
 

  
Abstract— The purpose of this paper is to develop technique 

appropriate for construction of frequentist prediction intervals 
or prediction bounds for order statistics in future samples when 
only the functional form of the underlying distribution is 
specified, but some or all of its parameters are unspecified. 
Prediction intervals for order statistics are widely used for 
reliability problems and other related problems. The 
determination of these intervals has been extensively 
investigated. But the optimal properties of these intervals in the 
sense of minimal area for a given probability content or 
maximal probability content for a given area have not been 
fully explored. In this paper, in order to discuss this problem, a 
specific loss function is introduced to compare prediction 
intervals. In particular, within-sample prediction based on the 
early observed data from a current experiment (i.e., when for 
predicting the future observation in a sample there are 
available the early observed data only from that sample), new-
sample prediction based on a previous sample (i.e., when for 
predicting the future observation in a new sample there are 
available the data only from a previous sample), and new-
within-sample prediction based on both the early-failure data 
from that sample and the data from a previous sample (i.e., 
when for predicting the future failure time of an unit in a new 
sample there are available both the early-failure data from that 
sample and the data from a previous sample). We restrict 
attention to families of distributions invariant under location 
and/or scale changes. The technique used here for optimization 
of prediction intervals based on censored data emphasizes 
pivotal quantities relevant for obtaining ancillary statistics. It 
allows one to solve the optimization problems in a simple way. 
Illustrative examples are given.   
 

Index Terms—Order statistic, prediction interval, loss 
function, optimization 
 

I. INTRODUCTION 
REDICTION is perhaps one of the most commonly 
undertaken activities in the physical, the engineering, 

and the biological sciences. In the econometric and the 
social sciences, prediction generally goes under the name of 
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forecasting, and in the actuarial and the assurance sciences 
under the label life-length assessment. Automatic process 
control, filtering, and quality control, are some of the 
engineering techniques that use prediction as a basis of their 
modus operandus. Statistical techniques play a key role in 
prediction, with regression, time series analysis, and 
dynamic linear models (also known as state space models) 
being the predominant tools for producing forecasts. The 
importance of statistical methods in forecasting was 
underscored by Pearson [1] who claimed that prediction is 
the “fundamental problem of practical statistics.” Patel [2] 
provides an extensive survey of literature on this topic. In 
the areas of reliability and life-testing, lifetime data are often 
modeled via the Exponential and the Weibull in order to 
make predictions about future observations. Prediction 
intervals are constructed to have a reasonably high 
probability of containing a specified number of such future 
observations. Interval prediction is an important part of the 
forecasting process aimed at enhancing the limited accuracy 
of point estimation. An interval forecast usually consists of 
an upper and a lower limit between which the future value is 
expected to lie with a prescribed probability. The limits are 
sometimes called prediction limits or prediction bounds. 
These limits may be helpful in establishing warranty policy, 
determining maintenance schedules, etc. For a very readable 
discussion of prediction limits and related intervals, see 
Hahn and Meeker [3]. 

Many authors have reported their efforts for constructing 
prediction limits for the Weibull and for the related extreme 
value distributions (see Patel [2]). Mann and Saunders [4] 
proposed prediction limits for the Weibull which make use 
of only two or three order statistics (see also Mann [5]). 
Antle and Rademaker [6] used simulation to produce a table 
of factors to use with ML estimates to obtain prediction 
limits. Lawless [7] proposed prediction limits based on a 
conditional confidence approach; his limits require both 
determination of the ML estimates and numerical 
integration. Engelhardt and Bain [8-9], and Fertig, Meyer 
and Mann [10] have proposed various approximate 
prediction limits for the Weibull. Mee and Kushary [11] 
provided a simulation based procedure for constructing 
prediction intervals for Weibull populations for Type II 
censored case. This procedure is based on maximum 
likelihood estimation and requires an iterative process to 
determine the percentile points. Bhaumik and Gibbons [12], 
and Krishnamoorthy et al. [13] proposed approximate 
methods for constructing upper prediction limits for a 
gamma distribution. 

