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Abstract—Despite all the progress in filtering algorithms
for state estimation in very high dimensional systems, the
technology is delicate and sometimes difficult to apply. Good
initialization of filter gain, appropriate choice of tuning pa-
rameters and their optimization are the key factors to achieve
robust high-performance filtering algorithms. In this paper the
authors propose a method for properly initializing the filter
gain, and for efficient optimization of the filter performance.
Numerical experiments will be given to illustrate the algorithm
and to demonstrate the efficiency of the proposed filter for state
estimation problems in classical low dimensional as well as in
very high dimensional systems.

Index Terms—Adaptive filtering, data assimilation, dynam-
ical systems, numerical prediction, real Schur decomposition,
stability.

I. I NTRODUCTION

I N a series of papers [1]-[5] a new technique known as
a reduced-order adaptive filter (ROAF) is developed for

solving the problem of state and parameter estimation in
very high dimensional systems. The very high dimensional
systems we mean here are those having the state vector
of the dimension of order106 − 107. Theoretically, these
tasks can be solved in the framework of the theory of
Bayesian statistics, in particular, by the Kalman filter (KF)
and/or its extensions [6]. However, application of the KF to
very high dimensional systems is an extremely difficult task.
Even under ideal conditions for applicability of the KF, its
implementation is simply impossible due to insurmountable
memory and computational requirements : it requires the
solution of an enormous number of additional equations
(order of1012 − 1014).

To overcome the mentioned above difficulties, different
approximation approaches are proposed among which the
nudging, optimal interpolation, kriging, variational meth-
ods ... [7]. To handle more general state and observation
equations, the filters based on the sequential Monte Carlo
approach like bootstrap filtering, the condensation algorithm,
particle filtering, interacting particle approximations ... [8]-
[11] are recently proposed and tested. Here the posterior
probability density function is represented by a collection
of random points. As the dimension of numerical model is
very high, in all practically realizable algorithms one has
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to reduce, explicitly or not, the set of estimated parameters.
This is seen in the widely used variational approach [12],
[13] where seeking an optimal trajectory in the phase space
is replaced by finding an optimal estimate for the initial
system state. For the class of sequential algorithms, the
different approximate (or suboptimal) KFs algorithms were
developed. These include, e.g., the Ensemble KF (EnKF,
see [14],[15]) in which the covariance is approximated by
a sample covariance estimated fromO(100) samples of the
prediction and filtered errors and evolved according to the
KF formalism. Another class of the Reduced-Rank KFs is
proposed by [16].

The concept developed in the ROAF approach is to make
reduction not of the model order [17] but of the dimension
of the space spanned by the columns of the filter gain [2].
In such situation, the question on a filter stability is of the
first importance. This issue has been studied in many works
for the full KF, for example, in [18]. For the ROAF, as
found in [3],[5], under detectability condition, it is possible to
ensure a stability of the filter if the reduced-rank subspace is
composed from unstable and neural eigenvectors (or singular
vectors) of the system dynamics. For illustration of these
results, see the experiments in [19]. In the light of the
important requirement for stability of the ROF, it is strongly
advisable to approximate the ECM in the full space in such
a way that the space spanned by the columns of the ECM
should cover the subspace of unstable eigenvectors or that
of unstable singular vectors of the system dynamics.

The steps in the design of a ROAF are following: First a
set of filters is chosen which are defined up to a vector of
unknown parameters in the filter gain. Next the optimization
is performed by adjusting the tuning parameters to minimize
the mean prediction error (MPE)of the system output.
To better understand the basic features of the ROAF, in
Table I the differences between two approaches, ROAF and
Four-Dimensional Variational approach (4D-Var) [12] are
presented.

It is evident that the performance of the ROAF depends on
a selected class of filters and its parameterization. This paper
will focus the efforts on the way to well initialize the filter
gain and its parameterization. For example, in [4] the initial
gain is chosen on the basis of the well-known Cooper-Haines
filter (CHF) [20] whose gain is derived by assuming several
physical hypotheses on water properties. The approach to
be developed in this paper is numerically simple, more
efficient and based completely on the numerical model.
Another important contribution in the present work is to
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TABLE I
4D-VAR AND ROAF

Approach 4D-VAR ROAF

Control vector Initial system state Gain parameters

Cost function Distance in phase
space

MPE of system out-
put

Optimization Batch-vector, iterative Sequential, SPSA

Gradient compu-
tation

Integration of model
and AE over assimi-
lation period

Integration of model
at each assimilation
instant

demonstrate that it is possible to optimize the ROAF bytwo
time integrationof the numerical model at each assimilation
instant. That is feasible due to introduced optimality in the
MPE sense and the use of the simultaneous perturbation
stochastic approximation (SPSA) algorithm. Compared to the
4D-VAR approach, this advantage is very significant since
the latter requires a number of iterations (about 20), each
of which includes one integration of the direct model and
one backward integration of the adjoint equation (AE) of the
tangent linear model (TLM), over all the assimilation period.

In the section that follows, first a brief outline of the
difficulties encountered in solving the filtering problems for
very high dimensional systems as well as the algorithmic pro-
cedure of the ROAF are given. The numerical procedure for
generating the samples of the prediction error (PE), proposed
in [21], is described in section 3. These PE samples will
participate in approximation or estimation of the parameters
of the ECM needed in initialization of the filter gain. It
is shown in section 4 that implementation of the ROAF is
greatly simplified thanks to the SPSA algorithm. To illustrate
all steps in the ROAF algorithm, first the classical problem
on estimating the position and velocity of a vehicle based
on position observations is considered in details in section
5. Application of the ROAF to high dimensional system is
presented in sections 6-7 where the problem of estimation
of the North Atlantic Ocean circulation using the satellite
sea-surface height (SSH) is considered. The performance of
the ROAF will be compared with that of the CHF studied in
[4]. The conclusions are given in section 8.

II. ROAF APPROACH

A. Kalman filter. Difficulties for high dimensional systems

Consider a standard filtering problem for linear time-
invariant system

x(k + 1) = Φx(k) + Bu(k) + w(k), k = 0, 1, 2, ... (1)

z(k + 1) = Hx(k + 1) + ǫ(k + 1), k = 0, 1, 2, ... (2)

here x(k) is the n-dimensional system state atk := tk
assimilation instant,Φ is the (nxn) fundamental matrix,B

is (nxm) matrix, u(k) is the m-dimensional known deter-
ministic signal,z(k) is thep-dimensional observation vector,
H is the (pxn) observation matrix,w, ǫ are the model and
observation noises. We assumew(k), ǫ(k) are uncorrelated
sequences of zero mean and time-invariant covarianceQ and
R respectively. Without loss of generality, for simplicity, let
B = 0. For the class of filters of the structure

x̂(k+1) = x̂(k+1/k)+K(k+1)ζ(k+1), x̂(k+1/k) = Φx̂(k)
(3)

whereζ(k+1) = z(k+1)−Hx̂(k+1/k) is the innovation
vector,x̂(k + 1) is the filtered (or analysis) estimate,x̂(k +
1/k) is the prediction forx(k+1), the gain which will yield
an unbiased minimum variance (MV) estimate for the system
state is given by [22]

K(k + 1) = E[ep(k + 1)ζT (k + 1)]E[ζ(k + 1)ζT (k + 1)]−1

(4)
E(.) is the mathematical expectation,ep(k + 1) = x̂(k +

1/k) − x(k + 1) is the PE for the system statex(k + 1),
ζT (k + 1) is the transpose ofζ(k + 1).

