimize tle® fast nor too slow, that/ () is sufficiently smooth near

filter performance. 0*. As for Ay;, they are independent and symmetrically
distributed about 0 with finite inverse moment§|A;| 1)
IV. SPSAALGORITHM for all k,i. The advantage of the SPSA is that at each

assimilation instant it requires only two measurements of
the sample objective function to approximate the gradient
gector regardless of the dimension of the control veét(or

%aximally, three measurements if second-order optimization

uncertainties (due to initial and boundary conditions, syste . .
and observation noise statistics ...), computation of the gra Igonthms are used [26]). The .SPSA apprqach Is thus free
) P g m the need to develop a discrete adjoint of the TLM

ent of (8) becomes unrealizable. However, the gradient of tHa'". " . i
(8) g and its implementation cost is independent of the number of

sample objective functio(.) can be evaluated at a given . : .
b ) () g parameters to be optimized. It is therefore very appreciated

point 8 = 6(k). Thus the vectop can be adjusted duringf Vi timizati bl . high di onal
filtering process by applying the stochastic approximatioﬁr solving optimization problems In very high dimensiona

(SA) procedure systems.

Return to the problem of finding the optimal vecttr to

V. EXPERIMENT ON VEHICLE NAVIGATION

O(k+1) = 6(k) ~T(k+1)VoR (C(k+1)), k= 0.1,... (17) A. State and observational equations
whereV,W(((k+1)) is the gradient ofb(.) with respect 14 pe able to project the innovation directly on the

to § computed a¥ := 6(k), I'(k + 1) is the factor ensuring g, pspace generated by the simulated DPE samples, and
a convergence of the algorithm (scalar or matrix) [25}, show the ROAF as an efficient alternative tool for
Compared to the KF, in the adaptive filter (AF) based Ogy|ying classical estimation problems, we present in this
SA (17) no ARE is solved. Instead we have to integral&.ction the experiment with the very simple filtering
backward (one or few iterations) the AE whose cost is abOHFoblem considered in [27]. The system stateonsists of
two or three times greater than direct model integration. 2(k) = (y(k),v(k))T wherey(k) andv(k) are the position

It is a common fact, development of a discrete adjoinf, velocity of the vehicle at instaht:= ty,, At = .1 —tx,
solver for partial differential equations requires a long

time and it involves the errors resulting from necessary
approximations used during the differentiation. With the — p(k + 1) = p(k) + Atv(k) + 3At%u(k) + p~ (k)
recent progress in development of the SA _algorithms: i_t is v(k +1) = v(k) + Atu(k) + v (k)
possible to perform the AF without requiring the adjoint
code for the TLM as does the AF based on (17). This
great computational saving becomes reality thanks to in-wherep~ (k) is the position noisey~ (k) is the velocity
troducing a so called simultaneous perturbation stochasfieise. The inputu is the commanded acceleration. It is
approximation (SPSA) algorithm [26]. Such algorithm doegssumed that we are able to change the acceleration and
not insist on direct measurements of the gradient of ti@easure the position everyt seconds
objective function. Moreover, SPSA is especially efficient
in high—dimensiona} problems in terms of providing a good 2(k+1) = plk+1) + e(k) = Ha(k + 1) + e(k)
solution for a relatively small number of measurements of
the objective function. In such algorithms, all elements of
0;,1 = 1,...,q are randomly perturbed together to obtain In the state-space form (1),(2) we have
two (possibly noisy) measurements of the sample objective
function y(.) := ¥(.) + u where  is a measurement
noise, but each componept(6;) of the gradient vector
g(.) == Ve¥(¢(k)) is formed from a ratio involving the
individual components in the perturbation vector and the
difference in the two corresponding measurements. For two-The simulation is performed subject to the parameters
sided SP (Simultaneous Perturbation), we have in [27]: The position is measured with an error of feet
(standard deviation); The commanded acceleration is a
i(01) = YO, + culr) = y(Or — crln) (18) constant 1foot/sec?; The position is measured 10 times
2k Ai per second At = 0.1). Thus the covariance matrices for
where A,; can be chosen as the random variable having, ¢ are equal to
the symmetric Bernoulli (+/-) 1 distribution. Two common
distributions that do not satisfy the conditions far; are
the uniform and the normal. For sufficient conditions for
convergence of the SPSA iteraté, (— 60*) see [26]. The
main conditions are thaty, ¢, both go to 0 at rates neither

® ¢i=j]12-,j:1’ i = 1,1 =1,2;¢01 = 0, 912 = At,

B:: %At2,w(k) = (pi(k)vyi(k))TﬂH = (170)

Q= [Qi7,7]12,j:1, P11 =107C 15 = P21 =2 x 1075,
oo =4 x 1075, R =100
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TABLE Il
DIFFERENT FILTERS PE(ILY)
14 c(1,1)  +
PE(1,2) -
H W 0 - - Sc(1,2) %
Kalman Filter The "true” KF subject to true noisg
statistics 12 F J

Full-order non-adaptive] The filter (10)(11) with K
filter (NAF) P.©K.,P. := Sp(L),T
100, L =2,0 =1.

