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Hierarchical Multiobjectre Stochastic Linear
Programming Problems Considering Both
Probability Maximization and Fractile
Optimization

Hitoshi Yano

Abstract—In this paper, we focus on hierarchical multiobjec- approaches to obtain a satisfactory solution. As a natural
tive stochastic linear programming problems (HMOP) where extension of their approaches, Yano [10] proposed a fuzzy
multiple decision makers in a hierarchical organization have gn5r6ach for hierarchical multiobjective linear programming
their own multiple objective linear functions together with . L .
common linear constraints. In order to deal with HMOP, a p.roblt'ams. On the ‘?tf_‘er hand, in the actual deC|S|on _mak'lng
probability maximization model and a fractile optimization ~Situations, the decision makers often encounter difficulties
model are applied. By considering the conflict between permis- to deal with vague information or uncertain data. Sakawa
sible objective levels and permissible probability levels in such et al.[5],[6],[7] formulated multiobjective stochastic linear
two models, it is assumed that each of the decision makers ., amming problems through a probability maximization
has fuzzy goals for permissible objective levels and permissible . 2
probability levels, and such fuzzy goals can be quantified by model gnd a fractlle optlmlzatlon _model, and proposed
eliciting the membership functions. Through the fuzzy decision, interactive algorithm to obtain a satisfactory solution from
such membership functions are integrated. In the integrated among a Pareto optimal solution set. Using a probability
membership space, Pareto optimality concept is introduced. maximization model or a fractile optimization model, it
The interactive algorithm to obtain a satisfactory solution from is required for the decision maker to specify parameters
among a Pareto optimal solution set is proposed on the basis o " L. -
of linear programming technique, in which the hierarchical called perm|SS|bIe objective Ieyels or permissible prob_apﬂny
decision structure is reflected by the decision power and the |Evels in advance. However, it seems to be very difficult
proper balance between permissible objective levels and the to specify such values in advance. In order to cope with
corresponding probability function is attained. such difficulties, Yano et al.[12] proposed fuzzy approaches

Index Terms—hierarchical multiobjective stochastic linear t0 multiobjective stochastic linear programming problems,
programming, decision power, a probability maximization where the decision maker has fuzzy goals for permissible
model, a fractile optimization model, interactive decision mak- gpjective levels and permissible probability levels, and such
iNg. fuzzy goals are quantified by eliciting the membership func-

tions. Unfortunately, in the proposed method, it is assumed
I. INTRODUCTION that the decision maker adopts the fuzzy decision [4] to

The decision makers in practical hierarchical decisig?Pt@in the satisfactory solution. _ S
making situations often encounter two kinds of decision N this paper, we focus on hierarchical multiobjective
making processes, one is well known as a multi-level prétochastic linear programming problems [11], and propose
gramming process and the other is the interactive decisiBfl Intéractive algorithm to obtain a satisfactory solution
making process [3]. The Stackelberg games are well-knoff§m @mong a Pareto optimal solution set. In the proposed
as multilevel programming problems with multiple decisiof€thod, by considering the conflict between permissible
makers, in which the decision maker in each level mak@iective levels and and permissible probability levels, the
his/her decision independently in order to optimize his/h&Prresponding membership functions are integrated through
own objective function [1], [9]. On the other hand, thdh€ fuzzy decision. In the integrated membership space,
interactive decision making process can be found in lar§@reto optimal concept is introduced. In section II, hier-
scale hierarchical organizations such as multi-hierarchicchical multiobjective programming problems through a
companies, in which the decision maker in each level makgEobability maximization model is formulated. In section Il
his/her decision through the interaction between the debi€rarchical multiobjective programming problems through
sion makers and the lower level decision makers subrfit fractile optimization model is formulated. It is shown
their own decision and then such decision is modified {2t the two kinds of formulations to obtain Pareto optimal
the upper level decision makers with considerations of t#@!utions are same. In section IV, an interactive algorithm
overall benefits [3]. In order to deal with such an interacti@@Se€d on linear programming technique is proposed to obtain
decision making process, Lai [2], Shih et al.[8] and Le# Satisfactory solution.
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of the decision makers (DM r = 1,---,q) has histher own  In HMOP2(f), each decision maker (DM seems to
multiple objective linear functions together with common linprefer not only the less values of permissible objective
ear constraints, and random variable coefficients are involviedels f,., but also the larger values of the corresponding

in each objective function. distribution functionsp,.¢(x, f.¢),¢ =1,---, k.. Since these

