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Abstract—In this paper, we focus on hierarchical multiobjec-
tive stochastic linear programming problems (HMOP) where
multiple decision makers in a hierarchical organization have
their own multiple objective linear functions together with
common linear constraints. In order to deal with HMOP, a
probability maximization model and a fractile optimization
model are applied. By considering the conflict between permis-
sible objective levels and permissible probability levels in such
two models, it is assumed that each of the decision makers
has fuzzy goals for permissible objective levels and permissible
probability levels, and such fuzzy goals can be quantified by
eliciting the membership functions. Through the fuzzy decision,
such membership functions are integrated. In the integrated
membership space, Pareto optimality concept is introduced.
The interactive algorithm to obtain a satisfactory solution from
among a Pareto optimal solution set is proposed on the basis
of linear programming technique, in which the hierarchical
decision structure is reflected by the decision power and the
proper balance between permissible objective levels and the
corresponding probability function is attained.

Index Terms—hierarchical multiobjective stochastic linear
programming, decision power, a probability maximization
model, a fractile optimization model, interactive decision mak-
ing.

I. I NTRODUCTION

The decision makers in practical hierarchical decision
making situations often encounter two kinds of decision
making processes, one is well known as a multi-level pro-
gramming process and the other is the interactive decision
making process [3]. The Stackelberg games are well-known
as multilevel programming problems with multiple decision
makers, in which the decision maker in each level makes
his/her decision independently in order to optimize his/her
own objective function [1], [9]. On the other hand, the
interactive decision making process can be found in large
scale hierarchical organizations such as multi-hierarchical
companies, in which the decision maker in each level makes
his/her decision through the interaction between the deci-
sion makers and the lower level decision makers submit
their own decision and then such decision is modified by
the upper level decision makers with considerations of the
overall benefits [3]. In order to deal with such an interactive
decision making process, Lai [2], Shih et al.[8] and Lee
et al.[3] introduced concepts of memberships of optimal-
ities and degrees of decision powers and proposed fuzzy
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approaches to obtain a satisfactory solution. As a natural
extension of their approaches, Yano [10] proposed a fuzzy
approach for hierarchical multiobjective linear programming
problems. On the other hand, in the actual decision making
situations, the decision makers often encounter difficulties
to deal with vague information or uncertain data. Sakawa
et al.[5],[6],[7] formulated multiobjective stochastic linear
programming problems through a probability maximization
model and a fractile optimization model, and proposed
interactive algorithm to obtain a satisfactory solution from
among a Pareto optimal solution set. Using a probability
maximization model or a fractile optimization model, it
is required for the decision maker to specify parameters
called permissible objective levels or permissible probability
levels in advance. However, it seems to be very difficult
to specify such values in advance. In order to cope with
such difficulties, Yano et al.[12] proposed fuzzy approaches
to multiobjective stochastic linear programming problems,
where the decision maker has fuzzy goals for permissible
objective levels and permissible probability levels, and such
fuzzy goals are quantified by eliciting the membership func-
tions. Unfortunately, in the proposed method, it is assumed
that the decision maker adopts the fuzzy decision [4] to
obtain the satisfactory solution.

In this paper, we focus on hierarchical multiobjective
stochastic linear programming problems [11], and propose
an interactive algorithm to obtain a satisfactory solution
from among a Pareto optimal solution set. In the proposed
method, by considering the conflict between permissible
objective levels and and permissible probability levels, the
corresponding membership functions are integrated through
the fuzzy decision. In the integrated membership space,
Pareto optimal concept is introduced. In section II, hier-
archical multiobjective programming problems through a
probability maximization model is formulated. In section III,
hierarchical multiobjective programming problems through
a fractile optimization model is formulated. It is shown
that the two kinds of formulations to obtain Pareto optimal
solutions are same. In section IV, an interactive algorithm
based on linear programming technique is proposed to obtain
a satisfactory solution.

II. H IERARCHICAL MULTIOBJECTIVE STOCHASTIC

L INEAR PROGRAMMING PROBLEMS THROUGH A

PROBABILITY MAXIMIZATION MODEL

We consider the following hierarchical multiobjective
stochastic linear programming problem (HMOP), where each
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of the decision makers (DMr, r = 1, · · · , q) has his/her own
multiple objective linear functions together with common lin-
ear constraints, and random variable coefficients are involved
in each objective function.
[HMOP1]
first level decision maker : DM1

min
x∈X

z̄1(x) = (z̄11(x), · · · , z̄1k1(x))

· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker : DMq

min
x∈X

z̄q(x) = (z̄q1(x), · · · , z̄qkq (x))

where x = (x1, x2, · · · , xn)
T is n-dimensional decision

column vector whose elementsxi, i = 1, · · · , n are non-
negative,X is a linear constraint set with respect tox.
Each objective function of DMr, r = 1, · · · , q is defined by
z̄rℓ(x) = c̄rℓx+ᾱrℓ, c̄rℓ = c1rℓ+ t̄rℓc

2
rℓ, ᾱrℓ = α1

rℓ+ t̄rℓα
2
rℓ,

wherec̄rℓ, ℓ = 1, · · · , kr aren dimensional random variable
row vectors,ᾱrℓ, ℓ = 1, · · · , kr are random variables, and̄trℓ
is a random variable whose cumulative distribution function
Trℓ(·) is assumed to be strictly monotone increasing and
continuous.

Similar to the formulations of multilevel linear program-
ming problems proposed by Lee et al.[3], it is assumed that
the upper level decision makers make their decisions with
consideration of the overall benefits for the hierarchical or-
ganization, although they can take priority for their objective
functions over the lower level decision makers.

In order to deal with HMOP1, we adopt stochastic linear
programming techniques. Using a probability maximization
model [7], we substitute the minimization of the objective
function z̄rℓ(x) for the maximization of the probability that
z̄rℓ(x) is less than or equal to a certain permissible objective
level frℓ. Such a probabilityprℓ(x, frℓ) can be defined as
follows.

prℓ(x, frℓ)
def
= Pr(ω | zrℓ(x, ω) ≤ frℓ), (1)

wherePr(·) denotes a probability measure,ω is an event,
and zrℓ(x, ω) is a realization of the random objective
function z̄rℓ(x) under the occurrence of each elementary
eventω. Each of the decision makers (DMr, r = 1, · · · , q)
subjectively specifies certain permissible objective levels
fr = (fr1, · · · , frkr ), r = 1, · · · , q,f = (f1, · · · ,f q). Then,
HMOP1 can be transformed into the following problem
involving permissible objective levels as parameters.
[HMOP2(f )]
first level decision maker : DM1

max
x∈X

(p11(x, f11), · · · , p1k1(x, f1k1))

· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker: DMq

max
x∈X

(pq1(x, fq1), · · · , pqkq (x, fqkq ))

Under the assumption thatc2rℓx+ α2
rℓ > 0, r =

1, · · · , q, ℓ = 1, · · · , kr, the objective functionprℓ(x, frℓ) in
HMOP1(f) is expressed as follows.

prℓ(x, frℓ) = Pr(ω | zrℓ(x, ω) ≤ frℓ)

= Trℓ

(
frℓ − (c1rℓx+ α1

rℓ)

c2rℓx+ α2
rℓ

)

In HMOP2(f), each decision maker (DMr) seems to
prefer not only the less values of permissible objective
levels fr, but also the larger values of the corresponding
distribution functionsprℓ(x, frℓ), ℓ = 1, · · · , kr. Since these
values conflict with each other, the less value of permissible
objective level results in the less value of the corresponding
probability function. Therefore, it is very important for each
decision maker (DMr) to determine appropriate values of
permissible objective levelsfr. Unfortunately, it seems to
be difficult for the decision maker to find appropriate values
of permissible objective levels. In order to circumvent such
difficulties, Yano et al. [12] proposed a fuzzy approach
for multiobjective stochastic linear programming problems.
From a similar point of view, instead of HMOP2(f), we
consider the following multiobjective programming problem
in which permissible objective levels are not constant values
but the decision variables.
[HMOP3]
first level decision maker : DM1

max
x∈X,f 1∈Rk1

(p11(x, f11), · · · , p1k1(x, f1k1),−f11, · · · ,−f1k1)

· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker: DMq

max
x∈X,f q∈Rkq

(pq1(x, fq1), · · · , pqkq (x, fqkq ),−fq1, · · · ,−fqkq )

Considering the imprecise nature of the decision maker’s
judgment, it is natural to assume that the decision maker
have a fuzzy goal for each objective function in HMOP3.
In this section, it is assumed that such a fuzzy goal can
be quantified by eliciting a corresponding membership func-
tion. Let us denote a membership function ofprℓ(x, frℓ)
as µp̃rℓ

(prℓ(x, frℓ)), and a membership function offrℓ as
µf̃rℓ

(frℓ) respectively. Then, HMOP3 can be transformed to
the following multiobjective programming problem.
[HMOP4]
first level decision maker : DM1

max
x∈X,f 1∈Rk1

(µp̃11(p11(x, f11)), · · · , µp̃1k1

(p1k1(x, f1k1)), µf̃11
(f11), · · · , µf̃1k1

(f1k1))

· · · · · · · · · · · · · · · · · · · · ·
q-th level decision maker: DMq

max
x∈X,f q∈Rkq

(µp̃q1(pq1(x, fq1)), · · · , µp̃qkq

(pqkq (x, fqkq )), µf̃q1
(fq1), · · · , µf̃qkq

(fqkq ))

Throughout this section, we make the following assumptions
with respect to the membership functionsµp̃rℓ

(prℓ(x, frℓ)),
µf̃rℓ

(frℓ), r = 1, · · · , q, ℓ = 1, · · · , kr.
Assumption 1.
µf̃rℓ

(frℓ), r = 1, · · · , q, ℓ = 1, · · · , kr are strictly increasing
and continuous with respect tôpi, which is defined on the
interval [frℓmin, frℓmax] ∈ R1, whereµf̃rℓ

(frℓ) = 0 if frℓ ≥
frℓmax, andµf̃rℓ

(frℓ) = 1 if frℓ ≤ frℓmin.
Assumption 2.
µp̃rℓ

(prℓ(x, frℓ)), r = 1, · · · , q, ℓ = 1, · · · , kr are strictly
decreasing and continuous with respect toprℓ(x, frℓ),
which is defined on the interval[prℓmin, prℓmax] ⊂ (0, 1),
where µp̃rℓ

(prℓ(x, frℓ)) = 0 if prℓ(x, frℓ) ≤ prℓmin, and
µp̃rℓ

(prℓ(x, frℓ)) = 1 if prℓ(x, frℓ) ≥ prℓmax.
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In order to determine these membership functions appro-
priately, let us assume that the decision maker setsfrℓmin,
frℓmax prℓmin andprℓmax as follows.

At first, the decision maker specifies the parametersfrℓmin

and frℓmax in his/her subjective manner, wherefrℓmin is
sufficiently satisfactory maximum value andfrℓmax is an
acceptable maximum value, and sets the intervalsFrℓ =
[frℓmin, frℓmax], r = 1, · · · , q, ℓ = 1, · · · , kr. prℓmax can be
obtained by solving the following problem.

prℓmax
def
= max

x∈X
prℓ(x, frℓmax) (2)

In order to obtainprℓmin, we first solve the problems,
maxx∈X prℓ(x, frℓmin), r = 1, · · · , q, ℓ = 1, · · · , kr. Let
xrℓ, r = 1, · · · , q, ℓ = 1, · · · , kr be the corresponding
optimal solution. Using the optimal solutionsxrℓ, prℓmin

can be obtained as follows.

prℓmin
def
= min

s=1,···,q,t=1,···,ks,s̸=r,t̸=ℓ
prℓ(xst, frℓmin) (3)

It should be noted here thatµp̃rℓ
(prℓ(x, frℓ)) and

µf̃rℓ
(frℓ) are conflict each other for anyx ∈ X. Here, let us

assume that the decision maker adopts the fuzzy decision
[4] in order to integrate both the membership functions
µp̃rℓ

(prℓ(x, frℓ)) andµf̃rℓ
(frℓ). Then, the integrated mem-

bership function can be defined as follows.

µDprℓ
(x, frℓ)

def
= min{µf̃rℓ

(frℓ), µp̃rℓ
(prℓ(x, frℓ))} (4)

Using the integrated membership functionsµDprℓ
(x, frℓ),

HMOP4 can be transformed into the following form.
[HMOP5]
first level decision maker : DM1

max
x∈X,f1ℓ∈R1,ℓ=1,···,k1

(
µDp11

(x, f11), · · · , µDp1k1
(x, f1k1))

)
· · · · · · · · · · · · · · · · · · · · ·
q-th level decision maker: DMq

max
x∈X,fqℓ∈R1,ℓ=1,···,kq

(
µDpq1

(x, fq1), · · · , µDpqkq
(x, fqkq ))

)
In order to deal with HMOP5, we introduce aDp-Pareto
optimal solution concept.
Definition 1.
x∗ ∈ X, f∗

rℓ ∈ R1, r = 1, · · · , q, ℓ = 1, · · · , kr is said to be a
Dp-Pareto optimal solution to HMOP5, if and only if there
does not exist anotherx ∈ X, frℓ ∈ R1, r = 1, · · · , q, ℓ =
1, · · · , kr such thatµDprℓ

(x, frℓ) ≥ µDprℓ
(x∗, f∗

rℓ), r =
1, · · · , q, ℓ = 1, · · · , kr, with strict inequality holding for at
least oner and ℓ.