Full-order adaptive filter] The adaptive version of the NAH{
(FOAF) with K = P,OK. where® =

diag [61, 62]. Two versions will be
applied: one is SA performed witl
the AE, another is based on SPSA.

Elements of 1st PE and 1st Schur vector

PEF-1P The filter (10) with 0o I |

K = P.OK., P = ‘ ‘ ‘ ‘

Sr(L), T = 1000,L = 1 5 10 15 20 25

(P~ = (1.00094,0.00995)7, heration

iie. it is close to the first

column of Soo(2) in section Fig. 1. Orthogonal iteration algorithm: two components of fingt vector

52), © = I, Ke = of the PE matrix.S¢(2) and that of the SchurX:(2) resulting during

HI'H.H! + R]~',H. = HP;. iterations. The difference between the first components is more significant

at the beginning of the iteration procedure and they converge more quickly

APEF-1P Adaptive version of PEF-1P sub in comparison with the second ones.

jectto K = P.OK., © = 0;.

. . . . . . 0.02
The problem considered in this experiment is to estima

asaccurately as possible the position and the velocity of ti
vehicle based on position measurements.

Foyd

gain{1)

B. Kalman and different filters

In Table Il we summarize 5 filters to be performed in thi
experiment. Their performances will be compared.

Fig. 1 shows the components of the first columnSef2) 0.005
and of the first Schur vector (first column &f;(2)) in (12)
produced during the SP-DPE procedure. One sees that
first components converge more quickly than the secol 100 150 300 250 300 350 400
ones. In the limit one finds iteration

0.01

Fig. 2. Evolution of the gain elemerft; in NAF, FOAF-ADJ, FOAF-

S (2) — 1 =01 X (2) — 1 0 SP and KF. The Kalman gain becomes almost constant after about 200
o0 ) o0 9 . . . . . .
0 -1 0 -1 iterations. The gains in two FOAFs have a stochastic character since they are
1 —0.1 estimated from the innovation vector. The curves "FOAF-SP” and "FOAF-
Goo (2) = 0 10 ADJ” behave similarly and have the same convergence tendency.

and we have the identities error is equal to zero corresponding to very small initialized

ECM P(0). The gain in the FOAF is not smooth due to
Se0(2) = PX0(2), X0o(2)Goo (2) = Sxo(2) stochastic character of the innovation vector. One sees two
curves "FOAF-SP” and "FOAF-ADJ” behave in the same
way and they have the same convergence tendency which
) becomes more and more clear as assimilation progresses. If
C. Numerical results at the beginning (up to 150 iterations) two curves "FOAF-
Evolution of the gain elemenk’; in the NAF, ROAF and SP” and "FOAF-ADJ” are very similar, the amplitude of
KF is shown in Fig. 2. The curve "FOAF-ADJ” correspondSFOAF-SP” is rather greater afterward. Their fluctuations are
to the FOAF with the gradient approximated by the ABtrong at the beginning and attenuated thereafter. The gain
whereas the curve "FOAF-SP” is obtained on the basis obefficients in two filters KF and FOAF converge to different
the SPSA algorithm. By construction the gain in the NARalues.
is constant. The transition period for the Kalman gain is ob- Fig. 3 exposes the time averaged rms (root mean square)
served during the first 200 iterations. His value grows quicklyf the position errors produced by four filters. One sees
since at the beginning one assumes that the initial estimatibiat up to 30sec the KF behaves better than the ROAFs
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Fig. 3. Averaged rms of position error. The error level in theANAhighest. F19- 6. Averaged rms velocity error produced by the APEF-1P ather
Up to 30sec the KF behaves better but after this period its estimation errdfters: Reduction degrades only slightly the performance of the APEF-1P
becomes higher compared to that of the FOAF-ADJ and FOAF-Sp.  compared to that of the FOAF-SP.