[HMOP1] values conflict with each other, the less value of permissible

first level decision maker : DM, objective level results in the less value of the corresponding
i‘nel?( z1(x) = (z11(x), -+, Z1k, (T)) probability function. Therefore, it is very important for each

decision maker (DM) to determine appropriate values of
""""""""""" permissible objective levelg,. Unfortunately, it seems to
be difficult for the decision maker to find appropriate values

-th level decision maker : D S L .
1 M, of permissible objective levels. In order to circumvent such

min 2o(2) = (Za (@), Zar, (2)) difficulties, Yano et al. [12] proposed a fuzzy approach

T . . , .. for multiobjective stochastic linear programming problems.

where z = (z1,22,---,2,)" IS n-dimensional decision o 5 similar point of view, instead of HMOP2) fwe

colum_n vector wh_ose elemen@,z = L--,mare non- .,qqiger the following multiobjective programming problem

negative, X' is a linear constraint set with respect # i, \yhich permissible objective levels are not constant values

Each objective function of DMr = 1,---, ¢ is defined by but the decision variables.

Zre (w) = Cr¢x+Qyrg, Crg = cylag'i_frécgw Qrg = aig'i_frfarga [HMOP3]

whereé¢,,,f = 1,---, k, aren dimensional random variﬁableﬁrst level decision maker : DM,

row vectorsa,,, £ = 1,-- -, k, are random variables, arng,

H . . . . . . max x, N L, )y — N
is a random variable whose cumulative distribution functiogex, f. ers: (pra(@, frr) s paw (@ J1n, ), =1 fik:)

T,¢(-) is assumed to be strictly monotone increasing and

continuous.
Similar to the formulations of multilevel linear program--th level decision maker: DM,
ming problems proposed by Lee et al.[3], it is assumed that max (Pa1(x, fq1), -+ s Paky (5 fary)s —fq1, s —far,)
k

the upper level decision makers make their decisions wiftfX.f,€R"

ganization, although they can take priority for their objectivgidgment, it is natural to assume that the decision maker
functions over the lower level decision makers. have a fuzzy goal for each objective function in HMOP3.

In order to deal with HMOP1, we adopt stochastic lineap, this section, it is assumed that such a fuzzy goal can
programming techniques. Using a probability maximizatiope quantified by eliciting a corresponding membership func-
model [7], we substitute the minimization of the objectivgion, Let us denote a membership function 06 (x, fre)
function z,,(x) for the maximization of the probability that a5 ), (p,.,(x, f,¢)), and a membership function of., as
Zre(x) is less than or equal to a certain permissible objectiye. (f,,) respectively. Then, HMOP3 can be transformed to
level f.,. Such a probabilityp,(z, f,,) can be defined as thé[following multiobjective programming problem.

follows. [HMOP4]
def i isi :
pre(@, fro) S Pr(w | zrel@,w) < for), @ first level decision maker : DM;
where Pr(-) denotes a probability measure,is an event, a?emeaXeRkl (5, (P11(®, f11))s s M,
J 1

and z.(x,w) is a realization of the random objective ) )
function z,,(x) under the occurrence of each elementary (plkl(w’flkl))’“fn(fﬂ)’""“fm (fk,))
eventw. Each of the decision makers (DM = 1,---,q) -« cvvvvvveeinea..

subjectively specifies certain permissible objective leveisth level decision maker: DM,

f7":(f"'l?”.?f?“kr)’r:17"'7Q7f:(.fh"'v.fq)'Then,

HMOP1 can be transformed into the following problergceXn}?Xequ (K5 (Pq1 (2, fq1)), -+ - HBgrg

involving permissible objective levels as parameters. s

[HMOPZ(f )] (quq (33, quq))7 /’qul (fq1)7 ) ,uquq (quq))

first level decision maker : DM, Throughout this section, we make the following assumptions
gggg(pu(:v,fu), o D1k (T fiky) with respect to the membership functions , (p¢(x, f,¢)),

pp, (fre) =1, g0 =1, k.
Assumption 1.