Consider the following examples of practical problems 
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which often require the computation of prediction bounds 
and prediction intervals for future values of random 
quantities: (i) a consumer purchasing a refrigerator would 
like to have a lower bound for the failure time of the unit to 
be purchased (with less interest in distribution of the 
population of units purchased by other consumers); (ii) 
financial managers in manufacturing companies need upper 
prediction bounds on future warranty costs; (iii) when 
planning life tests, engineers may need to predict the number 
of failures that will occur by the end of the test to predict the 
amount of time that it will be take for a specified number of 
units to fail. 

Some applications require a two-sided prediction interval 
that will, with a specified high degree of confidence, contain 
the future random variable of interest. It is important to note 
that in the context of this paper, a prediction interval is not 
to be viewed as a confidence interval. The former is an 
estimate of a future observable value; the latter an estimate 
of some fixed but unknown (and often unobservable) 
parameter. Prediction intervals are produced via frequentist 
or Bayesian methods, whereas confidence intervals can only 
be constructed via a frequentist argument. The discussion of 
this paper revolves around prediction intervals produced by 
a frequentist approach; thus we are concerned here with 
frequentist prediction intervals. In many applications, 
however, interest is focused on either an upper prediction 
bound or a lower prediction bound (e.g., the maximum 
warranty cost is more important than the minimum, and the 
time of the early failures in a product population is more 
important than the last ones). 

Conceptually, it is useful to distinguish between ‘within-
sample’ prediction, ‘new-sample’ prediction, and ‘new-
within-sample’ prediction. 

For within-sample prediction, the problem is to predict 
future events in a sample or process based on early data 
from that sample or process. If, for example, m units are 
followed until tr and there are r observed failures, Y1 < Y2 < 
⋅⋅⋅< Yr, one could be interested in predicting the time of the 
next failure, Yr+1; time until l additional failures, Yr+l ; number 
of additional failures in a future interval (t1,t2).  

For new-sample prediction, data from a previous sample 
are used to make predictions on a future unit or sample of 
units from the same process or population. For example, 
based on previous (possibly censored) life test data, one 
could be interested in predicting the time to failure of a new 
unit, time until r failures in a future sample of m units, or 
number of failures by time t in a future sample of m units. 

For new-within-sample prediction, the problem is to 
predict future events in a sample or process based on the 
early data from that sample or process as well as on a 
previous data sample from the same process or population. 
For example, if m units are followed until tr and there are the 
r observed failures, Y1, …, Yr, from a current experiment as 
well as the k observed failures, X1, …, Xk, from a previous 
data sample (possibly censored), one could be interested in 
predicting the time of the next failure Yr+1; time until l 
additional failures, Yr+l; number of additional failures in a 
future interval (t1,t2).  

In general, to predict a future realization of a random 

quantity one needs the following:  
1) A statistical model to describe the population or 

process of interest. This model usually consists of a 
distribution depending on a vector of parameters θθθθ. In this 
paper, attention is restricted to families of distributions 
which are invariant under location and/or scale changes. In 
particular, the case may be considered where a previously 
available complete or type II censored sample is from a 
continuous distribution with cdf F((y-µ)/σ), where F(⋅) is 
known but both the location (µ) and scale (σ) parameters are 
unknown. For such family of distributions the decision 
problem remains invariant under a group of transformations 
(a subgroup of the full affine group) which takes µ  (the 
location parameter) and σ  (the scale) into cµ + b and cσ, 
respectively, where b lies in the range of µ,  c > 0. This 
group acts transitively on the parameter space.  

2) Information on the values of components of the 
parametric vector θθθθ. It is assumed that only the functional 
form of the distribution is specified, but some or all of its 
parameters are unspecified. In such cases ancillary statistics 
and pivotal quantities, whose distribution does not depend 
on the unknown parameters, are used. 

The technique used here for constructing prediction 
intervals (or bounds) emphasizes pivotal quantities relevant 
for obtaining ancillary statistics. It represents a simple 
procedure that can be utilized by non-statisticians, and which 
provides easily computable explicit expressions for both 
prediction bounds and prediction intervals. The technique is 
a special case of the method of invariant embedding of 
sample statistics into a performance index (see, e.g., Nechval 
et al. [14-23]) applicable whenever the statistical problem is 
invariant under a group of transformations, which acts 
transitively on the parameter space. 