but after this period its error becomes slightly higher. This
is not true, however, for the velocity estimations: what we
observe here is completely inverse to that already noted for
the position errors. Fig. 4 shows that if up to 36c the
velocity error is higher in the KF, it becomes lower for the
remaining assimilation period. As to the NAF, it produces
the estimates, for position and velocity components, with
significantly higher errors, over all assimilation period.
To have the idea on how the order reduction influences on
R the filter performance, we have implemented also two filters
/ / PEF-1P and APEF-1P (see Table Il for their description).
KF FOAF_SP One can check that foP. = (1,0)T (the first column of
0.1 ! ! ! ! ! S (2)), the PEF-1P with the parameterized gain is stable.
300 0 oo 450 500 250 Similar to Figs 3-4, the Figs 5, 6 present the rms errors for
Time (sec/10) . . . .
the position and velocity estimations produced by the FOAF-
Fig. 4. Averaged rms velocity error: Up to 3&c the velocity error is SP and APEF-1P. It is seen that order reduction degrades the
?igft‘ﬁf in the KF Corf“tF;]aFEd to tfl‘att_ of the ,R(dJA;-]'t E;Cgmesd beﬁﬂtﬁSﬁma @rformance of APEF-1P only slightly compared to that of
forthe remaining of the assimiaton perod. The NAF produces te WOrOAF_ S, Thus by projecting the innovation on the one-
dimensional dominant Schur subspace it is still possible to
design a high-performance ROAF for estimating the position
FOAE ADJ | and velocity of the vehicle.

Velocity error (feet/sec)

1.05 T

V1. ALGORITHM OF THEROAF FOR ALTIMETRIC SSH
DATA ASSIMILATION

A. MICOM model and observations

The Miami Isopycnal Coordinate Ocean Model (MICOM),
used here for the twin experiment is identical to that de-
scribed in [4]. The model configuration is a domain situated
in the North Atlantic from 30 N to 60° N and 8§ W to 44°
W; for the exact model domain and some main features of
the oceanic current (mean, variability of the SSH, velocity

0.7 ‘ ' ' ' ' ‘ ‘ ‘ ...) produced by the model, see [4]. The grid spacing is about
150 200 250 300 350 400 450 500 550 600 . . . . ..
Time (sec/10) 0.2 in longitude and in latitude, rgqumngfh.: NI.xNy =
25200 (v, = 140, N, = 180) horizontal grid points. The
Fig. 5. Averaged rms position error produced by the APEF-1¢ather number of layers in the model &, = 4. It is configured
filters. in a flat bottom rectangular basin (1860 x 2380km x 5km)

0.95
09

085 [

Position error (feet)

08

075 |
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driven by a periodic wind forcing. The model relies on on€. Structure of the ECM for PE and its estimation
prognostic equation for each component of the horizontal 1) The caser = 0: First assuming in Eq. (16) = 0 and
velocity field and one equation for mass conservation per
layer. We note that the state of the modekis= (h,u,v)
where h = h(i,j,Ir) is the thickness ofr*" layer, u =
u(i, j,Ir),v = v(i, j,lr) are two velocity components. The where denotes the Kronecker produdy; is the number
layer stratification is made in the isopycnal coordinates, i.§f thickness layers in the model,,,, is a scalar representing
the layer is characterized by a constant potential density & covariance of the PE between two layérand m.
water. Thus with three variables := (h,u,v), the state of The elementsy;,, can be chosen a priori from physical
the discretized model has the dimensior- 302400. considerations or estimated from error patterns. For example,
The model is integrated from the state of rest during 2@ the Cooper-Haines filter (CHF, see [4]), the elements
years. Averaging the sequence of states over two years 17 anel deduced from several physical constraints (conservation
18 gives a so-calledlimatology. During the period of two of potential vorticity, no motion at the bottom layer ...). In
years 19 and 20, every ten days, we calculate the SSH frae PEF to follow.w;,, will be estimated using the patterns
the layer thicknes# which are considered as observationsf DScVs. These patterns are generated by applying the SP1
to be used for assimilation experiments (totally there are Wwhich generate the sequence of ensemble of Biz each
observations). To be close to more realistic situation withstanti := ¢;,t,,1 — t; = 10days(ds). Fori = 1,...,T, the
the observations available only at along-track grid points, théementsy;,,, are estimated through
observations are supposed to be available only at the points

Ma:O =0= [Wl.,m]l]?gznzl & Ip7 (21)

i=1,11,...,131, j = 1,11,...,171 and are noise-free. 1,
wim(T) = 7 D [l (22)
=1
- 1 i *'L.t _ L l7it
B. Reduced-order filter and gain structures 5 a, = %lel T
The filter used for assimilating SSH observations is 1 = 5 Dy Ohy (i, 5, L) ShLy (i, j, ms i)

wherei, 7 span all horizontal grid points whose number is

(k) = Fla(k = 1)) + K(k)PoiC(k), k= 0,1,.. . (19) equal top. The terms’, & should be replaced by, -1;
for T > 1, p > 1 to provide the unbiasedness of the
where & (k) is the filtered estimate fow(k), (k) = estimates.
[h(k),u(k),v(k)] is the system state &t:= t), ty+1—tr =  Inthis paper, for illustrating purpose, we will apply the SA