g-th level decision maker: DM, pg, (fre),r =1,--+,q,0 =1,--- k, are strictly increasing

max(pg1(z, fg1), Dok, (T, far,)) gnd continuous with respect ), which is define_d on the
rex ! ! ! ! interval [frémin; fr@max] S er WhererM (fré) =0 if fr@ 2
Under the assumption that?z + a2 > 0,r = Jromax, @dpg (fre) = 1if frl < fromin.
1,---,q,0 =1,---, k., the objective functior,(x, f.,) in Assumption 2. '
HMOP1(f) is expressed as follows. Wppe Pre(, fre)),m = 1,--+,q,€ = 1,---,k, are strictly
decreasing and continuous with respect gg(x, fr¢),
pre(, fre) = Pr(w|zr(e,w) < fre) which is defined on the intervap, smin, Premax] < (0,1),
_ Tre(fré — (ct +aie)) where iz, (py0(, fre)) = 0 if ppo(, fre) < Premin, and
cilw + a%é Heprg (pM(wv fT€)> =11if pr@(wa fré) > Prémax-

(Advance online publication: 26 May 2012)
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In order to determine these membership functions appreshere
priately, let us assume that the decision maker $etsin,

frhnax Premin andprémax as follows. A= [rzl,---,rél,?i(l,n-,k,» wr (MTZ B 1) * 67

At first, the decision maker specifies the paramefersi, min Wy firg — 6]
and f.smax in his/her subjective manner, whergyi, is r=1,,¢,0=1, 0 kr
sufficiently satisfactory maximum value anfimax iS an \wheres is a sufficiently small positive constant.
acceptable maximum value, and sets the intervgls = It should be noted here that, in general, the optimal
[fremin, fremax), 7 = 1,-+,¢,€ = 1, k. promax CaN b€ golution of MINMAXL(j2) does not reflect the hierarchical
obtained by solving the following problem. structure between decision makers where the upper level

decision maker can take priority for his/her distribution
functions over the lower level decision makers. In order to
In order to obtainp,smi, We first solve the problems cope with such a hierarchical preference structure between
e _ " ¢ decision makers, we introduce the concept of the decision
maXCBEXp’rf(wv fr@mm)vr - 17 e aq7€ - 17 Ty k’r" Let ..
Zrpr = 1,--,q,0 = 1,---.k, be the corresponding power [2] w = (w1,~-~_,wq), whe_r(_a ther-th Ieve! de_C|S|on
optimal solution. Using the optimal solutions,, p,em, Maker (DM:) can specify the decision power..., in his/her
can be obtained as follows subjective manner and the last decision maker (PNas no
decision power. In order to reflect the hierarchical preference
def . . .. .
DPremin — min Pre(Tst, fremin)  (3)  structure between multiple decision makers, the decision
s=1,0,q,t=1, kg 8Tt AL : :
powersw = (wi,---,w,) have to satisfy the following
It should be noted here thal;,,(pre(x, fre)) and inequality conditions.
w7, (fre) are conflict each other for any € X. Here, let us
assume that the decision maker adopts the fuzzy decision wr=12>wy > > Wg-1 2 wWg >0 8
[4] in order to integrate both the membership functlonq;hen, the corresponding modified MINMAXaJ is refor-

s, (pre(z, fre)) and ufﬁ(f,g). Then, the integrated mem- . 1ated as follows.
bership function can be defined as follows. [MINMAX2( i, w)]

def
Preémax = %Ga)}g p7'€(w7 fr@max) (2)

def . 1
'UDPNZ (:I:, frf) = mln{/LfM (frf)a e (p7-g($, fr@))} (4) TeX,freR ,r:IR.l.I.%q,z:1,~-,kr,>\eA A (9)

Using the integrated membership functiops, (z,f.¢), subject to
HMOP4 can be transformed into the following form.

[HMOPS] fire = Wipo (Pre(T, fre)) < AJwr, (10)
first level decision maker : DM; fire = i, (fre) < A wr, (11)
a:eX,fuggil},(Z:L--»,kl (’uDPu (CU, fll)) e 7,U’Dp1k1 (:l:’ .flkl))) r= 1? 4, é = 17 Y k'r

--------------------- Since p3,, (pre(, fre)) is strictly monotone increasing and
g-th level decision maker: DM, continuous and:?,x + a?, > 0, the constraint (10) can be

(uDqu CHMIRTENTN. (w7quq))) transformed as follows.