II. WITHIN-SAMPLE PREDICTION PROBLEM  
For within-sample prediction, the problem is to predict 

future events in a sample or process based on early data 
from that sample or process. For example, if m units are 
followed until Yr and there are r observed failures, Y1, …, Yr, 
one could be interested in predicting the time of the next 
failure Yr+1; time until l additional failures, Yr+l; number of 
additional failures in a future interval. 

A. Location-Scale Family of Density Functions 

Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter 
θθθθ=(µ,σ), where µ and σ (>0) are respectively parameters of 
location and scale. For this family, invariant under the group 
G of positive linear transformations: y→ay+b with a>0, we 
shall assume that there is obtainable (from some informative 
experiment) the first r order statistics Y1<Y2< ⋅⋅⋅ <Yr from a 
random sample of size m with cumulative distribution 
function 
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If Ys is a future observation (sth order statistic) from the 
same sample of size m, then W= rr SYY /)( −  (or W= 

rrs YYY /)( − ) is an ancillary statistic, the distribution of 
which does not depend on (µ,σ);  Sr is a sufficient statistic 
(or a maximum likelihood estimator kσ) ) for σ  based on 
Y=(Y1, …, Yr). 

B. Piecewise-Linear Loss Function 

We shall consider the interval prediction problem for the 
sth order statistic Ys, r<s≤m, in the same sample of size m for 
the situation where the first r observations Y1 < Y2 < ⋅⋅⋅< Yr, 
1≤r<m, have been observed. Suppose that we assert that an 
interval d=(d1,d2) contains Ys. If, as is usually the case, the 
purpose of this interval statement is to convey useful 
information we incur penalties if d1 lies above Ys or if d2 
falls below Ys. Suppose that these penalties are c1(d1− Ys) 
and c2(Ys−d2), losses proportional to the amounts by which 
Ys escapes the interval. Since c1 and c2 may be different the 
possibility of differential losses associated with the interval 
overshooting and undershooting the true µ is allowed. In 
addition to these losses there will be a cost attaching to the 
length of interval used. For example, it will be more difficult 
and more expensive to design or plan when the interval 
d=(d1,d2) is wide. Suppose that the cost associated with the 
interval is proportional to its length, say c(d2−d1). In the 
specification of the loss function, σ is clearly a ‘nuisance 
parameter’ and no alteration to the basic decision problem is 
caused by multiplying all loss factors by 1/σ. Thus we are 
led to investigate the piecewise-linear loss function   
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The decision problem specified by the informative 

experiment distribution function (1) and the loss function (2) 
is invariant under the group G of transformations. Thus, the 
problem is to find the best invariant interval predictor of Ys, 
 

),,( min arg dd
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where D is a set of invariant interval predictors of Ys, 
R(θθθθ,d)=Eθθθθ{r(θθθθ,d)} is a risk function. 

C. Transformation of the Loss Function 

It follows from (2) that the invariant loss function, r(θθθθ,d), 
can be transformed as follows: 
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V=(V1,V2),   V1= σ/)( rs YY − ,   V2= σ/rS ; 
 
 

ηηηη=(η1,η2),   η1= rr SYd /)( 1 − ,   η2= rr SYd /)( 2 − . 
 

(6) 

D. Risk  Function 

It follows from (5) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where f(v1,v2) is defined by the 
joint probability density of the first r observations Y1 < Y2 < 
⋅⋅⋅< Yr and Ys, 
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E. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
section. 

Theorem 1 (Optimal predictor of Ys based on Y). Suppose 
that (u1, u2) is a random vector having density function 
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where f is defined by f(v1,v2), and let Q be the probability 
distribution function of u1/u2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Ys based on Y is d*=(Yr+η1Sr, Yr+η2Sr), 
where 
 

    ./1)Q(     ,/)( 2211 ccccQ −== ηη  (10) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Ys based on Y degenerates into a point 
predictor Yr+η Sr, where  
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Proof. From (7) 
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Now ∂E{ r&& (V,ηηηη)}/∂η1 = ∂E{ r&& (V,ηηηη)}/∂η2 = 0 if and only 
if (10) hold. Thus, E{ r&& (V,ηηηη)} provided (10) has a solution 
with η1<η2 and this is so if 1−c/c2>c/c1. It is easily 
confirmed that this ηηηη=(η1,η2) gives the minimum value of 
E{ r&& (V,ηηηη)}. Thus (i) is established.  