10 ds (days), F(.) represents integration of the MICOMa|gorithms for seeking the (sub)optimal filters in two class
nonlinear model over 1@s, K (k) is the filter gain,((k) of parameterized filters based on : 1) the CHF and 2) the
is the innovation vector. As the observations are availabfeeF. The difference between the PEF and CHF is lying in
not at all model grid points, the operat8y; will interpolate the way we estimate the elements(af Substituting from

the missing SSH from observed points. Mention that in the2) into (15) and forR(k) = 021, leads to

KF this operation is performed automatically by the Kalman

gain. The gainkK is symbolically given byK = K; K}, P,;, Kp = [k(1) L, ..., k(N)I ]T (23)
Ky = [I,Gel GeI1T, Herecy, := K, P,i((k) represents P P

the correction for layer thicknegsusing the SSH innovation k() =0= L

¢(k). As to Ge,, Ge,, they produce the correction for the s = EZTm’:l Winm? + 02

velocity (u,v) from the correctiorc, using the geostrophy , )
hypothesis. The operataP,; = P,i(p) = e¢~%/? interpo- hencek(l) is a §calarl =1,.,N.. The Cooper-Haines
lates the innovatio(k) from observation points to all the filter (CHF) [20] is obtained from (23) under three hy-
grid points of the surface. Heré is the distance betweenPOtheses [4] :Ki1) the analysis error for the system output
two horizontal points,p is the correlation length. In the IS canceled in the case of noise-free observationsi2) (
experiment we take = 400km. As SSH observations areconservation of the linear potential vorticity (PV}3) there
linear functions with respect th, the observation equation'S N0 correction for the velocity at the bottom layer. The AF

is given by (3) (see [4]). By considering,; instead ofz, in [4] is obtained by relaxing one or several hypothes¢E){
the observation operatdi is of the form

(H3). For the noise-free observations, the parameterized gain
in the CHF is of the form [4]

H=I,, .1, (20) Keng = [(01 — 020), (62 — 03)o0, ...,
On.1 —On.)0,0n. 0" @ I, 24
wherel, is the unit matrix of dimensiopxp (p = N3). The (6y.-1 = 6n.)e. 6. o] b (24)
parametep can be chosen as tuning parameter to optimize For the present MICOM model = —184.965 [4]. The
the filter performance. CHF, corresponding té; = 1,1 = 1, ...,4, has the form

(Advance online publication: 27 February 2012)



TAENG International Journal of Applied Mathematics, 42:1, IJAM 42 1 04

Ken = [185.965,0,0, —184.9651,)7 @ I,.  (25)

The adaptive filter in [4] is based on the parameterizatic
(24) with 6; = 1 for noise-free observations.

2) The casex = 0: As seen from (22), by estimating the
matrix Q2 from SP1, the information on the filtered estimat:
and its estimation error are not taken into account. Moreowv:
as the elements @ represent only the covariances betwee °
different vertical layers, the horizontal structure of the P
is in fact completely ignored. These disadvantages can
compensated by putting # 0 in (16). There are different
ways to choosé\/ in (16). For example, the samples fromr
SP1 or SP2 can be used for estimatihfy on the basis of
(15). When the samples are taken from SP2= M (k) is
time-varying and the ECMV/,, = M, (k) is updated during
assimilation process. Mention that the formula (22) can t
used also for updating/ = M (k) with the patterns from
SP2. The difficulty associated with application of (15) forig. 7. Estimated gain coefficients at third layer as functiohgeration
estimating)M concerns the inversion of the innovation ECM the curves1L and 5L correspond to applying the SP1 subject to two
Se = HM,HT in the gain matrix (5). As the dimensionensembles with sizé& = 1 and L = 5 at each instant.
of the observation vector is typically of ordép* — 10° (

p = Np = 25200 in the present MICOM model experiment),
it is impossible to invert directly the matrix.. At the
present, iterative methods are widely used for findingn
the equationX.z = (. For 3 of very high dimension, where P. — D. H. — HD with K. defined as in((217:|?)
iterative methods converge slowly, not to say on possible iL|_—h th dr' - ,I Ie R s @f be diusted to minimi '
posedness of¢. In [21], by applying the Woodbury matrix us the diagonal elements ®ican be adjusted to minimize

identity [24], it is demonstrated that one can compI][elg thiprtekz‘dlcnor;ﬁeirr?]rtjor ';herSSI-rI]tvatrr:able.v fan f the PE
by inverting only the matrix of dimensions x L where L s the coetticlenty;,, represents ine covarlance ot the

. : between two layers and m, they will be estimated in this
's the size of the ensemble of PE samples. paper from simulated DPE patterns as shown in (22).
The non-adaptive version (i.e. PEF) is obtained by setting

D. Parameterization of the gain for the PEF. Adaptive filteft = 1,/ = 1,...,4. Once the estimates;,, are available,
the Eq. (23) can be used to calculate the gain of the PEF.

