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Abstract—Many different scientific, technical or social phe-
nomena can be modeled by a complex system depending on
a large number n of random Boolean variables. Such systems
are called complex stochastic Boolean systems (CSBSs). The
most useful representation of a CSBS is the intrinsic order
graph. This is a symmetric digraph on 2n nodes, with a char-
acteristic fractal structure. In this paper, different properties
of the intrinsic order graph are studied, namely those dealing
with its edges; chains; shadows, neighbors and degrees of its
vertices; and some relevant subgraphs, as well as the natural
isomorphisms between them.

Index Terms—complex stochastic Boolean system, edges,
intrinsic order graph, neighbors, shadows, subgraphs.

I. INTRODUCTION

IN this paper, we consider complex systems depending
on an arbitrary number n of random Boolean variables

x1, . . . , xn, the so-called complex stochastic Boolean systems
(CSBSs). That is, the n system basic components xi are
assumed to be stochastic (i.e., non-deterministic), and they
only take two possible values: 0, 1.

So, each one of the 2n possible situations (outcomes) for
a CSBS is given by a binary n-tuple u = (u1, . . . , un) ∈
{0, 1}n of 0s and 1s, and it has its own occurrence probability
Pr {(u1, . . . , un)} [11]. Throughout this paper, the n basic
components of the system are assumed to be statistically
independent.

Using the classical terminology in Statistics, a stochas-
tic Boolean system can be modeled by the n-dimensional
Bernoulli distribution X = (x1, . . . , xn) with sample space
{0, 1}n, and parameters p1, . . . , pn defined by

Pr {xi = 1} = pi, Pr {xi = 0} = 1− pi,

so that, taking into account the statistical independence of
the Bernoulli marginal variables xi, for all u ∈ {0, 1}n, we
have

Pr {u} =
n∏

i=1

Pr {xi = ui} =
n∏

i=1

pui
i (1− pi)1−ui , (1)

that is, Pr {u} is the product of factors pi if ui = 1, 1− pi
if ui = 0.

Example 1.1: Let n = 4 and u = (1, 0, 1, 0) ∈ {0, 1}4.
Let p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.4. Then using (1),
we have

Pr {(1, 0, 1, 0)} = p1 (1− p2) p3 (1− p4) = 0.0144.
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The behavior of a CSBS is determined by the ordering
between the current values of the 2n associated binary n-
tuple probabilities Pr {u}. Computing all these 2n proba-
bilities –by using (1)– and ordering them in decreasing or
increasing order of their values is only possible in practice
for small values of the number n of basic variables. However,
for large values of n, to overcome the exponential nature of
this problem, we need alternative procedures for comparing
the binary string probabilities. For this purpose, in [2] we
have defined a partial order relation on the set {0, 1}n of all
the 2n binary n-tuples, the so-called intrinsic order between
binary n-tuples.

The intrinsic order relation is characterized by a simple
positional criterion, the so-called intrinsic order criterion
(IOC). IOC enables one to compare (to order) two given
binary n-tuple probabilities Pr {u} ,Pr {v}, without comput-
ing them, simply looking at the positions of the 0s and 1s in
the binary n-tuples u, v.

More precisely, for those pairs (u, v) of binary n-tuples
comparable by intrinsic order, the ordering between their
occurrence probabilities is always the same for all sets of
basic probabilities {pi}ni=1. On the contrary, for those pairs
(u, v) of binary n-tuples incomparable by intrinsic order, the
ordering between their occurrence probabilities depends on
the current values the set of basic probabilities {pi}ni=1.

The most useful graphical representation of a CSBS is the
intrinsic order graph. This is a symmetric, self-dual diagram
on 2n nodes (denoted by In) that displays all the binary
n-tuples from top to bottom in decreasing order of their
occurrence probabilities. Formally, In is the Hasse diagram
of the intrinsic partial order relation on {0, 1}n.

In this context, the main goal of this paper is to present
some new properties of the intrinsic order graph. In particu-
lar, we give the set and the number of edges of In, the set and
the number of elements which are neighbors (adjacent) in the
graph to a fixed binary n-tuple u ∈ {0, 1}n. To determine the
set of neighbors of a given binary n-tuple u, we first study its
lower and upper shadows. Moreover, we also analyze some
chains and subgraphs of the the intrinsic order graph. Some
of these properties can be found in [9], but this paper also
presents some other new properties of In, not described in
that paper.

For this purpose, we have organized this paper as follows.
In Section II, we present some notations, definitions, and
previous results about the intrinsic order and the intrinsic
order graph, in order to make this paper self-contained. Sec-
tion III is devoted to present some properties of the intrinsic
order graph, concerning its edges and chains. In Section IV,
the lower and upper shadows and the set of neighbors of
an arbitrary node are studied. In Section V, some special
subgraphs of In are analyzed. Finally, in Section VI, we
present our conclusions.
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II. THE INTRINSIC ORDER

Throughout this paper, we indistinctly denote the n-tuple
u ∈ {0, 1}n by its binary representation (u1, . . . , un) or
by its decimal representation, and we use the symbol “ ≡”
to indicate the conversion between these two numbering
systems. The decimal numbering and the Hamming weight
(i.e., the number of 1-bits) of u will be respectively denoted
by

u ≡ u(10 =
n∑

i=1

2n−iui, wH (u) =
n∑

i=1

ui.

Example 2.1: Let n = 6 and u = (1, 0, 1, 0, 1, 1). Then

u = (1, 0, 1, 0, 1, 1) ≡ 20 + 21 + 23 + 25 = 43,

wH (u) = 4.

Given two binary n-tuples u, v ∈ {0, 1}n, the ordering be-
tween their occurrence probabilities Pr (u), Pr (v) obviously
depends on the Bernoulli parameters pi, as the following
simple example shows.