If c/c1+c/c2≥1 then the minimum of E{ r&& (v,η)} in the 
region η2≥η1 occurs where η1=η2=η , η  being determined 
by setting  
 

 ∂E{ r&& (V,( ηη, ))}/∂η =0  (17) 
 
and this reduces to 
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which establishes (ii).    

Corollary 1.1 (Minimum risk of the optimal invariant 
predictor of Ys based on Y). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (10) and for case (ii) 
with η1=η2=η  as given by (11). 

Proof. These results are immediate from (7) when use is 
made of ∂E{ r&& (V,ηηηη)}/∂η1 = ∂E{ r&& (V,ηηηη)}/∂η2 = 0 in case (i) 
and ∂E{ r&& (V,( ηη, ))}/∂η =0 in case (ii).    

The underlying reason why c/c1+c/c2 acts as a separator of 
interval and point prediction is that for c/c1+c/c2≥1 every 
interval predictor is inadmissible, there existing some point 
predictor with uniformly smaller risk.  

Theorem 2 (Optimal invariant predictor of Ys based on 
Yr). Suppose that µ=0 and 
 

V=(V1,V2),   V1= σ/)( rs YY − ,   V2= σ/rY ; 
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Let us assume that (u1, u2) is a random vector having density 
function 
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where f0 is defined by f0(v1,v2), and let Q0 be the probability 
distribution function of u1/u2. 
 

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Ys based on Yr is d*=((1+η1)Yr, 

(1+η2)Yr), where 
   

 ./1)(Q     ,/)( 220110 ccccQ −== ηη  (22) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Ys based on Yr degenerates into a point 
predictor (1+ )η Yr, where 
 

  )./()( 2120 cccQ +=η  (23) 
 

Proof. For the proof we refer to Theorem 1.    
Corollary 2.1 (Minimum risk of the optimal invariant 

predictor of Ys based on Yr). The minimum risk is given by 
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for case (i) with ηηηη=(η1,η2) as given by (22) and for case (ii) 
with η1=η2=η  as given by (23). 

Proof. For the proof we refer to Corollary 1.1.    
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III. EQUIVALENT CONFIDENCE COEFFICIENT 
For case (i) when we obtain an interval predictor for Ys we 

may regard the interval as a confidence interval in the 
conventional sense and evaluate its confidence coefficient. 
The general result is contained in the following theorem. 

Theorem 3 (Equivalent confidence coefficient for d∗ 
based on Y). Suppose that V=(V1,V2) is a random vector 
having density function  f(v1,v2) (v1,v2>0) where f is defined 
by (8) and let H be the distribution function of W=V1/V2, i.e., 
the probability density function of W is given by 
 

   .),()( 222
0

2 dvvwvfvwh ∫
∞

=   (25) 

 
Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Yr+η1Sr,  
d2=Yr+η2Sr, is 
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Proof. The confidence coefficient for d∗ corresponding to 

(µ,σ) is given by 
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This is independent of (µ,σ).    

Theorem 4 (Equivalent confidence coefficient for d∗ 
based on Yr). Suppose that V=(V1,V2) is a random vector 
having density function  f0(v1,v2) (v1 real, v2>0), where f0 is 
defined by 
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and let H0 be the distribution function of W=V1/V2, i.e., the 
probability density function of W is given by 
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Then the confidence coefficient associated with the optimum 
prediction interval d* = (d1,d2), where d1 = (1+η1) Yr,  d2 = 

(1+η2)Yr, is 
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Proof. For the proof we refer to Theorem 3.     
The way in which (26) (or (30)) varies with c, c1 and c2, 

and the fact that c1 and c2 are the factors of proportionality 
associated with losses from overshooting and undershooting 
relative to loss involved in increasing the length of interval, 
provides an interesting interpretation of confidence interval 
prediction. 