The gainK(k + 1) takes the form

K(k + 1) = M(k + 1)HT [HM(k + 1)HT + R]−1 (5)

whereM(k + 1) is the ECM forep(k + 1). The filtered
error (FE) expressed byP (k + 1) = E[ef (k + 1)ef(k +
1)T ], ef (k+1) := x̂(k+1)−x(k+1) satisfies the Algebraic
Ricatti Equation (ARE)

M(k + 1) = ΦP (k + 1)ΦT + Q, (6)

P (k + 1) = [I − K(k + 1)H ]M(k + 1).

The system of equations (3),(5),(6) constitutes the famous
KF.

It is seen that for the statex(k) of dimension of order
106 − 107, it is impossible to apply the KF since the system
(6) in fact is composed from1012 − 1014 equations for
determining the elements of the matrixP (k) andM(k).

B. Full-order adaptive filter (FOAF)

Remark that in Eq. (3) all variables are well defined except
the gainK(k). The idea in the FOAF [1],[2] is outlined as
follows : 1) To introduce a new criteria of ”optimality” for
the filter which relates directly its optimality to the choice
of the gain; 2) This criteria should be such that it allows to
design a low cost procedure for computing the optimal gain.

Consider the filter (3) subject to a time-invariant gainK.
Note that under mild conditions, the gainK(k) in the KF will
converge in asymptotic to a constant gainK∞ too. To satisfy
the two mentioned requirements, first someq elements (or
parameters) of the gain are selected which form a control
vector to be optimized. The gain is supposed then to be
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defined up to a vector of unknown parametersθ ∈ Rq

satisfying

K = K(θ), the filters (3) are stable for allθ ∈ Θ (7)

The optimal gain is defined asK∗ = K(θ∗) whereθ∗ is
the solution of

J = J [θ] = E[Ψ(ζ(k))] → minθ, Ψ(ζ(k)) := ||ζ(k)||2

(8)
here||.|| is the l2 vector norm. The optimal filter will be

MPE sinceζ(k) is a one-step prediction error. The algorithm
of the FOAF is given in [2]. This algorithm requires to solve
the adjoint equation (AE) associated with the TLM of the
filtering Eq. (3). As the filter is stable and the forcing in
the AE is nonzero only at the current assimilation instant, it
is sufficient to make only a few iterations in the backward
integration of the AE.

C. Structure of the gain

Selecting improper structures for the filter gain may lead to
its instability and fast growth of estimation error : as the gain
elements are functions of the random estimateθ(k), there is
a high risk that the filter becomes unstable if no special gain
structure is taken to ensure its stability during optimization
process.

In [2] a ROF is introduced to reduce the number of
unknown elements to be estimated in the filter gain,

xe(k + 1) = Φexe(k) + Keζ(k + 1) (9)

where Φe ∈ Rne×ne is the fundamental matrix of the
equation for the reduced statexe ∈ Rne . By assumingx =
Prxe, ne << n, Pr ∈ Rn×ne is given, the estimate for the
full statex is recovered bŷx = Prx̂e [23]. We have then

x̂(k + 1) = Φx̂(k) + Kζ(k + 1), K = PrKe (10)

By this way, the number of unknown parameters in
Ke is dramatically reduced. From (9)(10) the correction
Kζ(k + 1) is an element of the linear spaceR[Pr]. The
choice of the operatorPr ∈ Rn×ne hence plays an essential
role in providing the extent to which the filter can minimize
the estimation error. The question on stability of the ROF
is studied in [3],[5]. One of the simplest stabilizing gain
structures is given by

K = PrΘKe, Ke = HT
e [HeH

T
e + R]−1, He = HPr, (11)

Θ = diag [θ1, ..., θne
], θl ∈ (0, 2)

A detailed study on stability of the ROAF [3] reveals that
for ensuring its stability, the spaceR[Pr] should belong to a
subspace spanned by the leading eigenvectors or Schur vec-
tors of the system dynamics. Recently the similar conclusion
has been proved in [5] for leading singular vectors ofΦ.

III. N UMERICAL PROCEDURE FOR CONSTRUCTION OFPr

If there is no difficulty in numerical computation of eigen-
vectors for low-dimensional systems, the problem becomes
unrealizable for the systems of state-space dimension of
order 106-107. Determining characteristic polynomial of a
matrix by calculating its determinant is expensive. Compu-
tation of determinant of(n× n) matrix requiresn3/3 multi-
plications. Another difficulty concerns possible existence of
complex eigenvalues. In addition, the problem of computing
eigenvectors is unstable : small errors in specification of
the initial matrix may result to large errors in estimation
of the eigenvector and eigenvalue. As to the singular vectors
approach, there exists an efficient Lanczos algorithm [24] for
computing the leading singular vectors of very large sparse
systems. The advantages of singular vectors approach are
that they (singular vectors) are all real and their computation
is numerically stable. However the computation requires
the TLM and its adjoint code. The third approach dealing
with leading real Schur vectors, enjoys all advantages of
the singular vectors approach. Moreover, it does not require
an adjoint code for the TLM. For these reasons in [21] a
numerical procedure for generating the PE samples on the
basis of DScVs (Dominant Schur vectors) is proposed. It is
shown that the generated PE samples (referred to as DPE
(dominant PE) samples) will develop in the direction of
DScVs. These samples are very helpful for initializing the
unknown parameters in the filter gain.

Compared to the ensemble-based filtering algorithms
(EnBF) (see [14],[15]), we remark that if in the EnBF
algorithms the PE patterns are sampled randomly according
to the KF formalism, the procedure for simulating DPE
samples (called DPE sampling procedure (SP-DPE)) is aimed
at generating patterns to develop in the direction of rapid
growth of the PE error (DScVs subspace). It is therefore not
surprising that the gain is usually well estimated on the basis
of an ensemble of small-size of DPE samples. In fact, from
(4), the termE[ep(k)ζT (k)] maps the innovation vectorζ(k)
into the space spanned by samples ofep(k). Secondly, the
gain (7) stabilizes the filter (4) if the columns ofPr belong
to a dominant Schur subspace ofΦ. Thus, the ”optimal” low-
rank subspace for the gain is based on: 1) an ensemble of
patterns ofep(k); 2) this ensemble should be as close as
possible to a dominant Schur subspace ofΦ.

A. Sampling procedure based on orthogonal iteration
method

The procedure for generating patterns developed in the
direction of a dominant Schur subspace is proposed in [21].
Given an (n × L) matrix X0 with orthonormal columns,
1 ≤ L ≤ n, the method of orthogonal iteration generates a
sequence of matricesXi,

Si = ΦXi−1, XiGi = Si, i = 1, 2, ..., (12)
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whereXi is orthonormal. One sees that the columns of

Si := Si(L) (13)

belong to the space spanned by the columns ofXi.
Consider the Schur decomposition

XT ΦX = T = diag(λi) + N̄ , |λ1| ≥ |λ2| ≥ ... ≥ |λn|

Let X = [X1, X2], X1 is n×L sub-matrix,N̄ is a block
upper triangular. Then roughly speaking the distance between
DL(Φ) := R[X1] and R[Xi] is of orderO(|λL+1

λL
|i) where

R[Xi] denotes the linear space spanned by the columns of
Xi (see [24], section 7.3)). Thus the orthogonal iteration
method allows us to generate the columns ofXi approaching
the dominantL Schur vectors. In the future the columns of
Si = ΦXt−1 are referred to asDPE samplesfor the system
dynamics (1).