For generating a candidate of a satisfactory solution which
is also Dp-Pareto optimal, each decision maker (DMr) is
asked to specify the reference membership valuesµ̂r =
(µ̂r1, · · · , µ̂rkr ) [4]. Once the reference membership values
are specified, the correspondingDp-Pareto optimal solution
is obtained by solving the following minmax problem.
[MINMAX1( µ̂)]

min
x∈X,frℓ∈R1,r=1,···,q,ℓ=1,···,kr,λ∈Λ

λ (5)

subject to

µ̂rℓ − µp̃rℓ
(prℓ(x, frℓ)) ≤ λ, (6)

µ̂rℓ − µf̃rℓ
(frℓ) ≤ λ, (7)

r = 1, · · · , q, ℓ = 1, · · · , kr

where

Λ = [ max
r=1,···,q,ℓ=1,···,kr

wr(µ̂rℓ − 1) + δ,

min
r=1,···,q,ℓ=1,···,kr

wrµ̂rℓ − δ].

whereδ is a sufficiently small positive constant.
It should be noted here that, in general, the optimal

solution of MINMAX1(µ̂) does not reflect the hierarchical
structure betweenq decision makers where the upper level
decision maker can take priority for his/her distribution
functions over the lower level decision makers. In order to
cope with such a hierarchical preference structure between
q decision makers, we introduce the concept of the decision
power [2] w = (w1, · · · , wq), where ther-th level decision
maker (DMr) can specify the decision powerwr+1 in his/her
subjective manner and the last decision maker (DMq) has no
decision power. In order to reflect the hierarchical preference
structure between multiple decision makers, the decision
powers w = (w1, · · · , wq) have to satisfy the following
inequality conditions.

w1 = 1 ≥ w2 ≥ · · · · · · ≥ wq−1 ≥ wq > 0 (8)

Then, the corresponding modified MINMAX1(µ̂) is refor-
mulated as follows.
[MINMAX2( µ̂,w)]

min
x∈X,frℓ∈R1,r=1,···,q,ℓ=1,···,kr,λ∈Λ

λ (9)

subject to

µ̂rℓ − µp̃rℓ
(prℓ(x, frℓ)) ≤ λ/wr, (10)

µ̂rℓ − µf̃rℓ
(frℓ) ≤ λ/wr, (11)

r = 1, · · · , q, ℓ = 1, · · · , kr

Sinceµp̃rℓ
(prℓ(x, frℓ)) is strictly monotone increasing and

continuous andc2rℓx + α2
rℓ > 0, the constraint (10) can be

transformed as follows.

µ̂rℓ − µp̃rℓ
(prℓ(x, frℓ)) ≤ λ/wr,

⇔ prℓ(x, frℓ) ≥ µ−1
p̃rℓ

(µ̂rℓ − λ/wr),

⇔ Trℓ

(
frℓ − (c1rℓx+ α1

rℓ)

c2rℓx+ α2
rℓ

)
≥ µ−1

p̃rℓ
(µ̂rℓ − λ/wr),

⇔ frℓ − (c1rℓx+ α1
rℓ)

≥ T−1
rℓ (µ−1

p̃rℓ
(µ̂rℓ − λ/wr)) · (c2rℓx+ α2

rℓ). (12)

whereµ−1
p̃rℓ

(·) andT−1
rℓ (·) are inverse functions with respect

to µp̃rℓ
(·) and Trℓ(·) respectively. Moreover, it holds that

frℓ ≤ µ−1

f̃rℓ
(µ̂rℓ−λ/wr), becauseµf̃rℓ

(frℓ) is strictly mono-
tone decreasing and continuous. As a result, the constraints
(10) and (11) can be reduced to the following inequality
where a permissible objective levelfrℓ is removed.

µ−1

f̃rℓ
(µ̂rℓ − λ/wr)− (c1rℓx+ α1

rℓ)

≥ T−1
rℓ (µ−1

p̃rℓ
(µ̂rℓ − λ/wr)) · (c2rℓx+ α2

rℓ) (13)

Then, MINMAX2(µ̂,w) is equivalently transformed to the
following problem.
[MINMAX3( µ̂,w)]

min
x∈X,λ∈Λ

λ (14)

subject to
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µ−1

f̃rℓ
(µ̂rℓ − λ/wr)− (c1rℓx+ α1

rℓ)

≥ T−1
rℓ (µ−1

p̃rℓ
(µ̂rℓ − λ/wr)) · (c2rℓx+ α2

rℓ)

r = 1, · · · , q, ℓ = 1, · · · , kr (15)

It should be noted here that the constraints (15) can be
reduced to a set of linear inequalities for some fixed value
λ ∈ Λ. This means that an optimal solution(x∗, λ∗)
of MINMAX3( µ̂,w) is obtained by combined use of the
bisection method with respect toλ and the first-phase of the
two-phase simplex method of linear programming.

The relationship between the optimal solution(x∗, λ∗) of
MINMAX3( µ̂,w) andDp-Pareto optimal solutions can be
characterized by the following theorem.
Theorem 1.
If (x∗, λ∗) is a unique optimal solution of
MINMAX3( µ̂,w), thenx∗ ∈ X, f∗

rℓ = µ−1

f̃rℓ
(µ̂rℓ− λ∗/wr),

r = 1, · · · , q, ℓ = 1, · · · , kr is a Dp-Pareto optimal solution
to HMOP5.
(Proof）
Since an optimal solution(x∗, λ∗) satisfies the constraints
(15), it holds that

Trℓ

(
µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr)− (c1rℓx

∗ + α1
rℓ)

c2rℓx
∗ + α2

rℓ

)
= prℓ(x

∗, µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr))

≥ µ−1
p̃rℓ

(µ̂rℓ − λ∗/wr), r = 1, · · · , q, ℓ = 1, · · · , kr.