IV. NEW-SAMPLE PREDICTION PROBLEM  
For new-sample prediction, data from a past sample are 

used to make predictions on a future unit or sample of units 
from the same process or population. For example, based on 
previous (possibly censored) life test data, one could be 
interested in predicting the time to failure of a new item, 
time until l failures in a future sample of m units, or number 
of failures by time t• in a future sample of m units. 

A. Location-Scale Family of Density Functions 

Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter 
θθθθ=(µ,σ), where µ and σ (>0) are respectively parameters of 
location and scale. For this family, invariant under the group 
of positive linear transformations: x→ax+b with a>0, we 
shall assume that there is obtainable from some informative 
experiment (the first k order statistics X1<X2< ⋅⋅⋅ <Xk from a 
previous random sample of size n) a sufficient statistic 
(Mk,Sk) (or a maximum likelihood estimator ( kµ) , kσ) )) for 
(µ,σ)  based on X=(X1, …, Xk) with density function 
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We are thus assuming that for the family of density functions 
an induced invariance holds under the group G of 
transformations: mk→amk+b, sk→ask or kµ) → kaµ) +b, 

kσ) → kaσ)  (a>0). The family of density functions satisfying 
the above conditions is, of course, the limited one of normal, 
negative exponential, Weibull and gamma (with known 
index) density functions. The structure of the problem is, 
however, more clearly seen within the general framework. 

Let Ys be an independent future observation (sth order 
statistic) from a new sample. If Ys is invariantly predictable 
then W=(Ys−Mk)/Sk (or W= kksY σµ )) /)( − ) is a maximal 
invariant pivotal, conditional on X. 

B. Piecewise-Linear Loss Function 

We shall consider the interval prediction problem for the 
sth order statistic Ys, 1 ≤ s ≤ m, in a future sample of size m 
for the situation where the first k observations X1 < X2 < ⋅⋅⋅< 
Xk, 1≤k<n, from a past sample of size n have been observed. 
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Suppose that we deal with the piecewise-linear loss function 
(2).  

The decision problem specified by the informative 
experiment density function (31) and the loss function (2) is 
invariant under the group G of transformations. Thus, the 
problem is to find the optimal interval predictor of Ys, 
 

  ),,( min arg dd
d

θθθθoR
D∈

∗ =    (32) 

 
where D is a set of invariant interval predictors of Ys, 

),( dθθθθoR =Eθθθθ{r(θθθθ,d)} is a risk function. 

C. Transformation of the Loss Function 

It follows from (2) that the invariant loss function, r(θθθθ,d), 
can be transformed as follows: 
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D. Risk  Function 

It follows from (34) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where ),( 21

ooo vvf  is defined by the 
joint probability density of the first k observations X1 < X2 < 
⋅⋅⋅< Xk from the past random sample of size n and the sth 
order statistic Ys in the future sample of size m, 
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E. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
section. 

Theorem 5 (Optimal invariant predictor of Ys based on 
X). Suppose that (u1, u2) is a random vector having density 
function 
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(38) 
 
where of  is defined by ),( 21

ooo vvf , and let oQ  be the 
probability distribution function of u1/u2.  

(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Ys based on X is d*=(Mk+ o

1η Sk, 

Mk+ o

2η Sk), where 
 

  ./1)(     ,/)( 2211 ccQccQ −== oooo ηη   (39) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Ys based on X degenerates into a point 
predictor Mk+ oη Sk, where 
 

 )./()( 212 cccQ +=oo η   (40) 
 

Proof. For the proof we refer to Theorem 1.    
Corollary 5.1 (Minimum risk of the optimal invariant 

predictor of Ys based on X). The minimum risk is given by 
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for case (i) with ),( 21
ooo ηη=ηηηη  as given by (39) and for case 

(ii) with ηηη == oo

21  as given by (40). 
Proof. For the proof we refer to Corollary 1.1.    
Theorem 6 (Equivalent confidence coefficient for d∗ 

based on X). Suppose that ),,( 21
ooo VV=V  is a random vector 

having density function  ),( 21
ooo vvf  ( o

1v  real, o

2v > 0) where 
of  is defined by (38) and let oH  be the distribution 

function of ,/ 21
ooo VVW =  i.e., the probability density 

function of oW  is given by 
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Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Mk+ o

1η Sk,  

d2=Mk+ o

2η Sk, is 
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Proof. For the proof we refer to Theorem 3.    