B. DPE sampling procedure [21]

Suppose we want to simulateT patterns for each of the
first L Schur vectors of the system dynamicsΦ. At the
moment i = 0, i := ti, let xf (i) be an initial estimate
for x(i). Suppose we are given the orthogonal matrixXi,
XT

i Xi = IL whose columns areL orthonormal perturbations
δxl

f (i), l = 1, ..., L.
Step 1. For i ≤ T : Let xf (i) andXi be given. Integrate

the modelL + 1 times for producingxp(i + 1) = Φ(xf (i))
and x

′l
p (i + 1) = Φ(xf (i) + δxl

f (i)), l = 1, ..., L. The new
matrix Si+1(L) := [δx1

p(i + 1), ..., δxL
p (i + 1)] is performed

whose columns are

δxl
p(i+1) = Φ(xf (i)+δxl

f (i))−Φ(xf (i)), l = 1, ..., L (14)

Step 2. Apply the Gram-Schmidt orthogonalization pro-
cedure (see [24])Xi+1Gi+1 = Si+1 to the matrixSi+1. The
resulting orthonormal perturbations{δxl

f (i+1), l = 1, ..., L}

are the columns of the matrixXi+1 = [δx1
f (i+1), ..., δxL

f (i+
1)].

Step 3. If i + 1 > T : Stop the procedure. Otherwise set
i := i + 1 and go to Step 1 subject toxf (i + 1) andXi+1.

Comment 3.1. The SP-DPE algorithm can be applied to a
nonlinear system dynamics whereF (x) stays instead ofΦx
with the modificationΦδx(i) ≈ F [x(i) + δx(i)] − F [x(i)].
The columns ofXi then tend to DScVs of the TLM.

Comment 3.2By normalizing the columns ofXi+1, the
generated samplesSi+1 represent only the direction but not
the amplitude of PE. For the real physical problems the
state vector may include different physical variables (layer
thicknessh, velocity (u, v), temperatureT ...) and usually
the filter is constructed first on the basis of the normalized
variables (having a unit variance, for example). The columns
of Si+1 then represent not real but normalized physical
variables. The non-normalized PE samples are obtained if
we multiply the normalized ones by corresponding estimated

standard deviations. For simplicity of the presentation we
keep the notationSi+1 unchanged, understanding that some-
times they may be the results obtained through corresponding
renormalization procedure.

Comment 3.3 The definition ofxf (k + 1) depends on
whether it is applied in theoff-line (SP1) or in theon-line
(SP2) fashion. The off-line procedure assumesxf (k + 1) :=
xp(k+1). On the other hand, by applying the SP-DPE during
the filtering process, the on-line SP2 assumesxf (k) = x̂(k),
x̂(k) is the filtered estimate, and it integrates the model from
x̂(k) and its perturbed estimatêx(k)+δxl

f (k). The renormal-
ization process can be performed then more precisely if there
is a possibility to get some information on the ECM matrix
P (k) of the filtered erroref (k). For P1(k) - square-root of
P (k), P (k) = P1(k)PT

1 (k), the FE sample is obtained from
the relationδxl

f (k) = P1(k)δxl
p(k), l = 1, 2, ..., L. The PE

patterns generated during assimilation process can be used to
correct the ECM obtained by the off-line SP1 and to improve
the performance of the PEF. In the future we will use the
notationsδx̂l

p(k) := δxl
p(k) if the PE sample is generated

by the on-line SP2.

C. Estimation of error statistics

Once the PE patternsSi = Si(L), i = 1, 2, ..., T become
available, they can be used to estimate error statistics or
parameters of the ECM. For example, if all the elements
of the matrixM have to be estimated, the following formula
is appropriate for their estimation

M =
1

T

T∑

i=1

Bi, Bi := SiΘξS
T
i =

1

L

L∑

l=1

δxl
p(i)ξiδx

l,T
p (i),

(15)
In (15) Θξ = diag [ξ1, ..., ξN ], ξi are given positive values

or to be estimated during adaptation. ForT > 1, L > 1,
the term 1

T , 1

L should be replaced by 1

T−1
, 1

L−1
to provide

an unbiasedness of the estimate. The filter with the gain
constructed on the basis of the DPE patterns is referred to
in the future as a Prediction Error Filter (PEF).

If it is easy to simulate an ensembleSi(L) with size L
close or equal to the state dimension of small dimensional
systems (see experiments with 2 dimensional system in
section 5), serious difficulties arise when working with very
high dimensional systems. UsingL patterns withL << n
is insufficient for estimating the ECM. In such situation, the
filter either diverges or produces rather poor estimates. It is
therefore of interest to introduce in addition a ”reguralizing”
term to compensate the lack of information contained inL
PE samples. We have then

Mα = (1 − α)Ω(θ) + αM (16)

where Ω is a constant matrix of a given parameterized
structure (see (19)),α ∈ [0 : 1] reflecting our confidence
on Ω. The matrixM may be estimated using the samples
generated by SP1 or SP2. The vector of parametersθ can
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be chosen as a control vector to be adjusted to optimize the
fil ter performance.

IV. SPSAALGORITHM

Return to the problem of finding the optimal vectorθ∗ to
minimize the objective function (8). As there exist always
uncertainties (due to initial and boundary conditions, system
and observation noise statistics ...), computation of the gradi-
ent of (8) becomes unrealizable. However, the gradient of the
sample objective functionΨ(.) can be evaluated at a given
point θ = θ(k). Thus the vectorθ can be adjusted during
filtering process by applying the stochastic approximation
(SA) procedure

θ(k+1) = θ(k)−Γ(k+1)∇θΨ(ζ(k+1)), k = 0, 1, ... (17)

where∇θΨ(ζ(k +1)) is the gradient ofΨ(.) with respect
to θ computed atθ := θ(k), Γ(k + 1) is the factor ensuring
a convergence of the algorithm (scalar or matrix) [25].
Compared to the KF, in the adaptive filter (AF) based on
SA (17) no ARE is solved. Instead we have to integrate
backward (one or few iterations) the AE whose cost is about
two or three times greater than direct model integration.