ﬂrf ) (pri(wa f’rf)) < )\/wrv

max
TeX,feeeRY U=1,--- ,kq

In order to deal with HMOPS5, we introduce A,-Pareto

1,4
optimal solution concept. S pre(@, fro) 2 g, (e = A wy),
Definition 1. fre = (epp + agy) 15
o s T r ) > 1 (e — M w,),
z e X, fr,eRr=1,---,¢,=1,--- k is said to be a M( ¢z +al, 2 Mo fire = Af0r)

D,-Pareto optimal solution to HMOPS, if and only if there o, _ (¢!, z +al))

does not exist anothet € X, f,, € R, r =1,---,¢,( = —1, “1gn 2 2

sJr ) ) s 4 >T - o — A ) - . 12
L+, k, such thatup, (@, fre) > pp, (2 f5), r = 2 Try (15, (fre = Awr)) - (ey@ + ). (12)
L,--q, =1,k with strict inequality holding for at where > (-) and7},'(-) are inverse functions with respect
least oner and /. to p5,,(-) and T,.(-) respectively. Moreover, it holds that

For generating a candidate of a satisfactory solution whigh, < ;=1 (fire — A/ w,.), becausguf (fre) is strictly mono-
. . g =P ]
is also D,,-Pareto optimal, each decision maker (BMs  tone decreasing and continuous. As a result, the constraints
asked to specify the reference membership valies= (10) and (11) can be reduced to the following inequality

(Ar1, -+, firk, ) [4]. Once the reference membership valueghere a permissible objective levgl, is removed.
are specified, the corresponditigj,-Pareto optimal solution
is obtained by solving the following minmax problem. N;i(ﬂw —Mw,) — (ctx+al,)

MINMAXL( )] > T3 (a5 (e — M) - (R + ) (13)

Then, MINMAX2(4, w) is equivalently transformed to the
subject to following problem.
©) IMINMAX3( f1, w)]

min
, 7 TeX,AEA

A (5)

min
TeX, fre€RYr=1,---,q,0=1,--- k- ,AEA

ﬂrﬁ — Kp, (pré(mv frZ))

A (14)
fire — Hi, (fré)

IN A
> >

:1’...7q’€:17...’kr SUbJeCttO

<
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m J;l (fire — N w,) — (et + aly) g-th level decision maker: DM,
>T7 (pr fire = Awy)) - (g + afy) TeX, fq/ERl =1, (fqh v o)
r=1-,q0=1" k. (15)  subject to
It should be noted here that the constraints (15) can be Pre(@, fre) 2 Pre;r =1, b =1, ks (18)
reduced to a set of linear inequalities for some fixed valygnerep, = = Pri, s Dk, )y = 1, q, 0 = (P1, -, Pq)

A € A. This means that an optimal solutiof™, A*)  are vectors of permissible probability levels which are spec-

of MINMAX3( /i, w) is obtained by combined use of thefied by the decision maker (DMr = 1,---,q) in his/her

bisection method with respect foand the first-phase of the gypjective manner.

two-phase simplex method of linear programming. In HMOP§(p), the constraint (18) can be transformed into
The relationship between the optimal soluti@er, \*) of  the following form.

MINMAX3( i, w) and D,-Pareto optimal solutions can be

characterized by the following theorem. Pre

Theorem 1.

If (x*,\*) 1is a unique optimal solution of & f.,

MINMAX3( i, w), thenz* € X, f¥, = =1y, Y (e — X Jw,),

IN

pr@(ajv fré) =

é f7€ ( 714258 +alé)
rfw + Oé
T, (bre) - (g + afy) + (chym + ary)

Y

Let us define the right-hand side of the above inequality as

r=1,---,¢=1,--- k. isaD, -Paretd’ ‘optimal solution follows
to HMOPS. ' »
(Proot] Fre(®,Dre) = T (Bre) - (€ + aZy) + (ef g+ agy) (19)
Since an optimal solutioriz*, \*) satisfies the constraints _
(15), it holds that _Then_, HMOP6%) can be equivalently reduced to the follow-
ing simple form.
pr (e = X Jwy) = (™ + agy) [HMOP7(5)]
Tre 2 2 + o2 first level decision maker : DMl
Cre ré

= pre(@”, 15 (e = N f0,)) iy Un(@pu), - fua (@ Prio)