V. NEW-WITHIN-SAMPLE PREDICTION PROBLEM  
For new-within-sample prediction, the problem is to 

predict future events in a sample or process based on early 
data from that sample or process as well as on a previous 
data sample from the same process or population. For 
example, if m units are followed until tr and there are the r 
observed failures, Y1, …, Yr, from a current experiment as 
well as the k observed failures, X1, …, Xk, from a previous 
data sample (possibly censored), one could be interested in 
predicting the time of the next failure Yr+1; time until l 
additional failures, Yr+l; number of additional failures in a 
future interval (t1, t2). 

A. Location-Scale Family of Density Functions 

Consider a situation described by a location-scale family 
of density functions, indexed by the vector parameter 
θθθθ=(µ,σ), where µ and σ (>0) are respectively parameters of 
location and scale. For this family, invariant under the group 
of positive linear transformations: x→ax+b with a>0, we 
shall assume that there is obtainable from both some current 
informative experiment (the first r order statistics Y1<Y2< ⋅⋅⋅ 
<Yr from a random sample of size m) and the k observed 
failures, X1, …, Xk, from a previous censored data sample of 
size n a sufficient statistic (M+,S+) (or a maximum likelihood 
estimator ( +µ) , +σ) )) for (µ,σ)  based on Y=(Y1,…, Yr) and 
X=(X1,…, Xk) with density function 
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We are thus assuming that for the family of density functions 
an induced invariance holds under the group G of 
transformations: m+→am++b, s+→as+ or +µ) → +µ)a +b, 

+σ) → +σ)a  (a>0). The family of density functions satisfying 
the above conditions is, of course, the limited one of normal, 
negative exponential, Weibull and gamma (with known 
index) density functions. The structure of the problem is, 
however, more clearly seen within the general framework. 

Let Ys be a future observation (sth order statistic) from the 
same sample of size m. If Ys is invariantly predictable then 

+++ −= SMYW s /)(  (or +W = ++− σµ )) /)( sY ) is a maximal 
invariant pivotal, conditional on (X,Y). 

B. Piecewise-Linear Loss Function 

We shall consider the interval prediction problem for the 
sth order statistic Ys, 1 ≤ s ≤ m, in the same sample of size m 
for the situation where both the first k observations X1 < X2 < 
⋅⋅⋅< Xk, 1≤k<n, from the previous data sample of size n and 
the early observed r order statistics Y1<Y2< ⋅⋅⋅ <Yr from a 
random sample of size m are available. Suppose that we deal 
with the piecewise-linear loss function (2).  

The decision problem specified by the informative 
experiment density function (31) and the loss function (2) is 
invariant under the group G of transformations. Thus, the 
problem is to find the optimal interval predictor of Ys, 
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where D is a set of invariant interval predictors of Ys, 

d,(θθθθ+R =Eθθθθ{r(θθθθ,d)} is a risk function. 

C. Transformation of the Loss Function 

It follows from (2) that the invariant loss function, r(θθθθ,d), 
can be transformed as follows: 
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D. Risk  Function 

It follows from (47) that the risk associated with d and θθθθ 
can be expressed as 
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which is constant on orbits when an invariant predictor 
(decision rule) d is used, where ),( 21

+++ vvf  is defined by 
the joint probability density of the first k observations X1 < 
X2 < ⋅⋅⋅< Xk from the previous random sample of size n, the 
early observed r order statistics Y1<Y2< ⋅⋅⋅ <Yr from a random 
sample of size m, and the future sth order statistic Ys (s>r) in 
the same sample of size m,  
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E. Risk Minimization and Invariant Prediction Rules 

The following theorem gives the central result in this 
section. 