It is a common fact, development of a discrete adjoint
solver for partial differential equations requires a long
time and it involves the errors resulting from necessary
approximations used during the differentiation. With the
recent progress in development of the SA algorithms, it is
possible to perform the AF without requiring the adjoint
code for the TLM as does the AF based on (17). This
great computational saving becomes reality thanks to in-
troducing a so called simultaneous perturbation stochastic
approximation (SPSA) algorithm [26]. Such algorithm does
not insist on direct measurements of the gradient of the
objective function. Moreover, SPSA is especially efficient
in high-dimensional problems in terms of providing a good
solution for a relatively small number of measurements of
the objective function. In such algorithms, all elements of
θl, l = 1, ..., q are randomly perturbed together to obtain
two (possibly noisy) measurements of the sample objective
function y(.) := Ψ(.) + µ where µ is a measurement
noise, but each componentgi(θk) of the gradient vector
g(.) := ∇θΨ(ζ(k)) is formed from a ratio involving the
individual components in the perturbation vector and the
difference in the two corresponding measurements. For two-
sided SP (Simultaneous Perturbation), we have

gi(θk) =
y(θk + ck∆k) − y(θk − ck∆k)

2ck∆ki
(18)

where∆ki can be chosen as the random variable having
the symmetric Bernoulli (+/-) 1 distribution. Two common
distributions that do not satisfy the conditions for∆ki are
the uniform and the normal. For sufficient conditions for
convergence of the SPSA iterate (θk → θ∗) see [26]. The
main conditions are thatak, ck both go to 0 at rates neither

too fast nor too slow, thatJ(θ) is sufficiently smooth near
θ∗. As for ∆ki, they are independent and symmetrically
distributed about 0 with finite inverse momentsE(|∆ki|

−1)
for all k, i. The advantage of the SPSA is that at each
assimilation instant it requires only two measurements of
the sample objective function to approximate the gradient
vector regardless of the dimension of the control vectorθ (or
maximally, three measurements if second-order optimization
algorithms are used [26]). The SPSA approach is thus free
from the need to develop a discrete adjoint of the TLM
and its implementation cost is independent of the number of
parameters to be optimized. It is therefore very appreciated
for solving optimization problems in very high dimensional
systems.

V. EXPERIMENT ON VEHICLE NAVIGATION

A. State and observational equations

To be able to project the innovation directly on the
subspace generated by the simulated DPE samples, and
to show the ROAF as an efficient alternative tool for
solving classical estimation problems, we present in this
section the experiment with the very simple filtering
problem considered in [27]. The system statex consists of
x(k) = (y(k), ν(k))T wherey(k) andν(k) are the position
and velocity of the vehicle at instantk := tk, ∆t = tk+1−tk,

p(k + 1) = p(k) + ∆tν(k) + 1

2
∆t2u(k) + p−(k),

ν(k + 1) = ν(k) + ∆tu(k) + ν−(k)

wherep−(k) is the position noise,ν−(k) is the velocity
noise. The inputu is the commanded acceleration. It is
assumed that we are able to change the acceleration and
measure the position every∆t seconds

z(k + 1) = p(k + 1) + ǫ(k) = Hx(k + 1) + ǫ(k)

In the state-space form (1),(2) we have

Φ = [φi,j ]
2
i,j=1, φii = 1, i = 1, 2; φ21 = 0, φ12 = ∆t,

B = 1

2
∆t2, w(k) = (p−(k), ν−(k))T , H = (1, 0)

The simulation is performed subject to the parameters
in [27]: The position is measured with an error of 10feet
(standard deviation); The commanded acceleration is a
constant 1foot/sec2; The position is measured 10 times
per second (∆t = 0.1). Thus the covariance matrices for
w, ǫ are equal to

Q = [qi,j ]
2
i,j=1, φ11 = 10−6, φ12 = φ21 = 2 x 10−5,

φ22 = 4 x 10−6, R = 100
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TABLE II
DIFFERENT FILTERS

Kalman Filter The ”true” KF subject to true noise
statistics

Full-order non-adaptive
fil ter (NAF)

The filter (10)(11) with K =
PrΘKe, Pr := ST (L), T =
100, L = 2, Θ = I.

Full-order adaptive filter
(FOAF)

The adaptive version of the NAF
with K = PrΘKe where Θ =
diag [θ1, θ2]. Two versions will be
applied: one is SA performed with
the AE, another is based on SPSA.

PEF-1P The filter (10) with
K = PrΘKe, Pr =
ST (L), T = 1000, L = 1
(Pr = (1.00094, 0.00995)T ,
i.e. it is close to the first
column of S∞(2) in section
5.2), Θ = I1, Ke =
HT

e [HeHT
e + R]−1, He = HPr.

APEF-1P Adaptive version of PEF-1P sub-
ject to K = PrΘKe, Θ = θ1.

The problem considered in this experiment is to estimate
asaccurately as possible the position and the velocity of the
vehicle based on position measurements.

B. Kalman and different filters

In Table II we summarize 5 filters to be performed in the
experiment. Their performances will be compared.

Fig. 1 shows the components of the first column ofSt(2)
and of the first Schur vector (first column ofXt(2)) in (12)
produced during the SP-DPE procedure. One sees that the
first components converge more quickly than the second
ones. In the limit one finds

S∞(2) =
1 −0.1
0 −1

, X∞(2) =
1 0
0 −1

,

G∞(2) =
1 −0.1
0 1

,

and we have the identities

S∞(2) = ΦX∞(2), X∞(2)G∞(2) = S∞(2)

C. Numerical results

Evolution of the gain elementK1 in the NAF, ROAF and
KF is shown in Fig. 2. The curve ”FOAF-ADJ” corresponds
to the FOAF with the gradient approximated by the AE
whereas the curve ”FOAF-SP” is obtained on the basis of
the SPSA algorithm. By construction the gain in the NAF
is constant. The transition period for the Kalman gain is ob-
served during the first 200 iterations. His value grows quickly
since at the beginning one assumes that the initial estimation

Fig. 1. Orthogonal iteration algorithm: two components of thefirst vector
of the PE matrixSt(2) and that of the SchurXt(2) resulting during
iterations. The difference between the first components is more significant
at the beginning of the iteration procedure and they converge more quickly
in comparison with the second ones.

Fig. 2. Evolution of the gain elementK1 in NAF, FOAF-ADJ, FOAF-
SP and KF. The Kalman gain becomes almost constant after about 200
iterations. The gains in two FOAFs have a stochastic character since they are
estimated from the innovation vector. The curves ”FOAF-SP” and ”FOAF-
ADJ” behave similarly and have the same convergence tendency.

error is equal to zero corresponding to very small initialized
ECM P (0). The gain in the FOAF is not smooth due to
stochastic character of the innovation vector. One sees two
curves ”FOAF-SP” and ”FOAF-ADJ” behave in the same
way and they have the same convergence tendency which
becomes more and more clear as assimilation progresses. If
at the beginning (up to 150 iterations) two curves ”FOAF-
SP” and ”FOAF-ADJ” are very similar, the amplitude of
”FOAF-SP” is rather greater afterward. Their fluctuations are
strong at the beginning and attenuated thereafter. The gain
coefficients in two filters KF and FOAF converge to different
values.

Fig. 3 exposes the time averaged rms (root mean square)
of the position errors produced by four filters. One sees
that up to 30sec the KF behaves better than the ROAFs
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Fig. 3. Averaged rms of position error. The error level in the NAF is highest.
Up to 30sec the KF behaves better but after this period its estimation error
becomes higher compared to that of the FOAF-ADJ and FOAF-SP.

Fig. 4. Averaged rms velocity error: Up to 30sec the velocity error is
higher in the KF compared to that of the ROAF. It becomes better estimated
for the remaining of the assimilation period. The NAF produces the worse
estimates for both position and velocity components

Fig. 5. Averaged rms position error produced by the APEF-1P and other
filters.

