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Abstract—This paper presents a numerical technique for
solving optimal control problems. Control variables are se-
ries constructed by Legendre polynomials. In this technique
state variables are computed in terms of control variables
by implementing Decomposition Method. Performance index is
transformed by replacing new control and state variables. The
system dynamics and the performance index are converted into
some algebraic equations. Then the optimal control problem is
reduced to constrained classical optimization problem. To show
the efficiency of the purposed technique results and comparisons
are given at the end of this paper. Also optimal state trajectory
and optimal control policy graphs are included.

Index Terms—Legendre polynomials, Decomposition method,
Optimal control problems, Optimization.

I. INTRODUCTION

AT the large number of problems arising in analysis,
mechanics, geometry, and so forth, it is necessary to

determine the maximal and minimal of a certain functional.
Because of the important role of this subject in science and
engineering, considerable attentions has been received on this
kind of problems. It is well known that generally optimal
control problems are difficult to solve. Particularly, their
analytical solutions are in many cases out of the question.
To overcome this difficulty numerical methods are purposed
for solving many of these real world problems. Numerical
methods for solving optimal control problems dated back
nearly six decades. From that time to the present, the
complexity of methods and corresponding complexity and
variety of applications has increased tremendously making
optimal control a discipline that is relevant to many branches
of engineering. There are various numerical approaches for
solving optimal control problems (for instance see [1], [2],
[3]) In recent years, considerable attentions have been given
to the use of spectral methods for solving nonlinear problems.
The approach, known as the spectral method [4] is based on
converting the differential equations into an integral equation
through integration. The state and/or control involved in the
equation are approximated by finite terms of orthogonal
series and using an operational matrix of integration to
eliminate the integral operations. At the beginning in [5] A
numerical technique for solving nonlinear optimal control
problems is introduced. The state and control variables are
expanded in the Chebyshev series, and an algorithm is
provided for approximating the system dynamics, bound-
ary conditions, and performance index. Application of this
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method results in the transformation of differential and inte-
gral expressions into systems of algebraic or transcendental
expressions in the Chebyshev coefficients. In [6] for directly
solving a generic optimal control problem with state and
control constraints Chebyshev pseudospectral method are
implemented, This method employs N’th degree Lagrange
polynomial approximations for the state and control variables
with the values of these variables at the Chebyshev-Gauss-
Lobatto points as the expansion coefficients. This process
yields a Nonlinear Programming Problem (NLP) with the
state and control values at the CGL points as unknown NLP
parameters.
In [7] an alternative computational method presented for
solving the controlled Duffing oscillator. The approach is
a spectral method in which we approximate the control and
state variables by Chebyshev series. An explicit formula for
the Chebyshev polynomials in terms of arbitrary order of
their derivatives is used to convert the system dynamics into
an algebraic equation.
In [8] the usage of orthogonal polynomials for obtaining an
analytical approximate solution to optimal control problems
with a weighed quadratic cost function is proposed. The
method consists of using the orthogonal polynomials for the
expansion of the state variables and the control signal. And
in [9] wavelet functions are utilized instead of orthogonal
polynomials.
In the present paper normalized Legendre polynomials are
used for constructing control variables, but state variables
obtained in different manner, here we compute state variables
employing Decomposition Method, afterwards control and
state variables are replaced in objective function, considering
control and state constraints, former optimal control problem
converted into classical optimization problem. Optimizing
obtained performance index, parameters which give us state
trajectory and control policy, could be calculated.
The paper is organized as follows: In Section 2, Decom-
position Method and Legendre orthogonal polynomials are
reviewed. In Section 3, the problem is formulated. Section 4,
purposed method is presented and in Section 5, convergency
of the method is discussed, finally in section 6 Numerical
examples are expressed.

A. Preliminaries

B. Legendre polynomials

The definition of orthogonal polynomials {φj(t)} and
some of their features are presented below:∫ b

a

w(t)φi(t) φj(t) dt =

{
δi i = j
0 i ̸= j

In which W (t) is the weight function.
The expansion of an arbitrary function f(t) on the closed
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interval [0, tf ] is as follows:

f (t) =

N∑
i=0

Ciφi(t)

In which:

Ci =
1

δi

∫ tf

0

tkf(t)φi(t) dt

An important property of orthogonal polynomials presented
in [10] is ∫

φ(t) = kφ(t)

And ∫ tf

0

PPT dt = γ

where
P (t) = [P0, P1, . . . , Pn]

T

γ = diag[γ0, γ1, . . . , γn]

γi =

∫ tf

0

Pi
2(t) dt

In the linear space of all polynomials, with the inner
product

⟨x, y⟩ =
∫ 1

−1

x(t)y(t)dt

consider the infinite sequence x0, x1, x2, . . . where x(t) =
tn. When the orthogonalization theorem is applied to
this sequence it yields another sequence of polynomials
y0, y1, y2, . . . first encountered by the French mathematician
A. M. Legendre (1752-1833) in his work on potential theory.
The first few polynomials are easily calculated by the Gram-
Schmidt process.

y0 (t) = 1

y1 (t) = t

y2 (t) =
1

2

(
3t2 − 1

)
.