Theorem 7 (Optimal invariant predictor of Ys based on 
(X,Y)). Suppose that (u1, u2) is a random vector having 
density function 
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where +f  is defined by ),( 21
+++ vvf , and let +Q  be the 

probability distribution function of u1/u2.  
(i) If c/c1+c/c2<1 then the optimal invariant linear-loss 

interval predictor of Ys based on (X,Y) is d*= ( ,1
+++ + SM η  

+++ + SM 2η ), where 
 

 ./1)(     ,/)( 2211 ccQccQ −== ++++ ηη  (52) 
 

(ii) If c/c1+c/c2≥1 then the optimal invariant linear-loss 
interval predictor of Ys based on (X,Y) degenerates into a 
point predictor ,+++ + SM η  where 
 

 )./()( 212 cccQ +=++ η    (53) 
 

Proof. For the proof we refer to Theorem 1.    
Corollary 5.1 (Minimum risk of the optimal invariant 

predictor of Ys based on (X,Y)). The minimum risk is given 
by 
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for case (i) with ),( 21
+++ = ηηηηηη  as given by (52) and for case 

(ii) with ηηη == ++
21  as given by (53). 

Proof. For the proof we refer to Corollary 1.1.    
Theorem 8 (Equivalent confidence coefficient for d∗ 

based on (X,Y)). Suppose that ),,( 21
+++ = VVV  is a random 

vector having the probability density function  ),( 21
+++ vvf  

( +
1v  real, +

2v > 0), where +f  is defined by (50), and let +H  

be the probability distribution function of +++ = 21 /VVW , 

where the probability density function of +W  is given by 
 

  .),()( 222
0

2
+++++

∞
+++

∫= dvvvwfvwh  (55) 

 
Then the confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1= ,1

+++ + SM η   

d2= +++ + SM 2η , is 
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Proof. For the proof we refer to Theorem 3.    
 

VI. EXAMPLES 

A. Within-Sample Prediction of Order Statistic 

Exponential distribution. Let Y1< Y2< ⋅⋅⋅ <Ym be order 
statistics of size m from the exponential distribution with the 
density  
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Consider the prediction problem of Ys for the situation 

where the first r observations Y1< Y2< ⋅⋅⋅ <Yr, 1≤ r < s ≤ m, 
have been observed. We are now concerned with 
optimization of the prediction interval for Ys under the loss 
function (2). 

Let Y=(Y1, …, Yr) and Ys > Yr for s ≤ m. Then the joint 
probability density function of Y and Ys is given by 
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Using the invariant embedding technique [14-23], we then 
find in a straightforward manner that the joint density of V1, 
V2 is 
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It follows from (15) and (61) that  
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It follows from (25) and (61) that  
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If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Ys based on Y is given by 
 

  d*=(Yr+η1Sr, Yr+η2Sr), (66) 
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The confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Yr+η1Sr,  
d2=Yr+η2Sr, is given by 
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B. New-Sample Prediction of Order Statistic 

Exponential distribution. Consider the problem of 
prediction of the sth order statistic Ys, 1 ≤ s ≤ m, in a new 
(future) sample of size m from the exponential distribution 
with the probability density function (57) for the situation 
where the first k observations X1 < X2 < ⋅⋅⋅< Xk, 1≤k≤n, from 
the previous data sample of size n have been observed. We 
are now concerned with optimization of the prediction 
interval for Ys under the loss function (2). 

Let X=(X1, X2, …, Xk) for k ≤ n. Then the joint probability 
density function of X1, X2, …, Xk is given by 
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The probability density function of the sth order statistic Ys 
in the future sample of size m is given by 
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Using the invariant embedding technique [14-23], we then 
find in a straightforward manner that the joint density of V1, 
V2 is 
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It follows from (15) and (74) that 
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It follows from (25) and (74) that  
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If c/c1+c/c2<1 then the optimal invariant linear-loss 
interval predictor of Ys based on X is given by 
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The confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Xk+ o

1η Sk,  

d2=Xk+ o

2η Sk, is given by 
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C. New-Within-Sample Prediction of Order Statistic 

Exponential distribution. Consider the prediction problem 
of the sth order statistic Ys, 1 ≤ s ≤ m, in a new sample of 
size m from the exponential distribution with the probability 
density function (57) for the situation where both the first r 
observations Y1< Y2< ⋅⋅⋅ <Yr, 1≤ r < s ≤ m, from the new data 
sample and the first k observations X1 < X2 < ⋅⋅⋅< Xk, 1≤k≤n, 
from the previous data sample of size n have been observed. 
We are now in need to optimize the prediction interval for Ys 
under the loss function (2). 