Example 2.2: Let n = 3, u = (0, 1, 1) and v = (1, 0, 0).
For p1 = 0.1, p2 = 0.2, p3 = 0.3, using (1), we have:

Pr {(0, 1, 1)} = 0.054 < Pr {(1, 0, 0)} = 0.056,

for p1 = 0.2, p2 = 0.3, p3 = 0.4, using (1), we have:

Pr {(0, 1, 1)} = 0.096 > Pr {(1, 0, 0)} = 0.084.

However, as mentioned in Section I, in [2] we have es-
tablished an intrinsic, positional criterion to compare the
occurrence probabilities of two given binary n-tuples without
computing them. This criterion is presented in detail in
Section II-A, while its graphical representation is shown in
Section II-B.

A. The Intrinsic Order Relation

Theorem 2.1 (The intrinsic order theorem): Let n ≥ 1.
Let x1, . . . , xn be n mutually independent Bernoulli vari-
ables whose parameters pi = Pr {xi = 1} satisfy

0 < p1 ≤ p2 ≤ · · · ≤ pn ≤ 0.5. (2)

Then the occurrence probability of the binary n-tuple v, i.e.,
v = (v1, . . . , vn) ∈ {0, 1}n, is intrinsically less than or equal
to the occurrence probability of the binary n-tuple u, i.e.,
u = (u1, . . . , un) ∈ {0, 1}n, (that is, for all set {pi}ni=1

satisfying (2)) if and only if the matrix

Mu
v :=

(
u1 . . . un
v1 . . . vn

)
either has no

(
1
0

)
columns, or for each

(
1
0

)
column in

Mu
v there exists (at least) one corresponding preceding

(
0
1

)
column (IOC).

Remark 2.1: In the following, we assume that the pa-
rameters pi always satisfy condition (2). Fortunately, this
hypothesis is not restrictive for practical applications.

Remark 2.2: The
(

0
1

)
column preceding each

(
1
0

)
column

is not required to be necessarily placed at the immediately
previous position, but just at previous position.

Remark 2.3: The term corresponding, used in Theorem
2.1, has the following meaning: For each two

(
1
0

)
columns

in matrix Mu
v , there must exist (at least) two different

(
0
1

)

columns preceding each other. In other words, for each
(

1
0

)
column in matrix Mu

v the number of preceding
(

0
1

)
columns

must be strictly greater than the number of preceding
(

1
0

)
columns.

Claim 2.1: IOC can be equivalently reformulated in the
following way, involving only the 1-bits of u and v (with
no need to use their 0-bits). Matrix Mu

v satisfies IOC if and
only if either u has no 1-bits (i.e., u is the zero n-tuple) or
for each 1-bit in u there exists (at least) one corresponding
1-bit in v placed at the same or at a previous position. In
other words, either u has no 1-bits or for each 1-bit in u, say
ui = 1, the number of 1-bits in (v1, . . . , vi) must be greater
than or equal to the number of 1-bits in (u1, . . . , ui).

The matrix condition IOC, stated by Theorem 2.1 or by
Claim 2.1, is called the intrinsic order criterion, because
it is independent of the basic probabilities pi and it only
depends on the relative positions of the 0s and 1s in the
binary strings u and v. Theorem 2.1 naturally leads to the
following partial order relation on the set {0, 1}n [2], [3].
The so-called intrinsic order will be denoted by “�”, and
when v � u we say that v is intrinsically less than or equal
to u (or u is intrinsically greater than or equal to v).

Definition 2.1: For all u, v ∈ {0, 1}n

v � u iff Pr {v} ≤ Pr {u} for all set {pi}ni=1 s.t. (2)

iff matrix Mu
v satisfies IOC.

In the following, the partially ordered set (poset, for short)
for n variables ({0, 1}n ,�) will be denoted by In; see [12]
for more details about posets.

Example 2.3: For n = 3:

3 ≡ (0, 1, 1) � (1, 0, 0) ≡ 4 & (1, 0, 0) � (0, 1, 1) since(
1 0 0
0 1 1

)
and

(
0 1 1
1 0 0

)
do not satisfy IOC (Remark 2.3). Therefore, (0, 1, 1) and
(1, 0, 0) are incomparable by intrinsic order, i.e., the ordering
between Pr { (0, 1, 1)} and Pr { (1, 0, 0)} depends on the
basic probabilities pi, as Example 2.2 has shown.

Example 2.4: For n = 4:

12 ≡ (1, 1, 0, 0) � (0, 1, 0, 1) ≡ 5 since(
0 1 0 1
1 1 0 0

)
satisfies IOC (Remark 2.2). For all 0 < p1 ≤ · · · ≤ p4 ≤ 1

2

Pr {(1, 1, 0, 0)} ≤ Pr {(0, 1, 0, 1)} .

Example 2.5: For all n ≥ 1, the binary n-tuples(
0,

n

.̂ . ., 0
)
≡ 0 and

(
1,

n

.̂ . ., 1
)
≡ 2n − 1

are the maximum and minimum elements, respectively, in
the poset In. Indeed, both matrices(

0 . . . 0
u1 . . . un

)
and

(
u1 . . . un
1 . . . 1

)
satisfy the intrinsic order criterion, since they have no

(
1
0

)
columns!.
Thus, for all u ∈ {0, 1}n and for all {pi}ni=1 s.t. (2)

Pr
{(

1,
n

.̂ . ., 1
)}
≤ Pr {(u1, . . . , un)} ≤ Pr

{(
0,

n

.̂ . ., 0
)}

.
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Many different properties of the intrinsic order can be imme-
diately derived from its simple matrix description IOC [2],
[3], [5]. For instance, we have the two following necessary
(but not sufficient) conditions for intrinsic order (see [3] for
the proof).

Corollary 2.1: For all u, v ∈ {0, 1}n

u � v ⇒ wH (u) ≤ wH (v) ,

u � v ⇒ u(10 ≤ v(10 .