Assume thatx∗ ∈ X, f∗
rℓ = (µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr),

r = 1, · · · , q, ℓ = 1, · · · , kr is not a Dp-Pareto opti-
mal solution to HMOP5, then there existsx ∈ X frℓ,
r = 1, · · · , q, ℓ = 1, · · · , kr such thatµDprℓ

(x, frℓ) =

min{µf̃rℓ
(frℓ), µp̃rℓ

(prℓ(x, frℓ))} ≥ µDprℓ
(x∗, µ−1

f̃rℓ
(µ̂rℓ −

λ∗/wr)) = µ̂rℓ − λ∗/wr, r = 1, · · · , q, ℓ = 1, · · · , kr, with
strict inequality holding for at least oner and ℓ. Then it
holds that

µf̃rℓ
(frℓ) ≥ µ̂rℓ − λ∗/wr, (16)

µp̃rℓ
(prℓ(x, frℓ)) ≥ µ̂rℓ − λ∗/wr, (17)

r = 1, · · · , q, ℓ = 1, · · · , kr. From the definition (1), the
inequalities (16) and (17) can be transformed into the in-
equalities,frℓ ≤ µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr), frℓ ≥ T−1

rℓ (µ−1
p̃rℓ

(µ̂rℓ −
λ∗/wr)) · (c2rℓx+ α2

rℓ) + (c1rℓx + α1
rℓ). This means that

there exists somex ∈ X such thatµ−1

f̃rℓ
(µ̂rℓ − λ∗/wr) ≥

T−1
rℓ (µ−1

p̃rℓ
(µ̂rℓ − λ∗/wr)) · (c2rℓx+ α2

rℓ) + (c1rℓx + α1
rℓ),

r = 1, · · · , q, ℓ = 1, · · · , kr, which contradicts the fact
that x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution to
MINMAX3( µ̂,w).

III. H IERARCHICAL MULTIOBJECTIVE STOCHASTIC

L INEAR PROGRAMMING PROBLEMS THROUGH A

FRACTILE OPTIMIZATION MODEL

If we adopt a fractile optimization model [6] for HMOP1,
we can convert HMOP1 to the following multiobjective
programming problem.
[HMOP6( p̂)]
first level decision maker : DM1

min
x∈X,f1ℓ∈R1,ℓ=1,···,kr

(f11, · · · , f1k1)

· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker: DMq

min
x∈X,fqℓ∈R1,ℓ=1,···,kq

(fq1, · · · , fqkq )

subject to
prℓ(x, frℓ) ≥ p̂rℓ, r = 1, · · · , q, ℓ = 1, · · · , kr (18)

wherep̂r = (p̂r1, · · · , p̂rkr ), r = 1, · · · , q, p̂ = (p̂1, · · · , p̂q)
are vectors of permissible probability levels which are spec-
ified by the decision maker (DMr, r = 1, · · · , q) in his/her
subjective manner.

In HMOP6(p̂), the constraint (18) can be transformed into
the following form.

p̂rℓ ≤ prℓ(x, frℓ) = Trℓ

(
frℓ − (c1rℓx+ α1

rℓ)

c2rℓx+ α2
rℓ

)
⇔ frℓ ≥ T−1

rℓ (p̂rℓ) · (c2rℓx+ α2
rℓ) + (c1rℓx+ α1

rℓ)

Let us define the right-hand side of the above inequality as
follows.

frℓ(x, p̂rℓ)
def
= T−1

rℓ (p̂rℓ) · (c2rℓx+α2
rℓ)+(c1rℓx+α1

rℓ) (19)

Then, HMOP6(̂p) can be equivalently reduced to the follow-
ing simple form.
[HMOP7( p̂)]
first level decision maker : DM1

min
x∈X

(f11(x, p̂11), · · · , f1k1(x, p̂1k1))

· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker: DMq

min
x∈X

(fq1(x, p̂q1), · · · , fqkq (x, p̂qkq ))

In order to deal with HMOP7(̂p), the decision maker
must specify permissible probability levelŝp in advance.
However, in general, the decision maker seems to prefer
not only the less value of the objective functionfrℓ(x, p̂rℓ)
but also the larger value of the permissible probability level
p̂rℓ. From such a point of view, we consider the following
multiobjective programming problem which can be regarded
as a natural extension of HMOP7(p̂).
[HMOP8]
first level decision maker : DM1

min
x∈X

(f11(x, p̂11), · · · , f1k1(x, p̂1k1),−p̂11, · · · ,−p̂1k1)

· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker: DMq

min
x∈X

(fq1(x, p̂q1), · · · , fqkq (x, p̂qkq ),−p̂q1, · · · ,−p̂qkq )

Considering the imprecise nature of the decision maker’s
judgment, we assume that the decision maker has a fuzzy
goal for each objective function in HMOP8. Such a fuzzy
goal can be quantified by eliciting the corresponding mem-
bership function. Let us denote a membership function of
an objective functionfrℓ(x, p̂rℓ) asµf̃rℓ

(frℓ(x, p̂rℓ)), and a
membership function of a permissible probability levelp̂rℓ
asµ˜̂prℓ

(p̂rℓ) respectively. Then, HMOP8 can be transformed
as the following problem.
[HMOP9]
first level decision maker : DM1

max
x∈X,p̂1∈(0,1)k1

(
µf̃11

(f11(x, p̂11)), · · · , µf̃1k1
(f1k1

(x, p̂1k1)), µ˜̂p11
(p̂11), · · · , µ˜̂p1k1

(p̂1k1)
)
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· · · · · · · · · · · · · · · · · · · · ·

q-th level decision maker: DMq

max
x∈X,p̂q∈(0,1)kq

(
µf̃q1

(fq1(x, p̂q1)), · · · , µf̃qkq
(fqkq

(x, p̂qkq )), µ˜̂pq1
(p̂q1), · · · , µ˜̂pqkq

(p̂qkq )
)

Throughout this section, we make the following as-
sumptions with respect to the membership functions
µfrℓ(frℓ(x, p̂rℓ)), µ˜̂prℓ

(p̂rℓ), r = 1, · · · , q, ℓ = 1, · · · , kr.
Assumption 3.
µ˜̂prℓ

(p̂rℓ), r = 1, · · · , q, ℓ = 1, · · · , kr are strictly increasing
and continuous with respect tôprℓ, which is defined on the
interval [prℓmin, prℓmax] ⊂ (0, 1), whereµ˜̂prℓ

(p̂rℓ) = 0 if
p̂rℓ ≤ prℓmin, andµ˜̂prℓ

(p̂rℓ) = 1 if p̂rℓ ≥ prℓmax.
Assumption 4.
µfrℓ(frℓ(x, p̂rℓ)), r = 1, · · · , q, ℓ = 1, · · · , kr are strictly
decreasing and continuous with respect tofrℓ(x, p̂rℓ), which
is defined on the interval[frℓmin, frℓmax] ∈ R1, where
µfrℓ(frℓ(x, p̂rℓ)) = 0 if frℓ(x, p̂rℓ) ≥ frℓmax, and
µfrℓ(frℓ(x, p̂rℓ)) = 1 if frℓ(x, p̂rℓ) ≤ frℓmin.

In order to determine these membership functions appro-
priately, let us assume that the decision maker setsprℓmin,
prℓmax frℓmin andfrℓmax as follows.