Fig. 6. Averaged rms velocity error produced by the APEF-1P andother
filters. Reduction degrades only slightly the performance of the APEF-1P
compared to that of the FOAF-SP.

but after this period its error becomes slightly higher. This
is not true, however, for the velocity estimations: what we
observe here is completely inverse to that already noted for
the position errors. Fig. 4 shows that if up to 30sec the
velocity error is higher in the KF, it becomes lower for the
remaining assimilation period. As to the NAF, it produces
the estimates, for position and velocity components, with
significantly higher errors, over all assimilation period.

To have the idea on how the order reduction influences on
the filter performance, we have implemented also two filters
PEF-1P and APEF-1P (see Table II for their description).
One can check that forPr = (1, 0)T (the first column of
S∞(2)), the PEF-1P with the parameterized gain is stable.
Similar to Figs 3-4, the Figs 5, 6 present the rms errors for
the position and velocity estimations produced by the FOAF-
SP and APEF-1P. It is seen that order reduction degrades the
performance of APEF-1P only slightly compared to that of
FOAF-SP. Thus by projecting the innovation on the one-
dimensional dominant Schur subspace it is still possible to
design a high-performance ROAF for estimating the position
and velocity of the vehicle.

VI. A LGORITHM OF THE ROAF FOR ALTIMETRIC SSH
DATA ASSIMILATION

A. MICOM model and observations

The Miami Isopycnal Coordinate Ocean Model (MICOM),
used here for the twin experiment is identical to that de-
scribed in [4]. The model configuration is a domain situated
in the North Atlantic from 300 N to 600 N and 800 W to 440

W; for the exact model domain and some main features of
the oceanic current (mean, variability of the SSH, velocity
...) produced by the model, see [4]. The grid spacing is about
0.20 in longitude and in latitude, requiringNh = Nx×Ny =
25200 (Nx = 140, Ny = 180) horizontal grid points. The
number of layers in the model isNz = 4. It is configured
in a flat bottom rectangular basin (1860km×2380km×5km)
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driven by a periodic wind forcing. The model relies on one
prognostic equation for each component of the horizontal
velocity field and one equation for mass conservation per
layer. We note that the state of the model isx := (h, u, v)
where h = h(i, j, lr) is the thickness oflrth layer, u =
u(i, j, lr), v = v(i, j, lr) are two velocity components. The
layer stratification is made in the isopycnal coordinates, i.e.
the layer is characterized by a constant potential density of
water. Thus with three variablesx := (h, u, v), the state of
the discretized model has the dimensionn = 302400.

The model is integrated from the state of rest during 20
years. Averaging the sequence of states over two years 17 and
18 gives a so-calledclimatology. During the period of two
years 19 and 20, every ten days, we calculate the SSH from
the layer thicknessh which are considered as observations
to be used for assimilation experiments (totally there are 72
observations). To be close to more realistic situation with
the observations available only at along-track grid points, the
observations are supposed to be available only at the points
i = 1, 11, ..., 131, j = 1, 11, ..., 171 and are noise-free.

B. Reduced-order filter and gain structures

The filter used for assimilating SSH observations is

x̂(k) = F [x̂(k − 1)] + K(k)Poiζ(k), k = 0, 1, ... (19)

where x̂(k) is the filtered estimate forx(k), x(k) =
[h(k), u(k), v(k)] is the system state atk := tk, tk+1 − tk =
10 ds (days), F (.) represents integration of the MICOM
nonlinear model over 10ds, K(k) is the filter gain,ζ(k)
is the innovation vector. As the observations are available
not at all model grid points, the operatorPoi will interpolate
the missing SSH from observed points. Mention that in the
KF this operation is performed automatically by the Kalman
gain. The gainK is symbolically given byK = K1KhPoi,
K1 := [I, GeT

u , GeT
v ]T , Here ch := KhPoiζ(k) represents

the correction for layer thicknessh using the SSH innovation
ζ(k). As to Geu, Gev, they produce the correction for the
velocity (u, v) from the correctionch using the geostrophy
hypothesis. The operatorPoi = Poi(ρ) = e−d/ρ interpo-
lates the innovationζ(k) from observation points to all the
grid points of the surface. Hered is the distance between
two horizontal points,ρ is the correlation length. In the
experiment we takeρ = 400km. As SSH observations are
linear functions with respect toh, the observation equation
is given by (3) (see [4]). By consideringPoiz instead ofz,
the observation operatorH is of the form

H = [Ip, ..., Ip] (20)

whereIp is the unit matrix of dimensionpxp (p = Nh). The
parameterρ can be chosen as tuning parameter to optimize
the filter performance.

C. Structure of the ECM for PE and its estimation

1) The caseα = 0: First assuming in Eq. (16)α = 0 and

Mα=0 = Ω = [ωl,m]Nz

l,m=1
⊗ Ip, (21)

where⊗ denotes the Kronecker product;Nz is the number
of thickness layers in the model,ωlm is a scalar representing
the covariance of the PE between two layersl and m.
The elementsωlm can be chosen a priori from physical
considerations or estimated from error patterns. For example,
in the Cooper-Haines filter (CHF, see [4]), the elementsωlm

are deduced from several physical constraints (conservation
of potential vorticity, no motion at the bottom layer ...). In
the PEF to follow,ωlm will be estimated using the patterns
of DScVs. These patterns are generated by applying the SP1
which generate the sequence of ensemble of sizeL at each
instanti := ti, ti+1 − ti = 10days(ds). For i = 1, ..., T , the
elementsωlm are estimated through

ωlm(T ) =
1

T

T∑

it=1

µ̄it

l,m, (22)

µ̄it

l,m = 1

L

∑L
l=1

µl,it

l,m,

µl,it

l,m = 1

p

∑
i,j δhl

p(i, j, l; it)δh
l
p(i, j, m; it)

wherei, j span all horizontal grid points whose number is
equal top. The terms1

T , 1

p should be replaced by 1

T−1
, 1

p−1

for T > 1, p > 1 to provide the unbiasedness of the
estimates.

In this paper, for illustrating purpose, we will apply the SA
algorithms for seeking the (sub)optimal filters in two class
of parameterized filters based on : 1) the CHF and 2) the
PEF. The difference between the PEF and CHF is lying in
the way we estimate the elements ofΩ. SubstitutingΩ from
(22) into (15) and forR(k) = σ2

rIp leads to

Kh = [k(1)Ip, ..., k(Nz)Ip]T , (23)

k(l) =
∑Nz

m=1

ωl,m

s ,

s =
∑Nz

m,m′=1
ωm,m′ + σ2

r

hencek(l) is a scalar,l = 1, ..., Nz. The Cooper-Haines
filter (CHF) [20] is obtained from (23) under three hy-
potheses [4] : (H1) the analysis error for the system output
is canceled in the case of noise-free observations ; (H2)
conservation of the linear potential vorticity (PV); (H3) there
is no correction for the velocity at the bottom layer. The AF
in [4] is obtained by relaxing one or several hypotheses (H1)-
(H3). For the noise-free observations, the parameterized gain
in the CHF is of the form [4]

Kchf = [(θ1 − θ2̺), (θ2 − θ3)̺, ...,

(θNz−1 − θNz
)̺, θNz

̺]T ⊗ Ip. (24)

For the present MICOM model,̺ = −184.965 [4]. The
CHF, corresponding toθl = 1, l = 1, ..., 4, has the form
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Kchf = [185.965, 0, 0,−184.965Ip]
T ⊗ Ip. (25)

The adaptive filter in [4] is based on the parameterization
(24) with θ1 = 1 for noise-free observations.