Zuﬁpz(:u”rf_)‘ /wT)aT:17"')Q7£:17"'7kr'

g-th level decision maker: DM,

Assume thatz* € X, f5, = (u;'(fire — \/w,), : NN -

ro=1,-,q,0 = 1,---,k, is not 4 D,-Pareto opti- 0% Un (@ Do) Sox, (@ Do, )

mal solution to HMOPS, then there exists € X [, In order to deal with HMOPTj), the decision maker
r=1,,¢¢( = 1,--- k. such thatup,  (z, frz) = must specify permissible probability levefs in advance.
min{yz , (fre), tp,.(Pre(®, fre))} = pp, (T ,Nf "(fire — However, in general, the decision maker seems to prefer

N Jwp)) = firg — N Jwp,r =1, ¢, 0 = 1,- kr; with  not only the less value of the objective functigyy (x, p¢)
strict inequality holding for at least one and ¢. Then it but also the larger value of the permissible probability level

holds that pre- From such a point of view, we consider the following
. . multiobjective programming problem which can be regarded
i, (fre) 2 e = X" Jwr, (16)  as a natural extension of HMORA)
Hp,p (pré (wa f’r'é)) > /:LM - /\*/w,-, (17) [HMOP8]

p =10 =1, k. From the definition (1), the first level decision maker : DM1A ) )
mequalltles (16) and (17) can be transformed into the in- 4% (fra(@,pra) o am (@ Prk, )y —Pras -5 —Pam)

equalities, f,., < “f Y e — N Jwy), fre > T, (,um (e —

M Jw)) - (e Mc:H—aM) + (el,x + o). Th|s means that - ]
there exists soma € X such thatuil(mg — X/ w,) > g-th !evel deC|sA|on maker: DMqA R )
fre ml?( (fql(vaql)v ) quq (vaqkq)a —DPq1, _quq)

T (5 (e — X Jwy)) - (2 +a2,) + (chym + o), @€

r =1,---,¢,£ = 1,---, k., which contradicts the fact Considering the imprecise nature of the decision maker’s
that z* € X,\* € A is a unique optimal solution to judgment, we assume that the decision maker has a fuzzy
MINMAX3( i, w). goal for each objective function in HMOPS8. Such a fuzzy

goal can be quantified by eliciting the corresponding mem-

I1l. HIERARCHICAL MULTIOBJECTIVE STOCHASTIC bership function. Let us denote a membership function of
LINEAR PROGRAMMING PROBLEMS THROUGH A an objective functionf,,(x, p,¢) aS/Lf“M(frg({E,ﬁM)), and a
FRACTILE OPTIMIZATION MODEL membership function of a permissible probability leyg}

If we adopt a fractile optimization model [6] for HMOP1,8S 5, (Pr¢) respectively. Then, HMOPS can be transformed

we can convert HMOP1 to the following muItlobJec:tlveaS the following problem.

programming problem. [. OP9] . _
[HMOPS(p)] first level decision maker : DM;
first level decision maker : DM; max (an(fll(l',ﬁu)), SN (fime

min xreX,p,e(0,1)k
TEX, froERL I=1, - k (f117 7f1]€1) pl ( )

..................... (@, D1k 15, (1) 115, (plkl))
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..................... Definition 2.
x* € Xaﬁ:Z € (0,1),7“ = 17"'7qa‘€ = 17"'7kr is
said to be aD;-Pareto optimal solution to HMOP10, if
max (“*1(f @, D))y s (fan and only if there does not exist another € X,p,, €
CCGX,pqE(O,l)k‘I ffl q q qu q (0’ 1)77« = 1) e ’q7£ = 1’ .. .7k7. Such tha‘t’quTZ (2137137.@) Z
. R R KDy, (x*,pr) r = 1,---,¢,¢ = 1,---,k,, with strict
(@ Pan,)): 145, (Pa1) " H i (quq)) inequality holding for at least one and .
Throughout this section, we make the following as- For generating a candidate of the satisfactory solution
Sumptions with respect to the membership function@hiCh is alson-Pareto optimal,the decision maker is asked

g-th level decision maker: DM,

pr(fre(@, pre))s s (Bre)sr =1, ,q, 0 =1, k. to specify the reference membership values [4]. Similar to
AsSumption 3. Pre MINMAX2( i1, w) in the previous section, once the reference
(Pre)sm =1,-++,q,0 = .k, are strictly increasing membership valueg, = (fir1,- -, firk,) and the decision

cﬁ continuous with respect m;, which is defined on the power w,,; are specified by each of the decision makers
mterval [Premin, Premax] € (0,1), Whereu (prl,) =0if (OM,,r=1,---,q), the corresponding ¢-Pareto optimal