At first, the decision maker specifies the parametersprℓmin

and prℓmax in his/her subjective manner, whereprℓmin is
an acceptable minimum value andprℓmax is a sufficiently
satisfactory minimum value, and sets the intervalsPrℓ =
[prℓmin, prℓmax], r = 1, · · · , q, ℓ = 1, · · · , kr. Corresponding
to the intervalPrℓ, frℓmin can be obtained by solving the
following linear programming problem.

frℓmin
def
= min

x∈X
frℓ(x, prℓmin) (20)

In order to obtainfrℓmax, we first solve the following
linear programming problems,minx∈X frℓ(x, prℓmax), r =
1, · · · , q, ℓ = 1, · · · , kr. Let xrℓ, r = 1, · · · , q, ℓ = 1, · · · , kr
be the above optimal solution. Using the optimal solutions
xrℓ, frℓmax can be obtained as follows.

frℓmax
def
= max

s=1,···,q,t=1,···,ks,s̸=r,t̸=ℓ
frℓ(xst, p̂rℓmax) (21)

It should be noted here that, from (19),µf̃rℓ
(frℓ(x, p̂rℓ))

andµ˜̂prℓ
(p̂rℓ) are conflict each other for anyx ∈ X. Here,

let us assume that the decision maker adopts the fuzzy
decision [4] in order to integrate both the membership func-
tions µf̃rℓ

(frℓ(x, p̂rℓ)) and µ˜̂prℓ
(p̂rℓ). Then, the integrated

membership function can be defined as follows.

µDfrℓ
(x, p̂rℓ)

def
= min{µ˜̂prℓ

(p̂rℓ), µf̃rℓ
(frℓ(x, p̂rℓ))} (22)

Using the membership functionsµDfrℓ
(x, p̂rℓ), HMOP9 can

be transformed into the following form.
[HMOP10]
first level decision maker : DM1

max
x∈X,p̂1ℓ∈(0,1),ℓ=1,···,k1

(
µDf11

(x, p̂11), · · · , µDf1k1
(x, p̂1k1))

)
· · · · · · · · · · · · · · · · · · · · ·
q-th level decision maker: DMq

max
x∈X,p̂qℓ∈(0,1),ℓ=1,···,kq

(
µDfq1

(x, p̂q1), · · · , µDfqkq
(x, p̂qkq ))

)
In order to deal with HMOP10, we introduce aDf -Pareto
optimal solution concept.

Definition 2.
x∗ ∈ X, p̂∗rℓ ∈ (0, 1), r = 1, · · · , q, ℓ = 1, · · · , kr is
said to be aDf -Pareto optimal solution to HMOP10, if
and only if there does not exist anotherx ∈ X, p̂rℓ ∈
(0, 1), r = 1, · · · , q, ℓ = 1, · · · , kr such thatµDfrℓ

(x, p̂rℓ) ≥
µDfrℓ

(x∗, p̂∗rℓ) r = 1, · · · , q, ℓ = 1, · · · , kr, with strict
inequality holding for at least oner and ℓ.

For generating a candidate of the satisfactory solution
which is alsoDf -Pareto optimal, the decision maker is asked
to specify the reference membership values [4]. Similar to
MINMAX2( µ̂,w) in the previous section, once the reference
membership valueŝµr = (µ̂r1, · · · , µ̂rkr ) and the decision
power wr+1 are specified by each of the decision makers
(DMr, r = 1, · · · , q), the correspondingDf -Pareto optimal
solution is obtained by solving the following minmax prob-
lem.
[MINMAX4( µ̂,w)]

min
x∈X,p̂rℓ∈(0,1),r=1,···,q,ℓ=1,···,kr,λ∈Λ

λ (23)

subject to

µ̂rℓ − µf̃rℓ
(frℓ(x, p̂rℓ)) ≤ λ/wr, (24)

µ̂rℓ − µ˜̂prℓ
(p̂rℓ) ≤ λ/wr, (25)

r = 1, · · · , q, ℓ = 1, · · · , kr
Because ofc2rℓx + α2

rℓ > 0, the constraints (24) can be
transformed as follows.

p̂rℓ ≤ Trℓ

(
µ−1

f̃rℓ
(µ̂rℓ − λ/wr)− (c1rℓx+ α1

rℓ)

c2rℓx+ α2
rℓ

)
(26)

where µ−1

f̃rℓ
(·) is an inverse function ofµf̃rℓ

(·). From the

constraints (25), it holds that̂prℓ ≥ µ−1
˜̂prℓ

(µ̂rℓ − λ/wr),

whereµ−1
˜̂prℓ

(·) is an inverse function ofµ˜̂prℓ
(·). Therefore,

the constraint (26) can be reduced to the following inequality
where a permissible probability level̂prℓ is disappeared.

µ−1

f̃rℓ
(µ̂rℓ − λ/wr)− (c1rℓx+ α1

rℓ)

≥ T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ − λ/wr)) · (c2rℓx+ α2
rℓ) (27)

Then, MINMAX4(µ̂,w) can be equivalently reduced to
the following problem.
[MINMAX5( µ̂,w)]

min
x∈X,λ∈Λ

λ (28)

subject to

µ−1

f̃rℓ
(µ̂rℓ − λ/wr)− (c1rℓx+ α1

rℓ)

≥ T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ − λ/wr)) · (c2rℓx+ α2
rℓ),

r = 1, · · · , q, ℓ = 1, · · · , kr (29)

It should be noted here that MINMAX5(̂µ,w) is same as
MINMAX3( µ̂,w). Therefore, an optimal solution(x∗, λ∗)
of MINMAX5( µ̂,w) can be obtained by combined use of
the bisection method with respect toλ and the first-phase of
the two-phase simplex method of linear programming.