2) The caseα 6= 0: As seen from (22), by estimating the
matrix Ω from SP1, the information on the filtered estimate
and its estimation error are not taken into account. Moreover,
as the elements ofΩ represent only the covariances between
different vertical layers, the horizontal structure of the PE
is in fact completely ignored. These disadvantages can be
compensated by puttingα 6= 0 in (16). There are different
ways to chooseM in (16). For example, the samples from
SP1 or SP2 can be used for estimatingM on the basis of
(15). When the samples are taken from SP2,M = M(k) is
time-varying and the ECMMα = Mα(k) is updated during
assimilation process. Mention that the formula (22) can be
used also for updatingM = M(k) with the patterns from
SP2. The difficulty associated with application of (15) for
estimatingM concerns the inversion of the innovation ECM
Σζ := HMαHT in the gain matrix (5). As the dimension
of the observation vector is typically of order104 − 105 (
p = Nh = 25200 in the present MICOM model experiment),
it is impossible to invert directly the matrixΣζ . At the
present, iterative methods are widely used for findingx in
the equationΣζx = ζ. For Σζ of very high dimension,
iterative methods converge slowly, not to say on possible ill-
posedness ofΣζ . In [21], by applying the Woodbury matrix
identity [24], it is demonstrated that one can computeΣ−1

ζ ζ
by inverting only the matrix of dimensionsL × L whereL
is the size of the ensemble of PE samples.

D. Parameterization of the gain for the PEF. Adaptive filter

The parameterization of the gain for the CHF shown above
takes the hypothesis on conservation of the linear PV as
a departure point for parameterization (see (H2) for the
CHF). This hypothesis implies that the vertical displacement
interface (VDI) variables should be of (nearly) the same
values. As shown in [4], working in the VDI space avoids
to deal with the layer thickness variables (LTV)dh(k) since
the latters have the values ranging from several tenths to
thousand meters (depending on our interest in dividing the
ocean depth in different layers). Optimizing the filter in
the LTV space is hence undesirable due to the difficulty in
determining to which extent each componentθl should be
allowed to vary during the optimization process.

Following the ROAF approach based on the gain structure
(10)(11), we show now that it is possible to work directly in
the LTV space and to define the allowable interval for each
componentθl. Using the Cholesky decomposition method,
for Mα=0 = Ω (21), let

Ω = DDT (26)

Subject to (26), the gain (11) can be parameterized as

Fig. 7. Estimated gain coefficients at third layer as functionsof iteration
: the curves1L and 5L correspond to applying the SP1 subject to two
ensembles with sizeL = 1 andL = 5 at each instanti.

K = PrΘKe, Pr = D, Θ = diag= [θ1, ..., θNz
], θl ∈ (0, 2)

(27)
wherePr = D, He = HD with Ke defined as in (11).

Thus the diagonal elements ofΘ can be adjusted to minimize
the prediction error for the SSH variable.

As the coefficientωlm represents the covariance of the PE
between two layersl and m, they will be estimated in this
paper from simulated DPE patterns as shown in (22).

The non-adaptive version (i.e. PEF) is obtained by setting
θl = 1, l = 1, ..., 4. Once the estimateŝωlm are available,
the Eq. (23) can be used to calculate the gain of the PEF.
For noise-free observations,σ2

r = 0, we obtained after 72
iterations the gain (subject toL = 1)

Kpef = [230.01,−84.97,−59.91,−84.13]T ⊗ Ip. (28)

Fig. 7 shows the estimated gain coefficients at third layer
as functions of iteration during application of SP-DPE. Here
we have applied SP1 (without assimilation) to simulate, at
each time instanti := ti, ti+1 − ti = 10ds, two ensembles
of samples of the sizeL = 1 and L = 5. The curves1L
and5L correspond to applying the SP1 subject to these two
ensembles and Eq. (22). One sees that the coefficients are
close one to other and there is a quick convergence of the
gain coefficients. It means that for estimating the covariances
between different layers, it is sufficient to simulate a se-
quence of small size ensembles. The result in (28) shows
that the coefficient at the first layer is of nearly the same
magnitude compared with that of the CHF (25). The physical
hypotheses (H2), (H3) in the CHF ignore the corrections for
the intermediate layersl = 2, 3. In the PEF these corrections
remain important and play the important role in maintaining
the better performance of the PEF (see next sections).
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E. Adaptive filters based on CHF and PEF

The adaptive filters based on CHF and PEF will be used
in further to assimilate the SSH observations. These filters
(denoted as ACHF and APEF) are obtained by letting the
vector of parametersθ to vary to minimize the mean variance
of the SSH prediction error. Let the initial values forθ be
θl = θl(0) = 1, l = 1, 2, 3, 4 which correspond to the non-
adaptive CHF and PEF. In the next section, as in section 5,
two optimization algorithms based on AE and SPSA will be
applied to updateθl.

VII. N UMERICAL RESULTS

A. CHF and its modified versions

1) Efficiency of CHF:The CHF [20] is a simple, stable
assimilation scheme which is of relatively high-performance
hence is used widely to assimilate the data into oceanic
models. We run first the MODEL and CHF from the same
initial guess state (climatology). The MODEL corresponds
to running the MICOM model alone, without assimilation.
It is seen from Table III that compared to the MODEL,
the velocity errors in the CHF (eu(p), ev(p) and euv(p)
correspond to the errors for the componentsu-, v- and total
velocity (u, v)) are reduced by about 50% (more significant
error reduction is observed for SSH, i.e.J). Here the RMS-
PE of SSH is expressed incm and that of velocity - incm/s.

Comparison of the results in column 3, Table III with that
produced by the MODEL after the first assimilation instant
(column 2, Table IV) confirms that simple integration of
the model from the climatology increases the errors in all
variables (see also Fig. 8 for the SSH error). It means that
ocean modeling alone is insufficient for drawing the adequate
knowledge on the oceanic circulation.

2) Improvement of CHF by exploiting horizontal structure
of PE samples :In order to show that the PE samples are
very useful in improving the estimation of the ECM and
to reduce the estimation error, let us modify the CHF by
introducing the ECM (16) whereΩ is the ECM leading to
the CHF gain (25). As to the matrixM , it is estimated
from L dominant PE samples generated by SP1 and through
application of (15), i.e. the columns ofST (L) at T = 50.
This modified filter is denoted as MCHF(HORIZ). Fig.
9 displays the variance of SSH prediction error resulting
from the CHF (curve ”CHF”) and MCHF(HORIZ) (curve
”CHF-HORIZ-10L”) in which L = 10. One sees that the
modified MCHF(HORIZ) behaves much better that the CHF
at the last 15 months of the assimilation period. The same
characteristics is observed for the velocity error.

3) Improvement of CHF performance by exploiting the on-
line DPE samples:As discussed in Comment 3.3, the off-line
DPE samples are generated by integration of the numerical
model alone. As the prediction error changes depending on
the filtered estimate and its estimation error, it would be
beneficial if we could exploit the changes in the PE direction
during assimilation. To examine this possibility let us follow
the idea at the end of Comment 3.3. We remark that the
equations for time evolution ofP (k), M(k) - the FE and PE

Fig. 8. Variance of the PE for SSH produced by the MODEL: integration
of the model from the initial condition (i.e. the climatology) increases the
errors in all variables, in particular, for SSH.