.

.

The polynomials in the corresponding orthonormal sequence
are given by

P0 (t) =

√
1

2

P1 (t) =

√
3

2
t

P2 (t) =
1

2

√
5

2
(3t2 − 1)

P3 (t) =
1

2

√
7

2
(5t3 − 3t)

.

.

.

given by Pn = yn/∥yn∥ are called normalized Legendre
polynomials. Legendre polynomials are categorized as the Ja-
cobi orthogonal polynomials whose interval of orthogonality
is [−1, 1].

C. Decomposition Method

In what follows Adomian’s Decomposition Method for
solving Initial Value Problems (IVP-s) is briefly introduced.
For more details see [11] and [12]. Consider the following
ODE modelling a dynamical system via independent variable
t, F (x (t)) = g(t) with x(0) = a;
Here F represents a general nonlinear ordinary differential
operator involves both linear and nonlinear parts, in which
linear part is decomposed as L + R, so that L is easily
invertible and R remainder of the linear operator. For conve-
nience, L may be taken as the highest order derivative whose
inverse does not involve difficult integrations that results
when complicated Green’s functions are involved. Thus the
above equation may be written as

Lx+Rx+Nx = g(t)

where Nu representing the nonlinear terms. Solving for
above equation for Lu, we have

Lx = g −Rx−Nx

Since L is invertible, an equivalent form of the above
equation is

L−1Lx = L−1g − L−1Rx− L−1Nx

If this corresponds to an IVP, the integral operator L−1

may be regarded as definite integration from 0 to s.
Former equation yields

x = a+ L−1g − L−1Rx− L−1Nx (1)

The nonlinear term Nu is now approximated by
∑∞

k=0Ak

where Ak are special polynomials to be further elaborated.
Thus we have the identity

Nx (t) =
∞∑
i=0

Ai(A0, A1, . . . , Ai)

Moreover, x is decomposed as
∑∞

k=0 xk with x0 identified
as a+L−1g (considering our purpose, we get L−1 as one fold
integration) accordingly, the above equation can be written
as

∞∑
k=0

xk = x0 − L−1R
∞∑
k=0

xk − L−1
∞∑
k=0

Ak

Consequently, we may readily derive the following set of
equations

x1 = −L−1Rx0 − L−1A0

x2 = −L−1Rx1 − L−1A1

. (2)

.
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.

xk+1 = −L−1Rxk − L−1Ak

Note that the polynomials Ak are generated for each nonlin-
ear term Nu such that A0 depends only on x0; A1 depends
only on x0 and x1 ; A2 depends on x0, x1 and x2, and so
forth, i.e. Adomian’s polynomials are A0(x0) , A1(x0, x1)
, A2(x0, x1, x2) , . . . so the components xk are computable
for all k ≥ 0, and thus one computes x =

∑∞
k=0 xk.

It is well known that the series
∑∞

k=0Ak are generalized
Taylor series for f (x0); i.e.

∑∞
k=0 xk is a functional Taylor

series about the function x0, and that the terms in the series
approach zero with 1/(mk)! (see [13]), where m is highest
order of differentiation in the linear differential operator.
Since the series converges and does so very rapidly.
k term partial sum Sk =

∑k−1
i=0 xk may serve as a prac-

tical solution for a rather small k and we naturally have
limk→∞ Sk = x. It is important to emphasize that Ak are
readily computable for complicated nonlinearities of the form
f(x, ẋ, ẍ, . . .) or f(g (x)). Since the solutions are analytic
(and verifiable by substitution), we can have insights into
how the solution evolves. Let ĝ = L−1g. Taylor series
expansion of ĝ with respect to τ = 0 is

ĝ (τ) = ĝ (t0) +
dĝ

dτ
τ +

dĝ2

dτ2
τ2

2!
+ . . .