The parameterization of the gain for the CHF shown aboyg, pise-free observations2 = 0, we obtained after 72
takes the hypothesis on conservation of the linear PV f8rations the gain (subject tb = 1)
a departure point for parameterization (sd¢2) for the
CHF). This hypothesis implies that the vertical displacement
interface (VDI) variables should be of (nearly) the same Kpef = [230.01, ~84.97,-59.91, —84.13]" @ I,.  (28)

values. As shown in [4], working in the VDI space avoids Fig. 7 shows the estimated gain coefficients at third layer
to deal with the layer thickness variables (LT¥))(k) since as functions of iteration during application of SP-DPE. Here
the latters have the values ranging from several tenths i@ have applied SP1 (without assimilation) to simulate, at
thousand meters (depending on our interest in dividing tR&ch time instant := ti,tiz1 — t; = 10ds, two ensembles
ocean depth in different layers). Optimizing the filter inys samples of the sizé& = 1 and L = 5. The curveslL
the LTV Space iS hence Undesirable due to the d|ﬁ|Cu|ty ﬁhd 5L Correspond to applyn’]g the SP1 Subject to these two
determining to which extent each componéptshould be ensemples and Eq. (22). One sees that the coefficients are
allowed to vary during the optimization process. close one to other and there is a quick convergence of the
Following the ROAF approach based on the gain structuggin coefficients. It means that for estimating the covariances
(10)(11), we show now that it is possible to work directly imetween different layers, it is sufficient to simulate a se-
the LTV space and to define the allowable interval for ea@juence of small size ensembles. The result in (28) shows
componenty;. Using the Cholesky decomposition methodhat the coefficient at the first layer is of nearly the same
for Mo—o = (21), let magnitude compared with that of the CHF (25). The physical
hypothesesH?2), (H3) in the CHF ignore the corrections for
QO =DDT (26) the intermediate layeris= 2, 3. In the PEF these corrections
remain important and play the important role in maintaining
Subject to (26), the gain (11) can be parameterized as the better performance of the PEF (see next sections).

Gain k{1)

iteration

K = POK.,P. =D,0 =diag= [01,...,0n.],6; € (0,2)
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E. Adaptive filters based on CHF and PEF 1000 | | | | |

The adaptive filters based on CHF and PEF will be use J{model) ——
in further to assimilate the SSH observations. These filte 900 .
(denoted as ACHF and APEF) are obtained by letting tt
vector of parametergto vary to minimize the mean variance 800 -
of the SSH prediction error. Let the initial values férbe
0, = 6,(0) = 1,1 = 1,2,3,4 which correspond to the non- 700 -

adaptive CHF and PEF. In the next section, as in section
two optimization algorithms based on AE and SPSA will b 600
applied to updatd,.

500 .
VIl. NUMERICAL RESULTS
A. CHF and its modified versions 400 =
1) Efficiency of CHF:The CHF [20] is a simple, stable
assimilation scheme which is of relatively high-performanc 300 : : : : : : :
hence is used widely to assimilate the data into ocear 0 10 20 30 40 350 60 70 80
models. We run first the MODEL and CHF from the sam iteration

initial guess state (climatology). The MODEL corresponds ) -

to running the MICOM model alone, without assimilation':'g' 8. Vvariance of the PE for SSH produced by the MODEL: inttigna

0 ) g ! of the model from the initial condition (i.e. the climatology) increases the
It is seen from Table Ill that compared to the MODELerrors in all variables, in particular, for SSH.

the velocity errors in the CHFe((p), e,(p) and e,,(p)

correspond to the errors for the componemtsv- and total

velocity (u,v)) are reduced by about 58 (more significant

I I I I
CHF ———

error reduction is observed for SSH, i.£). Here the RMS- 200 - CHF_HORIZ_10L ——- -
PE of SSH is expressed im: and that of velocity - ircm/s. CHF_RIC_10L -------

Comparison of the results in column 3, Table Il with tha
produced by the MODEL after the first assimilation instar 130
(column 2, Table IV) confirms that simple integration o
the model from the climatology increases the errors in ¢
variables (see also Fig. 8 for the SSH error). It means tt
ocean modeling alone is insufficient for drawing the adeque
knowledge on the oceanic circulation. 50

2) Improvement of CHF by exploiting horizontal structure
of PE samples :In order to show that the PE samples ar
very useful in improving the estimation of the ECM anc
to reduce the estimation error, let us modify the CHF b,
introducing the ECM (16) wheré& is the ECM leading to _ _ o _
the CHF gain (25). As to the matri®/, it is estimated r';lgdi?iéd %ﬁg%’;‘f,ﬁéﬁ;ﬁg;ﬁ% m ﬂg;é?;ﬁ’g)ng from CHF ana
from L dominant PE samples generated by SP1 and through
application of (15), i.e. the columns &fp(L) at T' = 50.