Fig. 9. Variance of SSH prediction error resulting from CHF andtwo
modified versions MCHF(HORIZ) and MCHF(RIC)

ECM are given in (6). PuttingM(k) = Ω(k) = [ωlm(k)]⊗Ip

into the equation forP (k) leads to

P (k + 1) = P ′(k + 1) ⊗ Ip, P
′(k + 1) :=

[I4 − K ′(k)]M ′(k)[I4 − K ′(k)]T + K ′(k)R′K ′T (k) (29)

whereK(k) = K ′(k)⊗Ip, K
′(k) = [k(1), ..., k(4)]T ,R =

R′ ⊗ Ip. Thus at the assimilation instantk, for a given
M(k) = Ω(k), we can easily computeP (k) by (29). The
elementp′lm of P ′(k) represents FE covariance between two
layersl andm. The PE samples at the instantk + 1 can be
generated following the idea in Comment 3.3 : LetP1(k) be
a square-root ofP (k), P (k) = P1(k)PT

1 (k). Then we have
the FE samplesδxl

f (k) = P1(k)δxl
p(k), l = 1, 2, ..., L. The

orthonormalization and renormalization procedures should
be applied to this ensemble of FE samples. Integrating the
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model fromx̂(k) and x̂(k)+δxl
f (k) one can generate the PE

samples at the next time instantk + 1. As the ECMM(k)
is of the form (6), it is sufficient to choose an ensemble
of small sizeL to generate the PE samples. In the further
this modified filter is denoted as MCHF(RIC). We show in
Fig. 9 the curve ”CHF-RIC-10L” expressing the variance of
the innovation resulting from the modified CHF (performed
with a simplified Riccati equation (29) for simulation of
the FE samples). It is seen that at the last 10 months the
performance of the CHF(RIC) is almost the same as that of
CHF(HORIZ) : these two modified filters allow us to avoid
the increase of the PE at the end of assimilation period.
Generally speaking the PE in CHF(RIC) remains higher than
that in the CHF(HORIZ). Mention that the initialM(0) is
taken to be such that application of (5) results in the gain
(25) subject toR = 0.

B. CHF and its adaptive versions

Table IV exhibits the RMS-PE and RMS of the filtered
error (RMS-FE) produced by the filters CHF, ACHF(SP) and
ACHF(ADJ). Here ACHF(SP) and ACHF(ADJ) denote the
ACHF with the use of the SPSA or the adjoint equation
method for computing the gradient vector. Mention that the
ACHF(ADJ) has been studied in [4] and is presented here as
reference for comparison with the ACHF(SP). From Table IV
it is seen that compared to the CHF, the adaptation allows to
reduce significantly the estimation error. The ACHF(ADJ),
using more correct estimation of the gradient vector at the
beginning of the assimilation (see below), has produced
better estimates over this period. In Table V the performance
improvement of two ACHFs by adaptation is displayed where
the quantities ER1(%), ER2(%), expressed in percentage,
show how the corresponding ACHF(SP) or ACHF(ADJ) has
reduced the RMS of estimation errors compared to that of
CHF. For example, over the large windowk ∈ [5 : 72],
the SPSA algorithm has reduced about 15% rms errors
whereas this percentage is of order 20% if the gradient is
computed by the adjoint code. Fig. 10 depicts instantaneous
values of the objective function resulting from three filters. In
all filters, the objective functions decrease considerably from
the beginning up tok = 10. During the periodk ∈ [10 : 30]
the errors remain more or less constant and of nearly the
same level for the CHF and ACHF(SP) (about 50cm2).
The best performance is produced by the ACHF(ADJ) with
the variance of SSH innovation fluctuating around 30cm2.
However at the final windowk ∈ [30 : 72] the objective
function increases significantly in the CHF.

As to two ACHFs, the mechanism of adaptation allows
them to change their behaviors to respond more or less
correctly to the changes in environment, hence to follow
more correctly the trajectory of the true system state. If the
error in the ACHF(ADJ) remains more or less of the same
level as observed in the preceding window, the performance
of the ACHF(SP) becomes better and better : it is capable
of decreasing more and more the RMS of the innovation
during all the assimilation period. This fact is clearly seen in

TABLE III
T IME AVERAGED RMS-PEPRODUCED BYCHF AND MODEL AT THE

END OF ASSIMILATION PERIOD

Filter CHF MODEL
J(cm) 8.79 24.59

eu(p)(cm/s) 7.19 13.74

ev(p)(cm/s) 7.25 14.32

euv(p)(cm/s) 7.17 14.03

TABLE IV
RMS OF ESTIMATION ERRORS AVERAGED OVERk ∈ [5 : 72]

Filter PE by model att1 CHF ACHF(SP) ACHF(ADJ)
J 19.75 8.79 6.85 6.49

eu(p) 11.25 7.19 6.26 5.84

eu(f) 8.37 5.99 5.07 4.77

ev(p) 11.09 7.25 6.12 5.83

ev(f) 8.23 6.34 5.42 5.16

euv(p) 11.17 7.17 5.97 5.66

euv(f) 8.3 6.13 5.21 4.93

Fig. 10. Sample objective functions resulting from three filters CHF,
ACHF(SP), ACHF(ADJ).
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TABLE V
ERROR REDUCTION(IN PERCENTAGE) ACHIEVED BY ACHF(SP)AND

ACHF(ADJ)

ER1(%) ER2(%)
J 22,1 26,2

eu(p) 12,9 18,8
eu(f) 15,4 20,4
ev(p) 15,6 19,6
ev(p) 14,5 18,6
euv(p) 16,7 21,1
euv(f) 15 19,6

TABLE VI
RMS OF ESTIMATION ERRORS AVERAGED OVERk ∈ [61 : 72]

Filter CHF ACHF(SP) ACHF(ADJ)
J 11.53 5.48 7.02

eu(p) 9.25 5.03 5.88

eu(f) 7.57 4.49 5.04

ev(p) 9.36 5.28 6.15

ev(f) 8.05 4.72 5.28

euv(p) 8.94 4.96 5.78

euv(f) 7.51 4.43 4.96

Fig. 10 with decreasing tendency of the curve ’SP’ along
all assimilation period. There are two reasons for which
the ACHF(SP) works better than the ACHF(ADJ) as more
and more observations are assimilated. First, the ACHF(SP)
approximates the gradient vector by direct difference be-
tween two nonlinear integrations while the SA method uses
a linearization technique. The latter introduces inevitably
an additional error in gradient computation in nonlinear
systems which is accumulated as the assimilation progresses.
Secondly, due to simultaneous stochastic perturbation of all
parameters, the SPSA naturally requires a longer assimilation
time for searching a correct descent direction. That is why
if the error in the gradient computation seems to be more
and more important in the ACHF(ADJ) as the assimilation
advances, the inverse happens in the ACHF(SP).

The effect of adaptation can be examined by looking at the
assimilation results at the last four months, i.e.k ∈ [61 : 72],
Table VI displays the RMS-PE and RMS-FE resulting from
three filters. As expected, the ACHF(SP) behaves now better
than the ACHF(ADJ), with the reduction of velocity error
by more than 10%. As to the CHF, during this period one
observes an important increase of estimation error compared
to that shown in Table IV.