Thus the first series term is modified as x0 = a + ĝ (t0)
The other series terms (see (2)) are

xk+1 =
dĝk

dτk
τk

k!
− L−1Rxk − L−1Ak , k = 1, 2, . . .

Then the solution (valid over the ith interval) is obtained
as summation of xk for k = 0, 1, 2, . . . . Here a = x(t0).

II. PROBLEM STATEMENT

We deal with the optimal control problem in which the
optimal solution satisfies ordinary differential equation on
the fixed time interval I := [t0, tf ] together with initial and
final conditions while optimizes (i.e. maximize or minimize)
performance index. in other word we want to find control
function to optimize

J =

∫ tf

t0

f0(t, x (t) , u(t))dt (3)

subject to:

ẋ = f(t, x (t) , u(t)) (4)

and
x (0) = x0, Gx (tf ) = x1 (5)

Where x(t) = [x1, x2, x3, . . . , xn]
T ∈ Hn and u(t) =

[u1, u2, u3, . . . , uk]
T ∈ Hk are respectively, state and control

vectors . x0 ∈ Hn , x1 ∈ H l are given vectors, and G is l×n
matrix. f0 : Hm+n+1 → H is supposed to be a continuous
function.
The aim of control theory is to find a control u such that
performance index (3) gets it’s optimum value.

III. METHOD OF THE SOLUTION

Since Legendre polynomials are defined on the time inter-
val [−1, 1], it is necessary to transform the time variable t
in the optimal control problem from the time interval [0, tf ]
-for simplicity and without losing generality we get t0 = 0-
into the the time interval [−1, 1]. This transformation can be
achieved by

τ =
2t

tf
− 1 (6)

formula (6) transforms the optimal control problem (3)-(5)
into the problem of minimizing

J =
tf
2

∫ 1

−1

f0(t, x (t) , u(t)) dτ (7)

Subject to:
dx

dτ
=

tf
2
f(τ, x (τ) , u(τ)) (8)

x (−1) = x0, Gx (1) = x1 (9)

Where G is a non zero l × n matrix.
Let us approximate control function by normalized Legendre
polynomials:

u (τ) =
k∑

i=0

ciP i(τ) (10)

Where Pi(τ) i = 1, 2, 3 . . . is normalized Legendre polyno-
mials and ci ∈ ℜ, i = 1, 2, 3 . . . are coefficients must be
obtained as solutions of transformed optimization problem.
Replacing (10) into (8), and supposing that coefficients
c0, c1, . . . , ck are constant, the following system of Ordinary
Differential Equation (ODE) is acquired;

dx

dτ
=

tf
2
f(τ, x (τ) ,

k∑
i=0

ciP i(τ))

subject to

x(−1) = x0

(11)

In the followind IVP (11), is solved using Decomposi-
tion method introduced in previous section, as a result
state variable x is obtained as a function in terms of
c0, c1, c2, . . . , ck, τ indeed one can write;

x = ψ(c0, c1, c2, . . . , ck, τ)

What remains is replacing x, and u by
ψ(c0, c1, c2, . . . , ck, τ) and

∑k
i=0 ciP i(τ) respectively,

through (7);

J =
tf
2

∫ 1

−1

F (c0, c1, c2, . . . , ck, τ))dτ (12)

After integration, (12) can be rewritten in the following
format:
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J = φ(c0, c1, c2, . . . , ck, τ)

Considering boundary condition (9), one can see that
optimal control problem (3),(4),(5) is converted into classical
optimization problem;

min
c0, c1, c2,..., ck

φ(c0, c1, c2, . . . , ck )

Subject to:

Gψ(c0, c1, c2, . . . , ck, 1) = x1

This optimization problem can be solved using
conventional optimization Toolboxes, here in this study it
is solved by MAPLE optimization Toolbox. Algorithm
1. illustrates present method strategy for solving optimal
control problems;
Algorithm 1 .
Step 1 : Transform optimal control problem from the time
interval [0, tf ] into the time interval [−1, 1].
Step 2 : Approximate control function using Legendre
polynomials.
Step 3 : Use Decomposition method in order to obtain state in
terms of control parameters.
Step 4 : Replace approximated control and obtained state into
objective function and construct optimization problem.
Step 5 : Solve optimization problem using optimization
Toolbox.