Pre < Promin, @ndpg  (pre) = 1if prg > pMmax solution is obtained by solving the following minmax prob-
Assumption 4. lem.
pig, o (fre(®, pre))yr = 1,---,q,0 = 1,--- k, are strictly [MINMAX4( fi, w)]
decreasing and continuous with respecftg(x, p,¢), which EeXpre(0) min S e (23)
is defined on the intervalf, imin, fremax] € RY, where _ SRR e
Mfré(fré(xvﬁrf)) = 0 if frl(w»prl) > fremax: and SUbJeCt to
Bt (fre(@, Dre)) = Vi fro(, pre) < fromin- fire — g, (fre(@.Bre)) < M, (24)
In order to determine these membership functions appro- ¢
priately, let us assume that the decision maker sgtsin, fre = 15, (Bre) < Awr, (25)

Prémax f'rémin and frémax as follows. r= 17 LA t= 17 ) kr
Atfirst, the decision maker specifies the parameiersin - Because ofe?,x + a2, > 0, the constraints (24) can be

and pemax N hls{h_er subjective manner., whepelim_in IS transformed as follows.
an acceptable minimum value ampg,,.. is a sufficiently _1(A )y R 1
satisfactory minimum value, and sets the interv&ls = s < 15 (e = AJwy) = (€@ + ) (26)
[p'r'fminap'r@max]) r= 17 4, = 17 T k'r" Corresponding bre rt cfgx + OKZZ
to the interval P, f.smin can be obtained by solving the
following linear programming problem. where,u (~) is an inverse function Ofuf (-). From the

def . constralnts (25), it holds thap,, > M (/w - AN wy),

f'fﬁmin = min fr@(x7pr€min) (20)
Tex where ,up 1(.) is an inverse function op é() Therefore,

In order to obtain f.,m.x, We first solve the following the constraint (26) can be reduced to the following inequality
linear programming problemsningc x fr¢(x, premax),” = Where a permissible probability levgl, is disappeared.
13'"'7%(:13"'71‘77"Letwrivrz13"'7(]76:13"'7]{7’ 1 1
be the above optimal solution. Using the optimal solutions ”f (e = Awp) = (ex@ + agy)
Z,¢, [remax CaN be obtained as follows. > T, (Mge(/fw — M w,)) - (e +a?,)  (27)

Fromax & fre(@ar, Premax)  (21)  Then, MINMAX4(, w) can be equivalently reduced to
the following problem.
It should be noted here that, from (19); , (fr¢(x,pre))  [MINMAX5( f1,w)]
andu (prg) are conflict each other for any € X. Here, min )\ (28)
let us “assume that the decision maker adopts the fuzzy TEXAeA

decision [4] in order to integrate both the membership funsubject to

max
s=1,,q,t=1, ks, sFETtEL

tions yiz , (fre(x, Pre)) @nd pg  (pre). Then, the integrated B o 1
membership function can be defined as follows. f (e = Afwr) = (e + ay)
> T s e = Mwn) - (o + a2y),
Z, AT é i B Ar s F re\ L, Ar 22 [

poy,, (@, pre) = min{pg  (Pre), ig,, (fre(®, pre))} (22) L =Lk 29)
Using the membership functions,, (z,p,¢), HMOP9 can )
be transformed into the following form. It should be noted here that MINMAXA( w) is same as
[HMOP10] MINMAX3( &, w). Therefore, an optimal solutiofi*, \*)

first level decision maker : DM of MI_NMAXS(ﬂ,w) can be obtained by combined use of
max (MD (@,p11), -, 0y (@, P1a ))) the bisection method with respect koand the first-phase of

TEX,p1o€(0,1),0=1, - k1 A P T BB gy W Flh the two-phase simplex method of linear programming.

..................... The relationship between the optimal soluti@er, A*) of

g-th level decision maker: DM, MINMAX5( &, w) and D¢-Pareto optimal solutions can be
- - characterized by the following theorem.
EX,yre(0.0) =1, kg (“qul (@ 1)+ ipy,,, (:c,quq))) Theorem 2.