C. PEF and its adaptive versions

1) PEF and its modifications:The gain of PEF (28) is
obtained by estimating the elementsωl,m of Mα=0 = Ω (see
Eq. (21)) from the DPE patterns (SP1). The experimental
results in Table VII show that the PEF is much more efficient

Fig. 11. Variance of SSH prediction error resulting from PEF and
MPEF(HORIZ) and MPEF(RIC)

TABLE VII
RMS OF ESTIMATION ERRORS AVERAGED OVERk ∈ [5 : 72]

Filter PEF APEF(SP) APEF(ADJ) ER1 (%) ER2 (%)
J 6.36 5.90 5.88 7.2 7.5

eu(p) 5.69 5.42 5.34 4.7 6.2

eu(f) 4.77 4.48 4.45 6.1 6.7

ev(p) 5.74 5.43 5.36 5.4 6.6

ev(f) 5.10 4.83 4.79 5.3 6.1

euv(p) 5.57 5.24 5.20 5.9 6.6

euv(f) 4.90 4.62 4.59 5.7 6.3

than the CHF (see Table IV) and it slightly outperforms the
ACHF(SP) and ACHF(ADJ). Thus the statistics extracted
from DPE samples play an important role in correct estimat-
ing the filter gain and in improving the filter performance.
To exploit the horizontal structure of the PE patterns as
well as their dynamical changes during assimilation, as in
the previous section, we apply two modified PEFs, namely
PEF(HORIZ) and PEF(RIC). These two filters are designed
in the same way as described in sections VII.A.2, VII.A.3.
Assimilation results show that the similar effect is observed
when adding the horizontal structure of PE in estimating the
ECM or when dynamically updating the PE samples on-line
using the simplified Riccati equation (see Fig. 11). For the
PEF structure, the performances of two filters PEF(HORIZ)
and PEF(RIC) are very similar, without a significant differ-
ence as found with the CHF structure. The initialM(0) for
the PEF(RIC) is taken as such resulting in the gain (28).

2) Adaptive PEF: As the errors in the PEF are much
lower than that in the CHF, there remains no great ex-
pectation to reduce its errors (by adaptation) compared to
the CHF case. Even though, as seen from Tables VII-VIII,
the adaptation is proved to be an advantageous tool for
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TABLE VIII
RMS OF ESTIMATION ERRORS AVERAGED OVERk ∈ [61 : 72]

Filter PEF APEF(SP) APEF(ADJ) ER1(%) ER2(%)
J 6.94 5.75 5.96 17.1 14.1

eu(p) 5.99 5.04 5.23 15.9 12.7

eu(f) 5.26 4.44 4.59 15.6 12.7

ev(p) 6.19 5.19 5.41 16.2 12.6

ev(f) 5.47 4.56 4.82 18.5 11.9

euv(p) 5.85 4.92 5.11 15.9 12.6

euv(f) 5.15 4.32 4.52 16.1 12.2

Fig. 12. Instantaneous RMS-PE for theu-velocity component at the 1st
layer: at the final window [61:72] there is an error growth in the CHF
whereas no such phenomenon is observed in the PEF.

improving the performance of the PEF. For all assimilation
period, the adaptation has reduced the rms estimation error by
about 5-6% in the APEF(SP) and 6-7% in the APEF(ADJ).
These reductions are less important than that achieved by
the ACHF(SP) and ACHF(ADJ) with respect to the CHF
(they are equal to 15% and 20% respectively, see Table V).
At the last 4 months, the APEF(SP) again outperforms the
APEF(ADJ). Meantime, the error reduction is achieved by
16-17% in the APEF(SP) and by 12-13% in the APEF(ADJ)
compared to the non-adaptive PEF.

Finally Fig. 12 displays typical instantaneous RMS-PE for
theu-velocity component at the 1st layer (the same errors are
observed for other layers and for thev-component) produced
by the CHF and PEF. Similarly to Fig. 10 for the SSH errors,
the CHF has a difficulty to well estimate the velocity as
assimilation progresses. There is a significant difference in
error levels produced by the PEF and the CHF, especially at
the final assimilation window [61:72].

Fig. 13. As in figure 12 but produced by ACHF(ADJ), APEF(ADJ).

Fig. 14. The same as in Fig. 12 but produced by APEF(ADJ) and
APEF(SP).

It is seen from Fig 13 thanks to the PEF structure, the
adaptation allows the APEF to avoid the error picks produced
by the ACHF. These improvements are well summarized
in Tables VII-VIII: in average, over all assimilation period,
the APEF(SP) (or APEF(ADJ)) behave much better than the
corresponding ACHF(SP) (or ACHF(ADJ)) and this proves
that the gain of the PEF is much more close to ”optimal”
than that of the CHF.

Another interesting fact, found from Fig. 13 (or Fig. 14),
is that at the final window [61:72] the errors in the AFs
with different gain structures (CHF or PEF) are of nearly
the same level. This means that the role of the initial gain
structure seems to be less important as the free parameters
are gradually adjusted to minimize the PE. This effect is
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seen more clearly by comparing the error curves in Fig.
13 with that depicted in Fig. 12 for corresponding non-
adaptive filters. Here the adaptation has been applied only
to the CHF and PEF. Its application to the modified filters
like MCHF(HORIZ), MPEF(HORIZ) ... would lead to more
efficient adaptive filters.

VIII. C ONCLUSIONS

In this paper, we have demonstrated that one can get a
great benefit from a proper initialization of the filter gain
and its optimization by applying the SP-DPE and SPSA
algorithms. Thanks to SP-DPE, the elements or parameters
of the ECM are properly estimated from generated DPE
samples in a low-cost way. This allows us to construct,
practically in automatic way, the filter gain with appropriate
parameterization. There are two simple ways to modify the
structure of the filter either by exploiting the horizontal struc-
ture of the PE samples or by updating the PE samples during
assimilation process, taking into account the FE estimate.
These modified filters are proved to be more efficient in
reducing the estimation errors. More detailed investigation
on how to better use the PE samples in the filter design is
of importance and left for future study.

For the adaptation purpose, from the proposed gain struc-
tures, the allowable intervals for the tuning parameters values
can be determined. With the help of the SPSA algorithm, the
optimization is performed at the cost of two integrations of
the numerical model. For meteorological and oceanic models
with dimension of order107 − 108, this algorithm appears
to be an extremely important tool for the future development
of optimal assimilation systems.

The feasibility of this approach is demonstrated in typical
state and parameter estimation problems. Numerical results
show that initialization of the gain using the DPE samples
can yield the performance of PEF comparable with that of
the KF (experiment on vehicle navigation) or allows the PEF
to reduce significantly the estimation error in comparison
with the traditional CHF (experiment with data assimilation
in the ocean model MICOM). A significant improvement
of the filter performance is demonstrated by adaptive tuning
some pertinent parameters of the gain. There is no significant
difference in performance between two SA algorithms, one
is based on gradient estimated by AE and another - on
simultaneous perturbation (SPSA). It is worthy of mention
that compared to the classical SA method, the SPSA seems
to be less efficient at the beginning but more efficient as
more and more observations are assimilated. That is also
true when SPSA is applied to optimize the filter performance
for nonlinear systems. The reason is that the SPSA calculates
derivatives using the difference between two nonlinear model
integrations whereas the AE method approximates the gra-
dient by linearization.
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