This modified filter is denoted as MCHF(HORIZ). Fig.ECM are given in (6). Putting/ (k) = Q(k) = [wim (k)|®1,
9 displays the variance of SSH prediction error resultingto the equation fo?(k) leads to

from the CHF (curve "CHF") and MCHF(HORIZ) (curve

"CHF-HORIZ-10L") in which L = 10. One sees that the Pk+1)=P(k+1)@ L, P'(k+1):=
modified MCHF(HORIZ) behaves much better that the CHF[I4 — K (k)M (k)L — K/(k)]T I K/(k,)R/K/T(k) (29)
at the last 15 months of the assimilation period. The same

characteristics is observed for the velocity error. whereK (k) = K'(k)®1,, K'(k) = [k(1), ..., k(4)]T,R =

3) Improvement of CHF performance by exploiting the orR’ ® I,,. Thus at the assimilation instarit, for a given
line DPE samplesAs discussed in Comment 3.3, the off-lineM (k) = Q(k), we can easily comput&(k) by (29). The
DPE samples are generated by integration of the numeried¢mentp;,, of P’ (k) represents FE covariance between two
model alone. As the prediction error changes depending ayersi andm. The PE samples at the instant- 1 can be
the filtered estimate and its estimation error, it would bgenerated following the idea in Comment 3.3 : I8 k) be
beneficial if we could exploit the changes in the PE directiom square-root ofP(k), P(k) = Py (k)P{ (k). Then we have
during assimilation. To examine this possibility let us follothe FE sampleé.rlf(k:) = Pl(k;)d.ré(k:),l =1,2,...,L. The
the idea at the end of Comment 3.3. We remark that tleethonormalization and renormalization procedures should
equations for time evolution aP(k), M (k) - the FE and PE be applied to this ensemble of FE samples. Integrating the

100

(Advance online publication: 27 February 2012)



TAENG International Journal of Applied Mathematics, 42:1, IJAM 42 1 04

model fromz (k) and :%(k)-i—&wlf(k) one can generate the PE
samples at the next time instabitt- 1. As the ECM M (k) TABLE Il

is of the form (6), it is sufficient to choose an ensembleTIME AVERAGED RMS-PEPRODUCED BYCHF AND MODEL AT THE
of small sizeL to generate the PE samples. In the further END OF ASSIMILATION PERIOD
this modified filter is denoted as MCHF(RIC). We show in Eilter CHE | MODEL
Fig. 9 the curve "CHF-RIC-10L" expressing the variance of J(cm) 879 | 2459
the innovation resulting from the modified CHF (performed
with a simplified Riccati equation (29) for simulation of

euw(p)(cm/s) | 7.19 13.74

the FE samples). It is seen that at the last 10 months the eo(p)(cm/s) | 7.25 | 14.32
performance of the CHF(RIC) is almost the same as that of
CHF(HORIZ) : these two modified filters allow us to avoid cur(p)(em/s) | 717 | 14.03

the increase of the PE at the end of assimilation period.
Generally speaking the PE in CHF(RIC) remains higher than
that in the CHF(HORIZ). Mention that the initidi/ (0) is

taken to be such that application of (5) results in the gain

(25) subject toR = 0.
TABLE IV
RMS OF ESTIMATION ERRORS AVERAGED OVER € [5 : 72]