B. The Intrinsic Order Graph

In this subsection, the graphical representation of the poset
In = ({0, 1}n ,�) is presented. The usual representation
of a poset is its Hasse diagram (see [12] for more details
about these diagrams). Specifically, for our poset In, its
Hasse diagram is a directed graph (digraph, for short) whose
vertices are the 2n binary n-tuples of 0s and 1s, and whose
edges go upward from v to u whenever u covers v, denoted
by u . v. This means that u is intrinsically greater than v
with no other elements between them, i.e.,

u . v ⇔ u � v and @ w ∈ {0, 1}n s.t. u � w � v.

A simple matrix characterization of the covering relation
for the intrinsic order is given in the next theorem; see [4]
for the proof.

Theorem 2.2 (Covering relation in In): Let n ≥ 1 and
u, v ∈ {0, 1}n. Then u B v if and only if the only columns
of matrix Mu

v different from
(

0
0

)
and

(
1
1

)
are either its last

column
(

0
1

)
or just two columns, namely one

(
1
0

)
column

immediately preceded by one
(

0
1

)
column, i.e., either

Mu
v =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
or (3)

Mu
v =

(
u1 . . . ui−2 0 1 ui+1 . . . un
u1 . . . ui−2 1 0 ui+1 . . . un

)
. (4)

(2 ≤ i ≤ n)

Example 2.6: For n = 4, we have

6 . 7 since M6
7 =

(
0 1 1 0
0 1 1 1

)
has the pattern (3),

10.12 since M10
12 =

(
1 0 1 0
1 1 0 0

)
has the pattern (4).

The Hasse diagram of the poset In will be also called the
intrinsic order graph for n variables, denoted as well by In.

For small values of n, the intrinsic order graph In can be
directly constructed by using either Theorem 2.1 or Theorem
2.2. For instance, for n = 1: I1 = ({0, 1} ,�), and its Hasse
diagram is shown in Fig. 1.

0
|
1

Fig. 1. The intrinsic order graph for n = 1.

Indeed I1 contains a downward edge from 0 to 1 because
(see Theorem 2.1) 0 � 1, since matrix

(
0
1

)
has no

(
1
0

)
columns! Alternatively, using Theorem 2.2, we have that
0 B 1, since matrix

(
0
1

)
has the pattern (3)! Moreover, this

is in accordance with the obvious fact that

Pr {0} = 1−p1 ≥ p1 = Pr {1} , since p1 ≤ 1/2 due to (2)!

However, for large values of n, a more efficient method is
needed. For this purpose, in [4] the following algorithm for
iteratively building up In (for all n ≥ 2) from I1 (depicted
in Fig. 1), has been developed.

Theorem 2.3 (Building up In from I1): Let n ≥ 2. Then
the graph of the poset In = {0, . . . , 2n − 1} (on 2n nodes)
can be drawn simply by adding to the graph of the poset
In−1 =

{
0, . . . , 2n−1 − 1

}
(on 2n−1 nodes) its isomorphic

copy 2n−1 + In−1 =
{

2n−1, . . . , 2n − 1
}

(on 2n−1 nodes).
This addition must be performed placing the powers of 2 at
consecutive levels of the Hasse diagram of In. Finally, the
edges connecting one vertex u of In−1 with the other vertex
v of 2n−1 + In−1 are given by the set of 2n−2 vertex pairs

{
(u, v) ≡

(
u(10 , 2

n−2 + u(10

) ∣∣ 2n−2 ≤ u(10 ≤ 2n−1 − 1
}
.

Fig. 2 illustrates the above iterative process for the first few
values of n, denoting all the binary n-tuples by their decimal
equivalents. Basically, after adding to In−1 its isomorphic
copy 2n−1 + In−1, we connect one-to-one the nodes of “the
second half of the first half” to the nodes of “the first half
of the second half”: A nice fractal property of In!

0
|
1

0
|
1
|
2
|
3

0
|
1
|
2
| �
3 4

� |
5
|
6
|
7

0
|
1
|
2
| �
3 4

� | �
5 8
| � |
6 9
| � |
7 10

� | �
11 12

� |
13
|

14
|

15

Fig. 2. The intrinsic order graphs for n = 1, 2, 3, 4.

Each pair (u, v) of vertices connected in In either by one
edge or by a longer descending path from u to v, means that
u is intrinsically greater than v, i.e., u � v. For instance,
looking at the Hasse diagram of I4, the right-most one in
Fig. 2, we observe that 5 ≡ (0, 1, 0, 1) � 12 ≡ (1, 1, 0, 0),
in accordance with Example 2.4.

On the contrary, each pair (u, v) of non-connected vertices
in In either by one edge or by a longer descending path,
means that u and v are incomparable by intrinsic order, i.e.,
u � v and v � u. For instance, looking at the Hasse diagram
of I3, the third one from left to right in Fig. 2, we observe
that 3 ≡ (0, 1, 1) and 4 ≡ (1, 0, 0) are incomparable by
intrinsic order, in accordance with Example 2.3.

Moreover, the properties of the intrinsic order stated by
Example 2.5 and Corollary 2.1, are also illustrated by any
of the diagrams in Fig. 2.

The edgeless graph for a given graph is obtained by re-
moving all its edges, keeping its nodes at the same positions.
In Fig. 3, the edgeless intrinsic order graph of I5 is depicted.
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0
1
2
3 4

5 8
6 9 16
7 10 17

11 12 18
13 19 20
14 21 24
15 22 25

23 26
27 28

29
30
31

Fig. 3. The edgeless intrinsic order graph for n = 5.

For further theoretical properties and practical applications
of the intrinsic order and the intrinsic order graph, we refer
the reader to [5], [6], [7], [8], [9], [10].