IV. CONVERGENCY OF THE METHOD

Consider the following functional equation:

x−Nx = g (13)

where N is a nonlinear operator from Hilbert space H into
H , g is a given function in H . ADM gives the solution of
the problem as follows:

x =
∞∑
i=0

xi

and Nx is replaced by series;

Nx =
∞∑
i=0

Ai

where An for n = 1, 2, . . . are polynomials in terms of
x0, x1, ..., xn is called Adomian polynomials. The method
consist of the following scheme:{

x0 = g
xn+1 = An(x0, x1, . . . , xn)

(14)

The Adomian technique is equivalent to determining the
sequence

Sn = x0 + x1 + . . .+ xn

by using the iterative scheme

S0 = 0

Sn = N(x0 + Sn)

Associated with the functional equation

S = N(x0 + S)

Theorem 1: Let N be an operator from a Hilbert space
H into H and x be the exact solution of (13),

∑∞
i=0 xi

which is obtained by (14), converges to x if there exists
0 ≤ γ < 1 , such that ∥xk+1∥ ≤ γ ∥xk∥ k ∈ N ∪ {0}.
proof: see [14] .

Definition 1:

γi =


∥yi+1∥
∥yi∥ , ∥yi∥ ̸= 0

0, ∥yi∥ = 0

Corollary 1:In Theorem 1.,
∑∞

i=0 xi converges to exact
solution x, when 0 ≤ γi < 1 , i = 1, 2, 3, ... i.e.
limn→∞ Sn = x.
When control u inserted through (13), we have x − Nx =
g(u) instead, reconstructing (14), one can rewrite corollary
1. as;

lim
n→∞

Sn(u) = x(u)

Definition 2: Pair (x, u) is called an admissible pair, if and
only if (x, u) satisfies (4), (5).
In the present paper admissible pair that optimizes
performance index (3) will be shown by (x∗, u∗) in which
x∗ = x(u∗).
Note that for the special pair (x∗, u∗) corollary 1. implies
limn→∞ Sn(u

∗) = x∗.
Let us define the following sets:

Definition 3:
(i)

ξk := {(x, uk)|uk =
k∑

i=0

cit
i},

(ii)

ξn := {(Sn(u), u)|Sn(u) =
n∑

i=0

xi(u)},

(iii)

ξnk := {(Sn(uk), uk)|uk =

k∑
i=0

cit
i, Sn(uk) =

n∑
i=0

xi(uk)},

Where u belongs to an admissible pair, x is the solution of
x−Nx = g(u) , n, k ∈ ℵ, ci ∈ ℜ, i = 1, 2, . . .

Notation 1:
(i) infu J(x(u), u) := J(x(ū), ū) ,
(ii) J(x(ūk), ūk) := αk,
(iii) J(Sn(ūk), ūk) := αn

k ,

Lemma 1: For n ∈ ℵ the following relationship exists:

αn
1 ≥ αn

2 ≥ · · · ≥ αn
k ≥ · · · ≥ αn = J(Sn(u

∗), u∗)

specially,

α1 ≥ α2 ≥ · · · ≥ αk ≥ · · · ≥ J(x(u∗), u∗)

holds.
Proof: Considering the definition of ξnk one can easily
verify that;

ξn1 ⊆ ξn2 ⊆, · · · ,⊆ ξnk · · · ⊆ ξn.
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which proves the lemma.

Lemma 2: The following equation hold:

limk→∞|ūk − u∗| = 0.

Proof: Since polynomials are dense in C(I), in which
C(I) is set of continuous functions on I , and considering
continuity of f and f0 it is easy to verify the proof.

Lemma 3: Now we can show that:

lim
k→∞

J (x (ūk) , ūk) = J(x(u
∗
), u∗)

Proof: From lemma 1. we know that the sequence {αn}n is
non increasing and bounded from below, thus it converges,
suppose that limn→∞ αn = α̂ we have α̂ ≥ J(x(u

∗
), u∗).

if α̂ > J(x(u
∗
), u∗) then there exist α

′
and ε

′
> 0 such that:

| α
′
− J(x(u

∗
), u∗) |= ε

′
,

α̂ > α
′
> J(x(u

∗
), u∗), (15)

Because of continuity of J and x for each ε > 0 there exist
a δ > 0 such that |u− u∗| < δ which implies;

|J(x(u), u)− J(x(u
∗
), u∗)| < ε

Getting ε = ε
′

and using lemma 2. for each δ > 0 there
exists a û such that:

|û− u∗| < δ

And immediately

|J(x(û), û)− J(x(u
∗
), u∗)| < ε

Which implies

|J(x(û), û)− J(x(u
∗
), u∗)| < |α

′
− J(x(u∗), u∗)|

This contradicts with (15), Thus lemma 3. is proved.