In order to deal with HMOP10, we introduce a;-Pareto T =* € X, A" € A is a unique optimal solution of
optimal solution concept. MINMAXS( 4, w), then & € X.p7, = pg (ire —

(Advance online publication: 26 May 2012)



TAENG International Journal of Applied Mathematics, 42:2, [JAM 42 2 04

M Jwy)),r=1,---,¢,£=1,---, k. is aDy-Pareto optimal subject to

solution. . § ) )
(Proof T, (H;M (Are = X Jwr)) - (e + azy)

From (29) it holds that ., — X/w, < el +al) + e

pf (Fre(@® g (/”W - Awe)), ro= gl = = T, (lt~ (Mrz = A\ fw,)) - (efex” + azy)

1, k. Assume thatz* € X, M (/w — X*/w,), )

r — 1’...7q7£ — 17...’]€r IS not a Df_ +(Crlw +a )71_1 "»(Le:]-"'k (34)

Pareto  optimal  solution. Then there  exiskq the optimal solution of the above test problem, the

T € Xprey v = 1qb = Ky such that ¢415wing theorem holds.
KDy , (@, pre) = mln{:up (Dr )aﬂfre(frf(maprﬁ))a} Theorem 3.
> poy,, (T 0 (/w - A /w,)) = fire —_/\*/wr- Let & € X,y > 0,r = 1,---,¢,{ = 1,---,k. be an
r=1,---,¢, =1, k,, strict inequality holding for at optimal solution of the test problem (33)-(34). 4f = 0,
least oner and /. Then it holds that e X u Yipe — N Jwp),r=1,---,q,0=1,--- k, is a
ps, (Bre) > fioe = N, (30) Ds- -Pareto "optimal solution.
@) 2 =N ey S

1, (fre(@ pre)) 2 fire Wrs From the active conditions of the constraints (29),
r = 1,---,¢,4 = 1,--- k.. From the definition (19), holds that ., — A\*"/w, = p; (fre(z* s Y —
the inequalities (30) and (31) can be transformed mtpk/wr))) ro= 1,--,q0 = 1, k. if o e
the inequalities, p,, > 4 e — NJwe)pre <X S (W — XNJw),r = 1, ,q,0 = 1,--- k. is
T ufTM(W A Jwr)—(CL, " +are Thi not an -Pareto optimal solution, there exists somee
re Cc2, T +a2, IS means sbre;sr=1,-++,q,0 =1,--- k. suchthapp, (:c Dre) =
that there exists somex X S,ulChA that min{p; (bre), iz, (fre(a, pr/))} > pp,,, (&, ps (uM_
Mf e = Xt Jwy) = (e + aly) 2 Ty (“I”;M(/”W - )\*/wr)—/trg—)\/wmr—l g0 =1, k:r, with
X“/wr)) (elx+aZy),r =1,---,q, = 1,--- k., which strict inequality holding for at least oneand/. ThIS means

contradicts the fact that* € X, \* € A is a unique optimal that the following inequalities hold.
solution to MINMAX5(i, w).

/JIEM (ﬁr@) 2 ,U/TZ — A" /wr7 (35)
IV. AN INTERACTIVE ALGORITHM Mfﬂ(fﬂ(gg,pd)) > e — N w,, (36)
In this section, we propose an interactive algorithm to

obtain a satisfactory solution of the decision maker from — Lol =1, k. This means that there estts
among D-Pareto optimal solution set. Unfortunately, |r?me_ai < X/\p’é’ = Ll :Tl_" k sue
is not guaranteed that the optimal solutigm®,)\*) of ‘'atHj (e = X fwr) > (epe + any) +T34 (””’7
MINMAX5( 1, w) is Ds-Pareto optimal, if(x*, )\*) is not A" /w,)) (c2x + aZ,). Because of the active conditions of
unique. In order to guarante®,-Pareto optimality, we first the constraints (29), it holds tha," (u F(#M = A" wr))
assume thap_7_, k, constraints (29) of MINMAX5fi, w) (c?,x* + a?,) + (ct,x* +al,) > T} ( (/,W—A Jwy)) -
are active at the optimal solutiofr*, \*). If one of the (x+02) + (cla+al,), r=1, --,q,€ =1,k
constraints of (29) is inactive,e., with strict inequality holding for at least oneand (. This
it Yfire — N Jwy) — (cly® + al,) contradicts the fact that = 0. _

Now, following the above discussions, we can present the

> T3 (n *_ (HM = Xwy)) - (efox” +afy), (32) interactive algorithm in order to derive a satisfactory solution

we can convert the inactive constraint (32) into the actiJEPMm among al;-Pareto optimal solution set.

one by applymg the bisection method, where [An interactive algorithm]
Step 1: Each of the decision maker (DMr = 1,- ,q)

GM([W) “f Yfire—=N* Jwy)— fro(* ,u (/w A" /w,)). sets hisflher membership functlo% (Dre), € = 1, Ky

in his/her subjective manner.