When viewed as the natural representation of a partial
order relation, the Hasse diagram of the intrinsic order is
just the picture of the poset In. We refer the reader to [12],
for more details about posets. When viewed as an undirected
graph, the Hasse diagram is called the cover graph of the
poset. We refer the reader to [1], for standard notation and
terminology concerning graphs. Using Theorems 2.1, 2.2,
and 2.3 we can derive many different order-theoretic and
graph-theoretic properties of In. In Sections III, IV, and V,
some of these properties are presented.

III. EDGES, CHAINS AND CHAIN DECOMPOSITIONS IN
THE INTRINSIC ORDER GRAPH

A. Edges

Let Vn and En be the sets of vertices and edges, respec-
tively, of In. As usual, |A| denotes the cardinality of the set
A. As mentioned, the number of nodes of In is obviously

|Vn| = |{0, 1}n| = 2n.

Our first property gives the number of edges of In.
Proposition 3.1: For all n ≥ 1, the number of edges in

the intrinsic order graph In is

|En| = (n+ 1) 2n−2. (5)

Proof: The edges (going downward from u to v) in a
Hasse diagram are exactly the covering relations (u B v).
Hence, using Theorem 2.2, we obtain

|En| = |{(u, v) ∈ Vn × Vn | u B v }|
= |{(u, v) ∈ Vn × Vn |Mu

v has the pattern (3)}|+
= |{(u, v) ∈ Vn × Vn |Mu

v has the pattern (4)}|

=

∣∣∣∣{( u1 . . . un−1 0
u1 . . . un−1 1

)}∣∣∣∣+
=

∣∣∣∣{( u1 . . . ui−2 0 1 ui+1 . . . un
u1 . . . ui−2 1 0 ui+1 . . . un

)}∣∣∣∣
= 2n−1 + (n− 1) 2n−2 = (n+ 1) 2n−2,

as was to be shown.
Remark 3.1: Using proposition 3.1, we get for all n ≥ 2

|En| = (n+ 1) 2n−2 = 2·n·2n−3+2n−2 = 2 |En−1|+2n−2,

a recurrence relation for the number |En| of edges of In,
which could be also obtained directly from Theorem 2.2.

When we use the binary representation, the set En of
all the (n+ 1) 2n−2 edges in In is given by Theorem 2.2.

The following proposition gives this set using the decimal
numbering for the pairs of adjacent nodes (see Fig. 2).

Proposition 3.2: For all n ≥ 1

En =

{(
u(10 , u(10 + 1

) ∣∣∣∣ u(10 = 2p,
0 ≤ p ≤ 2n−1 − 1

}⋃
n−2⋃
m=0

(u(10 , u(10 + 2m
) ∣∣∣∣∣∣

u(10 = q + 2m (1 + 4r) ,
0 ≤ q ≤ 2m − 1,

0 ≤ r ≤ 2(n−2)−m − 1

 .

Proof: The edges (going downward from u to v) in a
Hasse diagram are exactly the covering relations (u B v).
So, using Theorem 2.2, we obtain

En =
{(
u(10 , v(10

)
∈ Vn × Vn | u B v

}
=
{(
u(10 , v(10

)
∈ Vn × Vn |Mu

v has the pattern (3)
}

∪
{(
u(10 , v(10

)
∈ Vn × Vn |Mu

v has the pattern (4)
}
.

On one hand, if Mu
v has the pattern (3) then we have that

v(10 = u(10 + 1, and

u(10 = (u1, . . . , un−1, 0)(10

= 2 (u1, . . . , un−1)(10 = 2p
(
0 ≤ p ≤ 2n−1 − 1

)
.

On the other hand, if Mu
v has the pattern (4) then making

the change of variable m = n− i, we get

v(10 = u(10 + 2n−i with 2 ≤ i ≤ n, i.e.,

v(10 = u(10 + 2m with 0 ≤ m ≤ n− 2 and

u(10 = (u1, . . . , ui−2, 0, 1, ui+1, . . . , un)(10

= (u1, . . . , ui−2, 0, 0, 0, . . . , 0)(10

+ (0, . . . , 0, 0, 1, 0, . . . , 0)(10

+ (0, . . . , 0, 0, 0, ui+1, . . . , un)(10

= 2n−i+2 (u1, . . . , ui−2)(10

+ 2n−i + (ui+1, . . . , un)(10

= 2m+2r + 2m + q = q + 2m (1 + 4r) ,

where, 0 ≤ q ≤ 2m − 1 and 0 ≤ r ≤ 2(n−2)−m − 1.
Example 3.1: Let n = 4. Using Proposition 3.2, we get

A4 =

{(
u(10 , u(10 + 1

) ∣∣∣∣ u(10 = 2p,
0 ≤ p ≤ 2n−1 − 1 = 7

}
=

{
(0, 1) , (2, 3) , (4, 5) , (6, 7) ,

(8, 9) , (10, 11) , (12, 13) , (14, 15)

}
,

B4 =

2⋃
m=0

(u(10 , u(10 + 2m
) ∣∣∣∣∣∣

u(10 = q + 2m (1 + 4r) ,
0 ≤ q ≤ 2m − 1,
0 ≤ r ≤ 22−m − 1


=

 (1, 2) , (5, 6) , (9, 10) , (13, 14) ,
(2, 4) , (3, 5) , (10, 12) , (11, 13) ,
(4, 8) , (5, 9) , (6, 10) , (7, 11)

 ,

where the three above rows respectively correspond to:

m = 0 : q = 0 r = 0, 1, 2, 3 v(10 = u(10 + 20

m = 1 : q = 0, 1 r = 0, 1 v(10 = u(10 + 21

m = 2 : q = 0, 1, 2, 3 r = 0 v(10 = u(10 + 22

Thus, E4 = A4 ∪ B4 contains all the 20 edges (pairs of
adjacent nodes) of the graph I4, as one can confirm looking
at the right-most diagram in Fig. 2. Note that using (5) for
n = 4, we can also confirm that the cardinality of E4 is

|E4| = (n+ 1) 2n−2 = 5 · 22 = 20.
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B. Chains

Two elements u, v of a poset (P,≤) are said to be
comparable if either u ≤ v or v ≤ u. A chain in a poset is a
totally ordered subset, i.e., a subset of pairwise comparable
elements. A chain u = u1 > u2 > · · · > ul = v from
u to v is said to have length l − 1. A chain is said to
be saturated when no further elements can be interpolated
between its elements. In other words, all successive relations
in a saturated chain u1 > u2 > · · · > ul are coverings [12].