The relationship between the optimal solution(x∗, λ∗) of
MINMAX5( µ̂,w) andDf -Pareto optimal solutions can be
characterized by the following theorem.
Theorem 2.
If x∗ ∈ X,λ∗ ∈ Λ is a unique optimal solution of
MINMAX5( µ̂,w), then x∗ ∈ X, p̂∗rℓ = µ−1

˜̂prℓ

(µ̂rℓ −
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λ∗/wr)), r = 1, · · · , q, ℓ = 1, · · · , kr is aDf -Pareto optimal
solution.
(Proof）
From (29), it holds that µ̂rℓ − λ∗/wr ≤
µf̃rℓ

(frℓ(x
∗, µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr))), r = 1, · · · , q, ℓ =

1, · · · , kr. Assume thatx∗ ∈ X, µ−1
˜̂prℓ

(µ̂rℓ − λ∗/wr),
r = 1, · · · , q, ℓ = 1, · · · , kr is not a Df -
Pareto optimal solution. Then, there exist
x ∈ X, p̂rℓ, r = 1, · · · , q, ℓ = 1, · · · , kr such that
µDfrℓ

(x, p̂rℓ) = min{µ˜̂prℓ
(p̂rℓ), µf̃rℓ

(frℓ(x, p̂rℓ)), }
≥ µDfrℓ

(x∗, µ−1
˜̂prℓ

(µ̂rℓ − λ∗/wr)) = µ̂rℓ − λ∗/wr,
r = 1, · · · , q, ℓ = 1, · · · , kr, strict inequality holding for at
least oner and ℓ. Then it holds that

µ˜̂prℓ
(p̂rℓ) ≥ µ̂rℓ − λ∗/wr, (30)

µf̃rℓ
(frℓ(x, p̂rℓ)) ≥ µ̂rℓ − λ∗/wr, (31)

r = 1, · · · , q, ℓ = 1, · · · , kr. From the definition (19),
the inequalities (30) and (31) can be transformed into
the inequalities, p̂rℓ ≥ µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr), p̂rℓ ≤

Trℓ

(
µ−1

f̃rℓ
(µ̂rℓ−λ∗/wr)−(c1

rℓx
∗+α1

rℓ)

c2
rℓ
x∗+α2

rℓ

)
. This means

that there exists somex ∈ X such that
µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr)− (c1rℓx+ α1

rℓ) ≥ T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ −
λ∗/wr)) · (c2rℓx+ α2

rℓ), r = 1, · · · , q, ℓ = 1, · · · , kr, which
contradicts the fact thatx∗ ∈ X,λ∗ ∈ Λ is a unique optimal
solution to MINMAX5(µ̂,w).

IV. A N INTERACTIVE ALGORITHM

In this section, we propose an interactive algorithm to
obtain a satisfactory solution of the decision maker from
among Df -Pareto optimal solution set. Unfortunately, it
is not guaranteed that the optimal solution(x∗, λ∗) of
MINMAX5( µ̂,w) is Df -Pareto optimal, if(x∗, λ∗) is not
unique. In order to guaranteeDf -Pareto optimality, we first
assume that

∑q
r=1 kr constraints (29) of MINMAX5(̂µ,w)

are active at the optimal solution(x∗, λ∗). If one of the
constraints of (29) is inactive,i.e.,

µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr)− (c1rℓx

∗ + α1
rℓ)

> T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr)) · (c2rℓx∗ + α2
rℓ), (32)

we can convert the inactive constraint (32) into the active
one by applying the bisection method, where

Grℓ(µ̂rℓ)
def
= µ−1

f̃rℓ
(µ̂rℓ−λ∗/wr)−frℓ(x∗, µ−1

˜̂prℓ

(µ̂rℓ−λ∗/wr)).

[The bisection method for the inactive constraint]
Step 1. SetqLrℓ ← λ∗/wr, qRrℓ ← λ∗/wr + 1.
Step 2. Setqrℓ ← (qLrℓ + qRrℓ)/2.
Step 3. If Grℓ(qrℓ) > 0 then qLrℓ ← qrℓ and go to Step 2,
else ifGrℓ(qrℓ) < 0 thenqRrℓ ← qrℓ and go to Step 2, else if
Grℓ(qrℓ) = 0, then update the reference membership value
as µ̂rℓ ← qrℓ and stop.

For the optimal solution(x∗, λ∗) of MINMAX5( µ̂,w),
where the active conditions of the constraints (29) are
satisfied, we solve theDf -Pareto optimality test problem
formulated as follows.
[Test problem for Df -Pareto optimality]

max
x∈X,ϵrℓ≥0,r=1,···,q,ℓ=1,···,kr

w =

q∑
r=1

kr∑
ℓ=1

ϵrℓ (33)

subject to

T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr)) · (c2rℓx+ α2
rℓ)

+(c1rℓx+ α1
rℓ) + ϵrℓ

= T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr)) · (c2rℓx∗ + α2
rℓ)

+(c1rℓx
∗ + α1

rℓ), r = 1, · · · , q, ℓ = 1, · · · , kr (34)

For the optimal solution of the above test problem, the
following theorem holds.
Theorem 3.
Let x̌ ∈ X, ϵ̌rℓ ≥ 0, r = 1, · · · , q, ℓ = 1, · · · , kr be an
optimal solution of the test problem (33)-(34). Ifw = 0,
x∗ ∈ X,µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr), r = 1, · · · , q, ℓ = 1, · · · , kr is a
Df -Pareto optimal solution.
(Proof)
From the active conditions of the constraints (29), it
holds that µ̂rℓ − λ∗/wr = µf̃rℓ

(frℓ(x
∗, µ−1

˜̂prℓ

(µ̂rℓ −
λ∗/wr))), r = 1, · · · , q, ℓ = 1, · · · , kr. If x∗ ∈
X,µ−1

˜̂prℓ

(µ̂rℓ − λ∗/wr), r = 1, · · · , q, ℓ = 1, · · · , kr is
not a Df -Pareto optimal solution, there exists somex ∈
X, p̂rℓ, r = 1, · · · , q, ℓ = 1, · · · , kr such thatµDfrℓ

(x, p̂rℓ) =

min{µ˜̂prℓ
(p̂rℓ), µf̃rℓ

(frℓ(x, p̂rℓ))} ≥ µDfrℓ
(x∗, µ−1

˜̂prℓ

(µ̂rℓ −
λ∗/wr)) = µ̂rℓ − λ∗/wr, r = 1, · · · , q, ℓ = 1, · · · , kr, with
strict inequality holding for at least oner andℓ. This means
that the following inequalities hold.

µ˜̂prℓ
(p̂rℓ) ≥ µ̂rℓ − λ∗/wr, (35)

µf̃rℓ
(frℓ(x, p̂rℓ)) ≥ µ̂rℓ − λ∗/wr, (36)

r = 1, · · · , q, ℓ = 1, · · · , kr. This means that there exists
some x ∈ X, p̂rℓ, r = 1, · · · , q, ℓ = 1, · · · , kr such
that µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr) ≥ (c1rℓx + α1

rℓ) +T−1
rℓ (µ−1

˜̂prℓ

(µ̂rℓ −
λ∗/wr)) · (c2rℓx+ α2

rℓ). Because of the active conditions of
the constraints (29), it holds thatT−1

rℓ (µ−1
˜̂prℓ

(µ̂rℓ − λ∗/wr)) ·
(c2rℓx

∗ + α2
rℓ)+(c1rℓx

∗+α1
rℓ) ≥ T−1

rℓ (µ−1
˜̂prℓ

(µ̂rℓ−λ∗/wr)) ·
(c2rℓx+ α2

rℓ) + (c1rℓx + α1
rℓ), r = 1, · · · , q, ℓ = 1, · · · , kr,

with strict inequality holding for at least oner and ℓ. This
contradicts the fact thatw = 0.