B. CHF and its adaptive versions
Table IV exhibits the RMS-PE and RMS of the filtered
error (RMS-FE) produced by the filters CHF, ACHF(SP) and
ACHF(ADJ). Here ACHF(SP) and ACHF(ADJ) denote the| eu(p) 11.25 7.19 6.26 5.84
ACHF with the use of the SPSA or the adjoint equatior
method for computing the gradient vector. Mention that the
ACHF(ADJ) has been studied in [4] and is presented here asev(p) 11.09 7.25 6.12 5.83
reference for comparison with the ACHF(SP). From Table I\
it is seen that compared to the CHF, the adaptation allows
reduce significantly the estimation error. The ACHF(ADJ), euv(») 11.17 7.17 5.97 5.66
using more correct estimation of the gradient vector at th
beginning of the assimilation (see below), has produce
better estimates over this period. In Table V the performance
improvement of two ACHFs by adaptation is displayed where
the quantities ER2{), ER2(%), expressed in percentage,
show how the corresponding ACHF(SP) or ACHF(ADJ) has
reduced the RMS of estimation errors compared to that of
CHF. For example, over the large window € [5 : 72,
the SPSA algorithm has reduced about Z5rms errors
whereas this percentage is of order Z0if the gradient is
computed by the adjoint code. Fig. 10 depicts instantanec
values of the objective function resulting from three filters. |
all filters, the objective functions decrease considerably fro
the beginning up td = 10. During the periodk € [10 : 30] 150
the errors remain more or less constant and of nearly t
same level for the CHF and ACHF(SP) (about &@2).
The best performance is produced by the ACHF(ADJ) wit 100
the variance of SSH innovation fluctuating around ¢362.
However at the final windows € [30 : 72] the objective
function increases significantly in the CHF. 50
As to two ACHFs, the mechanism of adaptation allow
them to change their behaviors to respond more or le

Filter PE by model at; | CHF | ACHF(SP) | ACHF(ADJ)
J 19.75 8.79 6.85 6.49

() 837 5.99 5.07 Z77
nY

o5& 8.23 6.34 5.42 516

e 83 6.13 5.21 493

250

200

correctly to the changes in environment, hence to follo 0 1'0 2'0 :;0 ;0 5'0 éo 7'0
more correctly the trajectory of the true system state. If tt . .
error in the ACHF(ADJ) remains more or less of the sam. iteration

level as observed in the preceding window, the -pefrformanﬁe. 10. Sample objective functions resulting from threeerilit CHF,
of the ACHF(SP) becomes better and better : it is capald€nr(sp), ACHF(ADJ).

of decreasing more and more the RMS of the innovation

during all the assimilation period. This fact is clearly seen in
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TABLE V
ERROR REDUCTION(IN PERCENTAGE ACHIEVED BY ACHF(SP)AND 100 | | | I
ACHF(ADJ) PEF ——
PEF_HORIZ_10L —-—-
ER1(%) | ER2(%) 80 - PEF_RIC_10L -------- =
J 22,1 26,2
eu(p) 12,9 18,8
eu(f) 15,4 20,4
ev (p) 15,6 19,6
ev(p) 14,5 18,6
euv(p) 16,7 21,1
eun (f) 15 19,6
TABLE VI
RMS OF ESTIMATION ERRORS AVERAGED OVERk € [61 : 72]
_ 0 | | | | |
Filter | CHF | ACHF(SP) | ACHF(ADJ)
7 1153 548 707 10 20 30 40 50 60 70
eu(p) | 9.25 5.03 5.88 Fig. 11.  Variance of SSH prediction error resulting from PEFd an
MPEF(HORIZ) and MPEF(RIC)
eu(f) | 757 4.49 5.04
TABLE VII
ev(p) | 9.36 5.28 6.15 RMS OF ESTIMATION ERRORS AVERAGED OVER: € [5 : 72]
eo(f) | 8.05 472 5.28 _
Filter | PEF | APEF(SP)| APEF(ADJ) | ERI (%) | ER2 (%)
cuc(p) | 894 796 E78 J 6.36 5.90 5.88 7.2 7.5
eu(f) | 477 4.48 4.45 6.1 6.7
eo(p) | 5.74 5.43 5.36 5.4 6.6
Fig. 10 with decreasing tendency of the curve 'SP’ along— (77 [ 5.10 7483 .79 53 61
all assimilation period. There are two reasons for which
the ACHF(SP) works better than the ACHF(ADJ) as morg ¢« (®) | 557 | 524 520 59 66
and more observations are assimilated. First, the ACHF(SPJ, 77 290 260 259 57 63
approximates the gradient vector by direct difference be-

tween two nonlinear integrations while the SA method uses
a linearization technique. The latter introduces inevitably

an additional error in gradient computation in nonlineg

systems which is accumulated as the assimilation progresi E;hSPCHF c(isi\i:m:blAGDIX) a_;? It st::ghtl¥ gu;['perforrt'ns tthz
Secondly, due to simultaneous stochastic perturbation of (SP) an ( ). Thus the statistics extracte

parameters, the SPSA naturally requires a longer assimilat%?\m DPI.E samples pla)_/ an |mportant role. In correct estimat-
time for searching a correct descent direction. That is w g the filter gain and in improving the filter performance.

if the error in the gradient computation seems to be mo 5 exploit the horizontal structure of the PE patterns as

and more important in the ACHF(ADJ) as the assimilatioﬁl]e" as their dynamical changes during assimilation, as in

advances, the inverse happens in the ACHF(SP). the previous section, we apply two modified PEFs, namely