In particular, a saturated chain of length l−1 in our poset
In is a subset

{
u1, u2, . . . , ul

}
of {0, 1}n, such that u1.u2.

· · · . ul, i.e., u1 � u2 � · · · � ul with no other elements
between them.

A chain decomposition of a poset P is a family of disjoint
chains whose union is P . A chain cover of a poset P is
a chain decomposition into saturated chains, i.e., a set of
disjoint saturated chains covering the elements of P .

Let us mention that one can define many different chain
covers of In. The chain cover of our poset consisting of the
largest possible number of chains (namely, 2n−1), with the
smallest possible length (namely, 1) is stated in the following
Proposition. Basically, the idea is the following: Each even
number 2k covers its consecutive odd number 2k + 1.

Proposition 3.3: For all n ≥ 1 the poset In can be
partitioned into the following 2n−1 saturated chains of length
1, that we call “congruence chains (mod 2)”:

2k . 2k + 1
(
0 ≤ k ≤ 2n−1 − 1

)
.

Proof: For all k ≡ (u1, . . . , un−1) ∈ {0, 1}n−1, matrix

M2k
2k+1 =

(
u1 . . . un−1 0
u1 . . . un−1 1

)
has the pattern (3). Finally, since all these chains are pairwise
disjoint, and they completely cover In, i.e.,⋃

0≤k≤2n−1−1

{2k, 2k + 1} = [0, 2n − 1] ≡ {0, 1}n ,

the proof is concluded.
However, the most intuitive or natural way for partitioning

In into saturated chains is clearly suggested by Figs. 2 or
3. Just consider the 2n−2 “columns” obtained after n − 2
successive bisections of In, containing four consecutive
numbers, and beginning with a multiple 4k of 4. More
precisely

Proposition 3.4: For all n ≥ 2 the poset In can be
partitioned into the following 2n−2 saturated chains of length
3, that we call “congruence chains (mod 4)”:

4k . 4k + 1 . 4k + 2 . 4k + 3
(
0 ≤ k ≤ 2n−2 − 1

)
.

Proof: For all k ≡ (u1, . . . , un−2) ∈ {0, 1}n−2, the
matrices

M4k
4k+1 =

(
u1 . . . un−2 0 0
u1 . . . un−2 0 1

)
,

M4k+1
4k+2 =

(
u1 . . . un−2 0 1
u1 . . . un−2 1 0

)
,

M4k+2
4k+3 =

(
u1 . . . un−2 1 0
u1 . . . un−2 1 1

)
have either the pattern (3) or the pattern (4). Finally, since
all these chains are pairwise disjoint, and they completely

cover In, i.e.,⋃
0≤k≤2n−2−1

{4k, 4k + 1, 4k + 2, 4k + 3} = [0, 2n − 1]

≡ {0, 1}n ,

the proof is concluded.
For instance, for n = 5 the 2n−2 = 8 “columns” or

congruence chains (mod 4) of the graph I5 (depicted in Fig.
3), are shown in Fig. 4.

0
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1
|
2
|
3

4
|
5
|
6
|
7

8
|
9
|

10
|
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12
|

13
|

14
|
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16
|

17
|

18
|

19

20
|

21
|

22
|

23

24
|

25
|

26
|

27

28
|

29
|

30
|

31

Fig. 4. The chain cover into saturated congruence chains
(mod 4) of the poset I5.

IV. SHADOWS, NEIGHBORS AND DEGREES IN THE
INTRINSIC ORDER GRAPH

A. Shadows

The following definition (see [12]) deals with the general
theory of posets.

Definition 4.1: Let (P,≤) be a poset and u ∈ P . Then
(i) The lower shadow of u is the set

∆ (u) = {v ∈ P | v is covered by u} = {v ∈ P | u B v } .

(ii) The upper shadow of u is the set

∇ (u) = {v ∈ P | v covers u} = {v ∈ P | v B u} .

Particularly, for our poset P = In, regarding the lower
shadow of u ∈ {0, 1}n, using Theorem 2.2, we have

∆ (u) = {v ∈ {0, 1}n | u B v }
= {v ∈ {0, 1}n |Mu

v has the pattern (3)}
∪ {v ∈ {0, 1}n |Mu

v has the pattern (4)} ,

and hence, the cardinality of the lower shadow of u is exactly
1− un (pattern (3)) plus the number of pairs of consecutive
bits (ui−1, ui) = (0, 1) in u (pattern (4)). Formally:

|∆ (u)| = (1− un) +
n∑

i=2

max {ui − ui−1 , 0} . (6)

Similarly, for the upper shadow of u ∈ {0, 1}n, using again
Theorem 2.2, we have

∇ (u) = {v ∈ {0, 1}n | v B u}
= {v ∈ {0, 1}n |Mv

u has the pattern (3)}
∪ {v ∈ {0, 1}n |Mv

u has the pattern (4)} ,

and hence, the cardinality of the upper shadow of u is exactly
un (pattern (3)) plus the number of pairs of consecutive bits
(ui−1, ui) = (1, 0) in u (pattern (4)). Formally:

|∇ (u)| = un +
n∑

i=2

max {ui−1 − ui , 0} . (7)

Next proposition provides us with both the lower and upper
shadow of each node u of the intrinsic order graph In, using
decimal representation.
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Proposition 4.1: Let n ≥ 1, and let u ∈ {0, 1}n with
Hamming weight m. Write u(10 as sum of powers of 2, in
increasing order of the exponents, i.e.,

u(10 =
n∑

i=1

2n−iui = 2q1 + 2q2 + · · ·+ 2qm (8)

(0 ≤ q1 < q2 < · · · < qm ≤ n− 1) .