Theorem 4: Now, we can show

limk→∞limn→∞J(Sn(ūk), ūk) = J(x∗, u∗)

Proof: Continuity of J and corollary 1. give

limk→∞limn→∞J(Sn(ūk), ūk) = limk→∞J(x(ūk), ūk)

And lemma 3. proves the theorem.

V. COMPUTATIONAL RESULTS

To show the efficiency and practical application of pur-
posed method described in the previous section, we present
two numerical examples. First example is a well known
linear system with quadratic performance index and we just
have an initial condition, The second example is nonlinear
system with quadratic performance index, in which we have
initial and final conditions. We compare numerical estimation
which obtained by present method and answers obtained by
other methods. All of calculations is checked by Maple,
also obtained optimization problems are solved by Maple

optimization Toolbox. Figures of optimal state and optimal
control are presented.

Example 1 . Find the optimal control u(t) that minimizes

J =

∫ 1

0

x2 + u2dt

subject to:
ẋ = u

The initial condition is:

x (0) = 1

Where x is a state function and u is control function.
This problem is solved for the following control approxima-
tions:

u0 =

√
1

2
c
0

u1 =

√
1

2
c
0
+

√
3

2
c1t

u2 =

√
1

2
c
0
+

√
3

2
c1t+

√
5

8
c2(3t

2 − 1)

u3 =

√
1

2
c
0
+

√
3

2
c1t+

√
5

8
c2(3t

2 − 1) +

√
7

8
c3(5t

3 − 3t)

And finally

u4 =
4∑

k=0

ckPk(t)

Corresponding objective functions are shown in Fig 1.
Exact objective value is given in [15] with 7 decimal
precision is: J∗ = 0.7615941. Optimal state trajectory and
optimal control history are illustrated in Fig 2 and Fig 3.

Example 2. Find the suitable control for the nonlinear
optimal control problem.

MinJ(x, u) =

∫ 1

0

x1 (t)
2
+ x2 (t)

2
dt

ẋ1 (t) = x2(t)

ẋ2 (t) = 10x1(t)
3
+ u

x1 (0) = 0, x1 (1) = 0.1

x2 (0) = 0, x2 (1) = 0.3

This problem solved for u0, . . . , u4, as presented in
Example 1. and objective values are shown in Fig 4.
This problem is solved in [16] with J∗ = 0.0135, the result
given in [17] for the problem is J∗ = 0.024, in Table I
these results are compared with present method.
The state trajectory and control history are shown in Fig 5
and Fig 6 respectively.
One can see from Fig 1 and Fig 4 that both for Example 1.
and Example 2. objective value converges to optimal control
so fast, results are accurate, and very little computations are
needed to be done. Also relative error for Example 1. and
Example 2. i.e. |J∗

k+1 − J∗
k |, is presented in Table II, as

one can see we obtain these accurate results with very little
computation efforts.

IAENG International Journal of Applied Mathematics, 42:2, IJAM_42_2_02

(Advance online publication: 26 May 2012)

 
______________________________________________________________________________________ 



TABLE I
COMPARING RESULTS FOR EXAMPLE 2.

implemented methods J*

present method 0.0149

method of [16] 0.0135

Rubio’s Method 0.024

TABLE II
COMPUTATION ERRORS FOR EXAMPLE 1. AND EXAMPLE 2.

k Example 1 Example 2

0 5.07× 10−2 1.44× 10−2

1 1.68× 10−4 4.26× 10−3

2 6.72× 10−8 2.41× 10−4

3 1.00× 10−9 1.00× 10−8

VI. CONCLUSION

Legendre polynomials combined with ADM are used to
solve optimal control problems. this polynomials are orthog-
onal in closed interval [−1, 1], so optimal control problem
transformed in order to take advantage of their orthogonality.
Then ADM is implemented to solve obtained ODE. Many
authors utilized ADM to deal with ODE and they got
wonderful results, It is also important that the ADM does not
require the discretization of the variables. It is not affected by
computation round errors and one is not faced with necessity
of large computer memory and time. In numerical examples
solved in this paper, solutions are obtained just by calculating
3 or 4 terms with low memory consumption and low effort
with rational precise. ADM is powerful method for solving
nonlinear differential equations so it make present method a
good tool dealing with nonlinear optimal control problems.
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Fig. 1. Objective function for Example 1.

Fig. 2. Optimal state trajectory for Example 1.

Fig. 3. Optimal control policy for Example 1.

Fig. 4. Objective function for Example 2.

Fig. 5. Optimal state trajectory for Example 2.

Fig. 6. Optimal control policy for Example 2.
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