Let X=(X1, X2, …, Xk) for k ≤ n. Then the joint probability 
density function of X1, X2, …, Xk is given by 
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Let Y=(Y1, …, Yr) and Ys > Yr for s ≤ m. Then the joint 

probability density function of Y and Ys is given by 
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Using the invariant embedding technique [14-23], we then 
find in a straightforward manner that the joint density of 

+
1V , +

2V  is 
 

 ),()(),( 221121
+++++++ = vfvfvvf      (87) 

 

where 
 

)1,(
][]1[)(

11

11

11

+−−Β
−=

+−−−−−
++

++

smrs

ee
vf

smvrsv

 

 

,)1(
1

)1,(
1 )1(

1

0

1 jsmvj
rs

j

e
j

rs

smrs
++−−

−−

=

+
−







 −−
+−−Β

= ∑  

 
         ,01 >+v   (88) 

 

and 

 ,
)(

1)( 21
222

vrk ev
rk

vf −−+++

+Γ
=    .02 >v   (89) 

 
It follows from (15) and (87) that  
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It follows from (25) and (87) that  
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If c/c1+c/c2<1 then the optimal invariant linear-loss 

interval predictor of Ys based on (X, Y) is given by 
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The confidence coefficient associated with the optimum 
prediction interval d*=(d1,d2), where d1=Yr+ ,1

++Sη   

d2=Yr+ ,2
++Sη  is given by 

 
}|:{ Pr 21 σdYd s <<∗d  

 

∫
+

+++++++ =−=
2

1

.)(][][ 12

η

η

ηη
o

dwwhHH   (95) 

VII. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 
Traditionally, methods that are developed and 

implemented are point forecasting methods, i.e. they provide 
a single estimated value for a given horizon. Interval 
prediction is an important part of the forecasting process 
aimed at enhancing the limited accuracy of point estimation. 
Prediction intervals are needed to quantify prediction 
uncertainty in, for example, warranty prediction. In this 
paper, we have developed prediction techniques appropriate 
for constructing frequentist prediction intervals or prediction 
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bounds for order statistics in future samples via a specific 
loss function when only the functional form of the 
underlying distribution is specified, but some or all of its 
parameters are unspecified. The within-sample prediction 
technique takes into account only current early-failure data, 
the new-sample prediction technique takes into account only 
previous independent observations, and the new-within-
sample prediction technique takes into account both 
previous and current early-failure data. The techniques can 
be used to construct prediction intervals for arbitrary sth 
failure time in a sample of future observations. The results 
can be used to predict the total duration time in a Type II 
censoring life testing experiment, and to predict the lifetime 
of an k-out-of-n:F system. The computation procedure can 
be easily programmed and implemented for practical use. It 
will be noted that some inferences considered in this paper 
can be obtained through simulation, but simulation results 
are unstable; they vary from one to another. From theoretical 
as well as practical points of view, analytical solutions 
should be used if they are available. The results of this paper 
provide such analytical solutions. In many statistical 
decision problems it is reasonable co confine attention to 
rules that are invariant with respect to a certain group of 
transformations. If a given decision problem admits a 
sufficient statistic, it is well known that the class of invariant 
rules based on the sufficient statistic is essentially complete 
in the class of all invariant rules under some assumptions. 
This result may be used to show that if there exists a 
minimax invariant rule among invariant rules based on 
sufficient statistic, it is minimax among all invariant rules. In 
this paper, we consider statistical prediction problems which 
are invariant with respect to a certain group of 
transformations and construct the optimal invariant interval 
predictors. The method used is that of the invariant 
embedding of sample statistics in a loss function in order to 
form pivotal quantities which allow one to eliminate 
unknown parameters from the problem. This method is a 
special case of more general considerations applicable 
whenever the statistical problem is invariant under a group 
of transformations, which acts transitively on the parameter 
space. The techniques proposed in this paper can be applied 
to constructing prediction intervals for any other location-
scale distributions. 
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