(i) The lower shadow ∆ (u) of u is characterized as follows:
(i)-(a) If u(10 is even (i.e., if un = 0) then

u(10 + 1 ∈ ∆ (u) , i.e., u(10 . u(10 + 1.

(i)-(b) For any power 2q (0 ≤ q ≤ n− 2) in (8) s.t. 2q+1

does not appear in (8) then

u(10 + 2q ∈ ∆ (u) , i.e., u(10 . u(10 + 2q.

(ii) The upper shadow ∇ (u) of u is characterized as follows:
(ii)-(a) If u(10 is odd (i.e., if un = 1) then

u(10 − 1 ∈ ∇ (u) , i.e., u(10 − 1 . u(10 .

(ii)-(b) For any power 2q (1 ≤ q ≤ n− 1) in (8) s.t. 2q−1

does not appear in (8) then

u(10 − 2q−1 ∈ ∇ (u) , i.e., u(10 − 2q−1 . u(10 .

Proof: The assertions (i)-(a) and (ii)-(a) immediately
follow using pattern (3) in Theorem 2.2, for matrices Mu

v

and Mv
u , respectively. The assertions (i)-(b) and (ii)-(b)

immediately follow using pattern (4) in Theorem 2.2, for
matrices Mu

v and Mv
u , respectively.

B. Neighbors and Degrees

The neighbors of a given vertex u in a graph, are all
those nodes adjacent to u (i.e., connected by one edge to
u). In particular, for (the cover graph of) a Hasse diagram,
the neighbors of vertex u either cover u or are covered by
u. In other words, denoting by N (u) the set of neighbors of
a vertex u ∈ {0, 1}n in the graph In, we have

N (u) = ∆ (u) ∪∇ (u) (9)

Next proposition provides the total number of neighbors
of each node u of the intrinsic order graph In, the so-called
degree of u, denoted, as usual, by δ (u).

Proposition 4.2: Let n ≥ 1 and u ∈ {0, 1}n. The degree
δ (u) of u (i.e., the number of neighbors of u) is

δ (u) = 1 +
n∑

i=2

|ui − ui−1| . (10)

Proof: Using (6), (7) and (9), we immediately obtain

δ (u) = |N (u)| = |∆ (u)|+ |∇ (u)|

= (1− un) +
n∑

i=2

max {ui − ui−1 , 0}

+ un +
n∑

i=2

max {ui−1 − ui , 0}

= 1 +
n∑

i=2

max {ui − ui−1 , ui−1 − ui}

= 1 +
n∑

i=2

|ui − ui−1| ,

as was to be shown.
Example 4.1: Let n = 4 and u = (1, 0, 1, 0). Then

u = (1, 0, 1, 0) ≡ u(10 = 21 + 23 = 10.

Using Proposition 4.1-(i), we get (note that u(10 = 10 is
even, i.e., u4 = 0)

∆ (10) = {10 + 1} ∪
{

10 + 21
}

= {11, 12}

and using Proposition 4.1-(ii), we get

∇ (10) =
{

10− 20, 10− 22
}

= {6, 9} .

Thus (see the graph I4, the right-most one in Fig. 2)

N (10) = ∆ (10) ∪∇ (10) = {6, 9, 11, 12}

and using (10), we confirm that the cardinality of N (10) is

δ (10) = |N (10)| = 1 +
4∑

i=2

|ui − ui−1|

= 1 + |u2 − u1|+ |u3 − u2|+ |u4 − u3|
= 1 + |0− 1|+ |1− 0|+ |0− 1| = 4.

V. SUBGRAPHS OF THE INTRINSIC ORDER GRAPH

A. Some Relevant Subgraphs

A subgraph of a graph G = (V,E) is a graph G′ =
(V ′, E′) whose vertex set is a subset of that of G, and
whose set of edges (adjacency relations) is the subset of that
of G restricted to V ′ [1], i.e., V ′ ⊆ V and E′ = E |V ′ .
In this subsection, some relevant subgraphs of the intrinsic
order graph In are studied. These subgraphs are obtained by
successive bisections of In.

A bisection of a graph is a partition of its vertex set into
two subsets with half the vertices each [1]. Hence, Theorem
2.2 provides a bisection of the (edgeless) graph In into its
two isomorphic (edgeless) subgraphs In−1 and 2n−1 + In−1

Of course, this bisection process of the edgeless graph In
can be reiterated by successively partitioning each one of
the obtained subgraphs into its top and bottom halves. This
iterative bisection process finishes when we have partitioned
In into 2n singleton subgraphs (with 1 vertex each), i.e. into
its 2n nodes.

This particular bisection of the intrinsic order graph means
that the poset In has a “fractal structure”: the whole graph
has the same “shape” that each one of its two halves, and
the same happens with each one of them, and so on, i.e.,
the poset In has the self-similarity property. Figures 2 and 3
illustrate this fact.