Now, following the above discussions, we can present the
interactive algorithm in order to derive a satisfactory solution
from among aDf -Pareto optimal solution set.
[An interactive algorithm]
Step 1: Each of the decision maker (DMr, r = 1, · · · , q)
sets his/her membership functionsµ˜̂prℓ

(p̂rℓ), ℓ = 1, · · · , kr
in his/her subjective manner.
Step 2: Corresponding to the membership functions
µ˜̂prℓ

(p̂rℓ), ℓ = 1, · · · , kr, each of the decision maker
(DMr, r = 1, · · · , q) sets his/her membership functions
µf̃rℓ

(frℓ(x, p̂rℓ)), ℓ = 1, · · · , kr.
Step 3: Set the initial reference membership values asµ̂rℓ =
1, r = 1, · · · , q, ℓ = 1, · · · , kr, and the initial decision power
aswr = 1, r = 1, · · · , q.
Step 4: Solve MINMAX5(µ̂,w) by combined use of the
bisection method and the first-phase of the two-phase simplex
method of linear programming. If the active condition of
the constraints (29) is not satisfied at the optimal solution
(x∗, λ∗), then the bisection method with respect to the refer-
ence membership value is applied, andDf -Pareto optimality
test problem is solved.
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Step 5: If each of the decision makers (DMr, r = 1, · · · , q)
is satisfied with the current values of theDf -Pareto opti-
mal solutionµDfrℓ

(x∗, p̂∗rℓ), ℓ = 1, · · · , kr, where p̂∗rℓ =

µ−1
˜̂prℓ

(µ̂rℓ − λ∗),then stop. Otherwise, let thes-th level deci-
sion maker (DMs) be the uppermost of the decision makers
who are not satisfied with the current values. Considering
the current values of his/her membership functions, DMs

updates his/her decision powerws+1 and/or his/her reference
membership valueŝµsℓ, ℓ = 1, · · · , ks according to the
following two rules, and return to Step 4.
Rule 1 ws+1 must be set asws+1 ≤ ws. After updating
ws+1, if ws+1 < wt, s+ 2 ≤ t ≤ q, wt is replaced byws+1

(wt ← ws+1).
Rule 2 Before updating DMs’s reference membership values
µ̂sℓ, ℓ = 1, · · · , ks, the other decision makers’ reference
membership values are fixed as the current values (µ̂rℓ ←
µDfrℓ

(x∗, p̂∗rℓ), r = 1, · · · , q, r ̸= s, ℓ = 1, · · · , kr ) .

V. A N UMERICAL EXAMPLE

In order to demonstrate the proposed method for HMOP1,
we consider the following hierarchical two-objective stochas-
tic linear programming problem under three hypothetical
decision makers.
[HMOP1]
first level decision maker : DM1

min z̄11(x) = (c111 + t̄11c
2
11)x+ (α1

11 + t̄11α
2
11)

min z̄12(x) = (c112 + t̄12c
2
12)x+ (α1

12 + t̄12α
2
12)

second level decision maker : DM2
min z̄21(x) = (c121 + t̄21c

2
21)x+ (α1

21 + t̄21α
2
21)

min z̄22(x) = (c122 + t̄22c
2
22)x+ (α1

22 + t̄22α
2
22)

third level decision maker : DM3

min z̄31(x) = (c131 + t̄31c
2
31)x+ (α1

31 + t̄31α
2
31)

min z̄32(x) = (c132 + t̄32c
2
32)x+ (α1

32 + t̄32α
2
32)

subject to x ∈ X
def
= {x ∈ R10 | aix ≤ bi, i =

1, · · · , 7,x ≥ 0}
In HMOP1,x = (x1, x2, · · · , x10)

T is the decision column
vector, ai, i = 1, · · · , 7, c1rℓ, c2rℓ, r = 1, 2, 3, ℓ = 1, 2 are
the constant coefficient row vectors which are shown in
Table 1, andα1

11 = −18, α2
11 = 5, α1

12 = −27, α2
12 =

6, α1
21 = −12, α2

21 = 3, α1
22 = −15, α2

22 = 4, α1
31 =

−10, α2
31 = 4, α1

32 = −27, α2
32 = 6. The right side of the

constraints areb1 = 140, b2 = −220, b3 = −190, b4 =
75, b5 = −160, b6 = 130, b7 = 90. And trℓ(ω), r =
1, 2, 3, ℓ = 1, 2 are Gaussian random variables defined as
t̄11 ∼ N(4, 22), t̄12 ∼ N(3, 32), t̄21 ∼ N(3, 12), t̄22 ∼
N(3, 22), t̄31 ∼ N(3, 22), t̄32 ∼ N(3, 32).

According to the proposed interactive algorithm, at Step
1, the individual minimum and maximum ofE(z̄rℓ(x)), r =
1, 2, 3, ℓ = 1, 2 are calculated. Considering such values, each
decision maker (DMr) specifies the following intervals for
µfrℓ(frℓ).

F11 = [f11min, f11max] = [2000, 2200]

F12 = [f12min, f12max] = [400, 700]

F21 = [f21min, f21max] = [800, 1000]

F22 = [f22min, f22max] = [650, 800]

Table 1. Constant coefficients

x x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

c111 19 48 21 10 18 35 46 11 24 33
c211 3 2 2 1 4 3 1 2 4 2
c112 12 -46 -23 -38 -33 -48 12 8 19 20
c212 1 2 4 2 2 1 2 1 2 1
c121 12 38 -23 33 -33 45 12 -9 19 20
c221 1 2 4 2 2 1 2 1 2 1
c122 12 -36 27 -30 -33 45 -11 12 19 -8
c222 1 2 4 2 2 1 2 1 2 1
c131 -18 -26 -22 -28 -15 -29 -10 -19 -17 -28
c231 2 1 3 2 1 2 3 3 2 1
c132 -8 31 28 29 25 36 -8 -7 -13 -15
c232 1 2 3 2 2 1 2 1 2 1
a1 12 -2 4 -7 13 -1 -6 6 11 -8
a2 -2 5 3 16 6 -12 12 4 -7 -10
a3 3 -16 -4 -8 -8 2 -12 -12 4 -3
a4 -11 6 -5 9 -1 8 -4 6 -9 6
a5 -4 7 -6 -5 13 6 -2 -5 14 -6
a6 5 -3 14 -3 -9 -7 4 -4 -5 9
a7 -3 -4 -6 9 6 18 11 -9 -4 7

F31 = [f31min, f31max] = [−1050,−950]

F32 = [f32min, f32max] = [−200, 50]

On these intervals, each hypothetical decision maker defines
his/her membership functionsµfrℓ(frℓ), r = 1, 2, 3, ℓ = 1, 2
(Step 1).