The effect of adaptation can be examined by looking at tﬁéitlr:](HORIZ) and PEE(RICT\%' 'gh-ese tv;/.o mti;ﬁ Zrz d\(/alslgngd
assimilation results at the last four months, kes [61 : 72], n the same way as described In sections Vil.A.2, VILA.o.
Table VI displays the RMS-PE and RMS-FE resulting frofySSimilation results show that the similar effect is observed
three filters. As expected, the ACHF(SP) behaves now bet en adding the horlgontal strucFure of PE in estimating Fhe
than the ACHF(ADJ), with the reduction of velocity erro M or when dynamically updating the PE samples on-line

by more than 10%. As to the CHF, during this period Oneusing the simplified Riccati equation (see Fig. 11). For the

observes an important increase of estimation error compalFéFddF SEEC;JIE? the performqlrlces %tw? f||tgrs .EEF(tHdeFIZ)
to that shown in Table IV an (RIC) are very similar, without a significant differ-

ence as found with the CHF structure. The initidl(0) for
the PEF(RIC) is taken as such resulting in the gain (28).
2) Adaptive PEF: As the errors in the PEF are much
1) PEF and its modificationsThe gain of PEF (28) is lower than that in the CHF, there remains no great ex-
obtained by estimating the elemenis,, of M,—o = ) (see pectation to reduce its errors (by adaptation) compared to
Eq. (21)) from the DPE patterns (SP1). The experimentdde CHF case. Even though, as seen from Tables VII-VIII,
results in Table VII show that the PEF is much more efficieithe adaptation is proved to be an advantageous tool for

C. PEF and its adaptive versions
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TABLE VIII
RMS OF ESTIMATION ERRORS AVERAGED OVER € [61 : 72] 140 | | |
Filter | PEF | APEF(SP)| APEF(ADJ) | ER1%) | ER2%) ACHF(Ad))
J 6.94 5.75 5.96 17.1 14.1 120 '
eu(p) | 5.99 5.04 5.23 15.9 12.7
100
ew(f) 5.26 4.44 4.59 15.6 12.7
ev(p) | 619 519 541 16.2 12.6 80
ev(f) 5.47 4.56 4.82 18.5 11.9
euwv(p) | 5.85 4.92 5.11 15.9 12.6 60
ewn(f) | 5.15 432 452 16.1 12.2 40
APEF(Ad])
20 I I I I I I
240 10 20 30 40 50 60 70
290 iteration
200 Fig. 13. As in figure 12 but produced by ACHF(ADJ), APEF(ADJ).
180
160 140
140
120 120
100
100
80
60 80
40
20 I I I I I I I 60
10 20 30 40 50 60 70
iteration 40
Fig. 12. Instantaneous RMS-PE for thevelocity component at the 1st
layer: at the final window [61:72] there is an error growth in the CHF 50 | | | | | | |

whereas no such phenomenon is observed in the PEF.
10 20 30 40 50 60 70

iteration

improving the performance of the PEF. For all assimilatiogig. 14,
period, the adaptation has reduced the rms estimation errordpgr(sp).
about 5-6% in the APEF(SP) and 6-% in the APEF(ADJ).
These reductions are less important than that achieved by
the ACHF(SP) and ACHF(ADJ) with respect to the CHF It is seen from Fig 13 thanks to the PEF structure, the
(they are equal to 1% and 20% respectively, see Table V). adaptation allows the APEF to avoid the error picks produced
At the last 4 months, the APEF(SP) again outperforms thy the ACHF. These improvements are well summarized
APEF(ADJ). Meantime, the error reduction is achieved by Tables VII-VIII: in average, over all assimilation period,
16-17% in the APEF(SP) and by 12-18 in the APEF(ADJ) the APEF(SP) (or APEF(ADJ)) behave much better than the
compared to the non-adaptive PEF. corresponding ACHF(SP) (or ACHF(ADJ)) and this proves
Finally Fig. 12 displays typical instantaneous RMS-PE fdhat the gain of the PEF is much more close to "optimal”
theu-velocity component at the 1st layer (the same errors diean that of the CHF.
observed for other layers and for thecomponent) produced  Another interesting fact, found from Fig. 13 (or Fig. 14),
by the CHF and PEF. Similarly to Fig. 10 for the SSH errorss that at the final window [61:72] the errors in the AFs
the CHF has a difficulty to well estimate the velocity asvith different gain structures (CHF or PEF) are of nearly
assimilation progresses. There is a significant difference time same level. This means that the role of the initial gain
error levels produced by the PEF and the CHF, especiallysitucture seems to be less important as the free parameters
the final assimilation window [61:72]. are gradually adjusted to minimize the PE. This effect is

The same as in Fig. 12 but produced by APEF(ADJ) and
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