Let us set a consistent notation for this iterative bisection
process. Recursively bisecting the graph In (with 2n binary
n-tuples) is equivalent to recursively bisecting the truth-
table for n Boolean variables (with 2n rows). Since, by
construction, the first bit u1 in all the n-tuples of the first
and second half of the truth-table is 0 and 1, respectively,
we denote the first and second half of In by I0

n and I1
n,

respectively. Analogously, since, by construction, the second
bit u2 in all the n-tuples of the first and second half of both
halves of the truth table is 0 and 1, respectively, we denote
the first and second half of I0

n by I0,0
n and I0,1

n , respectively;
and we denote the first and second half of I1

n by I1,0
n and

I1,1
n , respectively, and so on.
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In general, for all n ≥ 1, for all 1 ≤ k ≤ n and for
all k fixed binary digits ū1, . . . , ūk ∈ {0, 1}, we denote by
I ū1,...,ūk
n the ūk + 1-th half of the ūk−1 + 1-th half . . . of

the ū1 + 1-th half of the poset In. In other words, I ū1,...,ūk
n

can be graphically obtained after k successive bisections of
In (1 ≤ k ≤ n) simply by changing the “0” and “1” bits
of the vector (ū1, . . . , ūk), by the words “first half” and
“second half”, respectively. Hence, this is the subset of binary
n-tuples whose first or left-most k components are fixed,
namely u1 = ū1, . . . , uk = ūk; while their last or right-most
n− k components, uk+1, . . . , un, take all possible values (0
or 1). More precisely, I ū1,...,ūk

n is the set of binary n-tuples{
(ū1, . . . , ūk, uk+1, . . . , un)

∣∣∣(uk+1, . . . , un) ∈ {0, 1}n−k
}

(11)
or, alternatively, using the decimal representation, I ū1,...,ūk

n

is the interval[
(ū1, . . . , ūk, 0, . . . , 0)(10 , (ū1, . . . , ūk, 1, . . . , 1)(10

]
.

(12)
The so obtained graphs I ū1,...,ūk

n are relevant subgraphs
of the intrinsic order graph In with interesting theoretical
properties like, for instance, the ones presented in the next
subsection.

The cardinality of these subgraphs are∣∣I ū1,...,ūk
n

∣∣ =
∣∣∣{0, 1}n−k∣∣∣ = 2n−k. (13)

Remark 5.1: In particular, for k = n, the subgraph
I ū1,...,ūn
n , obtained after n bisections of In, is reduced to

a single node of this graph, namely

I ū1,...,ūn
n = {(ū1, . . . , ūn)} (a curious fact!). (14)

With this notation, we can formalize the iterative bisection
process as follows

In = I0
n ∪ I1

n = I0,0
n ∪ I0,1

n ∪ I1,0
n ∪ I1,1

n

= I0,0,0
n ∪ I0,0,1

n ∪ I0,1,0
n ∪ I0,1,1

n

∪ I1,0,0
n ∪ I1,0,1

n ∪ I1,1,0
n ∪ I1,1,1

n

= · · · = ∪
(ū1,...,ūn)∈{0,1}n

I ū1,...,ūn
n

= ∪
(ū1,...,ūn)∈{0,1}n

{(ū1, . . . , ūn)} . (15)

Example 5.1: For the graph of I3 (the third one from the
left in Fig. 2), using (15), we have

I3 = [0, 7] = [0, 3] ∪ [4, 7] = [0, 1] ∪ [2, 3] ∪ [4, 5] ∪ [6, 7]

= {0} ∪ {1} ∪ {2} ∪ {3} ∪ {4} ∪ {5} ∪ {6} ∪ {7} .

Example 5.2: For n = 5, k = 3 and for the binary 3-tuple
(ū1, ū2, ū3) = (0, 1, 1), we get the subgraph

I0,1,1
5 =

{
(0, 1, 1, u4, u5)

∣∣∣ (u4, u5) ∈ {0, 1}2
}

=
[
22 + 23, 20 + 21 + 22 + 23

]
= [12, 15]

= {12, 13, 14, 15}

and looking at the fifth diagram from the left in Fig. 3, we
confirm that [12, 15] is exactly the second half (ū3 = 1)
of the second half (ū2 = 1) of the first half (ū1 = 0) of
the poset I5. In accordance with (13), I0,1,1

5 has 25−3 = 4
elements.

Example 5.3: For n = 6, for k = 6 and for the binary
6-tuple (ū1, ū2, ū3, ū4, ū5, ū6) = (1, 0, 1, 0, 1, 0), using (14)
–here k = n–, we get the singleton subgraph

I1,0,1,0,1,0
6 = {(1, 0, 1, 0, 1, 0)} =

{
21 + 23 + 25

}
= {42}

and looking at the right-most diagram in Fig. 3, we confirm
that {42} is exactly the first half (ū6 = 0) of the second
half (ū5 = 1) of the first half (ū4 = 0) of the second half
(ū3 = 1) of the first half (ū2 = 0) of the second half (ū1 =
1) of the poset I6. In accordance with (13), I1,0,1,0,1,0

6 has
26−6 = 1 element.

B. Isomorphisms of Subgraphs

Let n ≥ 1 and 1 ≤ k ≤ n. Let ū1, . . . , ūk ∈ {0, 1} be
k fixed binary digits. Let I ū1,...,ūk

n be the subgraph of In
defined by (11) or by (12).

Let us recall that two graphs G (V,E) and G∗ (V ∗, E∗) are
said to be isomorphic if there exists an isomorphism of one of
them to the other, i.e., an edge-preserving bijection [1]. That
is, a graph isomorphism is a one-to-one mapping between
the vertex sets Φ : V → V ∗, which preserves adjacency, i.e.,
u, v are adjacent in G if and only if Φ (u) ,Φ (v) are adjacent
in G∗.

The self-similarity property or fractal structure that one
can observe in Figs. 2 & 3, is an immediate consequence of
the following two propositions.

Proposition 5.1: Let n ≥ 1 and 1 ≤ k ≤ n. The 2k equal-
sized subgraphs I ū1,...,ūk

n (each with 2n−k nodes), obtained
after k successive bisections of the intrinsic order graph
In, are pair-wise isomorphic, and indeed all of them are
isomorphic to the intrinsic order graph In−k.

Proof: Consider the following mapping

I ū1,...,ūk
n

Φ−→ In−k
(ū1, . . . , ūk, uk+1, . . . , un) 7−→ (uk+1, . . . , un) .