µfrℓ(frℓ) =
frℓ − frℓmax

frℓmin − frℓmax

Corresponding to the intervalsFrℓ, r = 1, 2, 3, ℓ = 1, 2, the
intervals forµprℓ

(prℓ(x, frℓ)) can be obtained by solving the
following problems.

prℓmax = max
x∈X

prℓ(x, frℓmax)

prℓmin = min
s=1,2,3,t=1,2,s̸=r,t̸=ℓ

prℓ(xst, frℓmin)

where xst is the optimal solution of the problem
maxx∈X prℓ(x, frℓmin), r = 1, 2, 3, ℓ = 1, 2. Then, we
obtain the following values.

[p11min, p11max] = [0.023, 0.959]

[p12min, p12max] = [0.015, 0.993]

[p21min, p21max] = [0.001, 0.999]

[p22min, p22max] = [0.259, 0.995],

[p31min, p31max] = [0.136, 0.859]

[p32min, p32max] = [0.001, 0.987]

On these intervals, each hypothetical decision maker
sets his/her membership functionsµprℓ

(prℓ(x, frℓ)), r =
1, 2, 3, ℓ = 1, 2 (Step 2).

µprℓ
(prℓ(x, frℓ)) =

prℓmin − prℓ(x, frℓ)

prℓmin − prℓmax

At Step 3, set the initial reference membership values as
µ̂rℓ = 1, r = 1, 2, 3, ℓ = 1, 2, and the initial decision powers
aswr = 1, r = 1, 2, 3. At Step 4, solve MINMAX3(̂µ,w)
by combined use of the bisection method with respect toλ
and the first-phase of the two-phase simplex method of linear
programming.
[MINMAX3( µ̂,w)]
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min
x∈X,λ∈Λ

λ

subject to

µ−1

f̃rℓ
(µ̂rℓ − λ/wr)− (c1rℓx+ α1

rℓ)

≥ T−1
rℓ (µ−1

p̃rℓ
(µ̂rℓ − λ/wr)) · (c2rℓx+ α2

rℓ)

r = 1, 2, 3, ℓ = 1, 2

The correspondingDp-Pareto optimal solution is obtained as

µDprℓ
(x∗, µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr)) = 0.5452,

r = 1, 2, 3, ℓ = 1, 2. For the optimal solution(x∗, λ∗),
DM1 updates his/her decision power asw2 = 0.8 in order to
improve his/her own membership functions at the expense of
the membership functions of the other decision makers (Step
5), and go back to Step 4. Then, the corresponding optimal
solution is obtained as

µDp1ℓ
(x∗, µ−1

f̃1ℓ
(µ̂1ℓ − λ∗/w1)) = 0.6059,

ℓ = 1, 2, and

µDprℓ
(x∗, µ−1

f̃rℓ
(µ̂rℓ − λ∗/wr)) = 0.5074,

r = 2, 3, ℓ = 1, 2. For this optimal solution, DM1 is satisfied
with the current values of the membership functions, but
DM2 is not satisfied with the current values. Therefore, DM2

updates his/her decision power asw3 = 0.75 and the optimal
solution is obtained as

µDp1ℓ
(x∗, µ−1

f̃1ℓ
(µ̂1ℓ − λ∗/w1)) = 0.6220,

ℓ = 1, 2,

µDp2ℓ
(x∗, µ−1

f̃2ℓ
(µ̂2ℓ − λ∗/w2)) = 0.5275,

ℓ = 1, 2, and

µDp3ℓ
(x∗, µ−1

f̃3ℓ
(µ̂3ℓ − λ∗/w3)) = 0.4960,

ℓ = 1, 2. Since the decision makers (DM1 and DM2) are
satisfied with current values of the membership functions,
but the third level decision maker (DM3) is not satisfied
with the current values. Therefore, DM3 updates his/her ref-
erence membership values as (0.53,0.49) in order to improve
µDp31

(x, f31) at the expense ofµDp32
(x, f32). Then, since

the decision makers (DM1, DM2, and DM3) are satisfied
with the corresponding optimal solution, stop the interactive
processes.

VI. CONCLUSION

In this paper, we have proposed an interactive decision
making method for hierarchical multiobjective stochastic
linear programming problems to obtain a satisfactory solution
from among a Pareto optimal solution set. In the proposed
method, by considering the conflict between permissible
objective levels and and permissible probability levels, the
corresponding membership functions are integrated through
the fuzzy decision. In the integrated membership space, the
candidate of a satisfactory solution is obtained from among
Pareto optimal solution set by updating the reference mem-
bership values and/or the decision powers. In our proposed
method, it is expected to obtain the satisfactory solution,
in which the proper balance between permissible objective
values and permissible probability levels are attained.

TABLE I
INTERACTIVE PROCESSES

　 1 2 3 4

µ̂11 1 1 1 0.6220
µ̂12 1 1 1 0.6220
µ̂21 1 1 1 0.5275
µ̂22 1 1 1 0.5275
µ̂31 1 1 1 0.53
µ̂32 1 1 1 0.49
w1 1 1 1 1
w2 1 0.8 0.8 0.8
w3 1 0.8 0.75 0.75

µDp11
(x∗, f∗

11) 0.5452 0.6059 0.6220 0.6206
µDp12

(x∗, f∗
12) 0.5452 0.6059 0.6220 0.6206

µDp21
(x∗, f∗

21) 0.5452 0.5074 0.5275 0.5257
µDp22

(x∗, f∗
22) 0.5452 0.5074 0.5275 0.5257

µDp31
(x∗, f∗

31) 0.5452 0.5074 0.4960 0.5281
µDp32

(x∗, f∗
32) 0.5452 0.5074 0.4960 0.4881

f∗
11 2091 2079 2076 2076

f∗
12 536.4 518.2 513.4 513.8

f∗
21 891.0 898.5 894.5 894.9

f∗
22 718.2 723.9 720.9 721.1

f∗
31 -1005 -1001 -999.6 -1003

f∗
32 -86.30 -76.85 -74.00 -72.02

p11(x∗, f∗
11) 0.5338 0.5907 0.6057 0.6044

p12(x∗, f∗
12) 0.5484 0.6077 0.6235 0.6221

p21(x∗, f∗
21) 0.5460 0.5083 0.5284 0.5266

p22(x∗, f∗
22) 0.6603 0.6325 0.6473 0.6460

p31(x∗, f∗
31) 0.5306 0.5032 0.4950 0.5182

p32(x∗, f∗
32) 0.5393 0.5021 0.4908 0.4830
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