Obviously Φ is a one-to-one mapping. Moreover, using
Theorem 2.2, we have

(ū1, . . . , ūk, uk+1, . . . , un) . (ū1, . . . , ūk, vk+1, . . . , vn)

if and only if matrix(
ū1 . . . ūk uk+1 . . . un
ū1 . . . ūk vk+1 . . . vn

)
has either the pattern (3) or the pattern (4) if and only if
matrix (

uk+1 . . . un
vk+1 . . . vn

)
has either the pattern (3) or the pattern (4) if and only if

(uk+1, . . . , un) . (vk+1, . . . , vn) ,

so that Φ is an isomorphism of graphs, since it preserves the
edges (covering relations).

For instance, let n = 5 and k = 3. After k = 3 successive
bisections of the intrinsic order graph I5, the 2k = 8
subgraphs are the 8 isomorphic “columns” or, more formally,
congruence chains (mod 4) (each containing 2n−k = 4
nodes) depicted in Fig. 4. Moreover, any of these “column”-
subgraphs of I5 (5-tuples) is isomorphic to I2 (2-tuples), the
second graph from the left in Fig. 2.
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The fractal structure of the intrinsic order graph is not only
a consequence of Proposition 5.1, but it is also a consequence
of the following result.

Proposition 5.2: Let n ≥ 1 and 1 ≤ k ≤ n. Bisect the
edgeless graph In into its 2k subgraphs I ū1,...,ūk

n (i.e. make k
successive bisections of In). Replace each subgraph I ū1,...,ūk

n

by an unique node labeled by its corresponding vector of
upper indices (ū1, . . . , ūk) and weighted by the occurrence
probability Pr {(ū1, . . . , ūk)} of its label. Next, sort these
2k new nodes in decreasing order of their weights. Then
the new “condensed” graph obtained from the intrinsic order
graph In –with 2n vertices– by this “bisecting-replacing-
sorting” process, is precisely the intrinsic order graph Ik
–with 2k vertices. Moreover, this ordering between the 2k

new nodes coincides with the ordering between the 2k sums
of the occurrence probabilities of all the nodes lying on each
one of the respective replaced subgraphs.

Proof: Sorting the 2k vertices of the new graph in de-
creasing order of their assigned weights Pr {(ū1, . . . , ūk)} is
equivalent to ordering the 2k binary k-tuples (ū1, . . . , ūk) ∈
{0, 1}k in decreasing order of their occurrence probabilities.
Thus, the new condensed graph is, by definition, the intrinsic
order graph Ik. Finally, using the obvious fact that∑

(uk+1,...,un)∈{0,1}n
Pr {(uk+1, . . . , un)} = 1

we get

Pr
{
I ū1,...,ūk
n

}
=

∑
u∈Iū1,...,ūk

n

Pr {u} = Pr {(ū1, . . . , ūk)} ,

and this proves the last statement of the theorem. as was to
be shown.
The statement of Proposition 5.2 can be summed up by the
following sentence: k successive bisections of the digraph In
lead to the digraph Ik. In Fig. 5 this proposition is illustrated
for n = 5 and k = 1, 2, 3. Note that wile the nodes of
I5 are binary 5-tuples, the vertices of the corresponding
graphs I1, I2 and I3 are binary 1-tuples, 2-tuples and 3-
tuples, respectively.

(0)
|

(1)

(0, 0)
|

(0, 1)
|

(1, 0)
|

(1, 1)

(0, 0, 0)
|

(0, 0, 1)
|

(0, 1, 0)
| �

(0, 1, 1) (1, 0, 0)
� |

(1, 0, 1)
|

(1, 1, 0)
|

(1, 1, 1)

Fig. 5. k successive bisections of the digraph In lead to the
digraph Ik (n = 5, k = 1, 2, 3).

Corollary 5.1: Let n ≥ 1 and 1 ≤ k ≤ n. Then the

subgraphs I0,
k
.̂..,0

n and I1,
k
.̂..,1

n are the ones with the largest
and smallest occurrence probabilities (i.e., sum of the oc-
currence probabilities of all nodes lying on each of them),
respectively, among all the 2k subgraphs I ū1,...,ūk

n obtained
after k successive bisections of In.

Proof: Using Theorem 5.2, we see that proving the
current theorem is equivalent to proving that, for all k ≥ 1,
the binary k-tuples(

0,
k

.̂ . ., 0
)

= 0 and
(

1,
k

.̂ . ., 1
)

= 2k − 1

are the maximum and minimum elements, respectively, in
the poset Ik. This fact, illustrated by Figs. 2 & 3, has been
demonstrated in Example 2.5.

VI. CONCLUSION

In this paper, we have considered complex systems de-
pending on an arbitrarily large number n of random Boolean
variables, i.e., the so-called complex stochastic Boolean
systems (CSBSs). We have defined and characterized by
a simple matrix description the intrinsic order between
the binary n-tuples associated to a CSBS. Then we have
presented the usual graphical representation for CSBSs: a
Hasse diagram on 2n nodes called the intrinsic order graph,
and denoted by In. New properties of the intrinsic order
graph have been stated and proved. These properties deal
with different features of the intrinsic order graph like,
e.g., its edges; the natural decomposition of the graph In
into its 2n−2 “columns of size 4” or congruence chains
(mod 4); the shadows, neighbors and degrees of its vertices;
and the study of some relevant isomorphic subgraphs of
In obtained by bisection. From a theoretical point of view,
this paper suggests the search of new graph-theoretic and
order-theoretic properties of the intrinsic order graph In.
For practical applications, some of these properties can be
applied to develop new algorithms that identify binary strings
with large occurrence probabilities. Such algorithms can be
used in Reliability Theory and Risk Analysis to estimate the
failure probability of a technical system modeled by a CSBS.
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[2] L. González, “A New Method for Ordering Binary States Probabilities

in Reliability and Risk Analysis,” Lect Notes Comp Sc, vol. 2329, no.
1, pp. 137-146, 2002.
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