Step 2: Corresponding to the membership functions
ps. (bre),0 = 1,---.k., each of the decision maker
(DM,,r = 1,---,q) sets his/her membership functions

[The bisection method for the inactive constramt]
Step 1. Setql, < \*/w,, ¢5 < X\ /w, + 1.
Step 2. Setq,¢ + (g5 + %) /2.
Step 3. If G,4(gr¢) > 0 thengl, < ¢, and go to Step 2, .
else ifG,¢(gr¢) < 0 thengy + ¢,, and go to Step 2, else if pp, Jre(@ o), £ =1, Ky

r . Step 3: Set the initial reference membership valuegias=
Gre(gr¢) = 0, then update the reference membership valtie —1,.--.qf=1, k., and the initial decision power
as fir¢ < qr¢ and stop. asw, — 1, T’_’ L m

For the optimal solution(z", \") of MINMAXS( 2, w), Step 4: Solve MINMAXS(H,w) by combined use of the
where the active conditions of the constraints (29) afe
isection method and the first-phase of the two-phase simplex
satisfied, we solve thé;-Pareto optimality test problem
method of linear programming. If the active condition of

formulated as follows. : . 2 ; )
[Test problem for D;-Pareto optimality] the constraints (29) is not satisfied at the optimal solution

k. (z*, \*), then the bisection method with respect to the refer-
max w — Z Z e (33) ence membership value is applied, aig@-Pareto optimality
LEX €rp>0,r=1,,q =1,k syt test problem is solved.
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Step 5: If each of the decision makers (M- = 1, - -, q) Table 1. Constant coefficients

is satisfied with the current values of thes-Pareto opti-

T [x1 ® ®3 x4 x5 T X7 T8 T9 T10

T

. N - L cl [19 48 21 10 18 35 46 11 24 33

mal solqunuDM(a:*,p:e),ﬁ = '1,~-~,kr, where p?, = 13 2 2 1 4 3 1 2 4 2
pot (fire — A*),then stop. Otherwise, let theth level deci- cl,|12 46 23 -38 -33 48 12 8 19 20

(&4 .. 2

sion maker (DM) be the uppermost of the decision makers €12 112 328 ;'3 323 33 15 iz 19 ig 20
who are not satisfied with the current values. Considering 2%1 135 4 3 72 1 3 1 3 1
the current values of his/her membership functions, ,DM Ci; 12 36 27 30 33 45 -11 12 19 -8
updates his/her decision poweg.; and/or his/her reference s, |1 2 4 2 2 1 2 1 2 1
membership valuesi,,,? = 1,---,k, according to the Cél -18 -26 -22 -28 -15 -29 -10 -19 -17 -28
following two rules, and return to Step 4. cpl2 1 3 2 1 2 3 3 2 1
. cl,| -8 31 28 29 25 36 -8 -7 -13 -15

Rule 1 w4, must be set a1 < w,. After updating 1 2 3 2 2 1 2 1 2 1
Wey1, IF wep1 <wy,s+2 <t <gq, w is replaced byw,1 a |12 -2 4 -7 13 -1 6 6 11 -8

+ + +

(&) e EE
Rule 2 Before updating DN's reference membership values Zi 1T 6 5 9 1 8 4 6 9 6
fise, € = 1,--- ks, the other decision makers’ reference as |4 7 6 5 13 6 2 5 14 -6
membership values are fixed as the current valugs, (+— ag |5 -3 14 -3 9 -7 4 4 5 9
/LDfM(fE*,ﬁ:g),TZ17"',q,7“758,€:L"nk‘r) . ary -3 4 -6 9 6 18 11 -9 -4 7

V. A NUMERICAL EXAMPLE

In order to demonstrate the proposed method for HMOP1, F31 = [f31min, f31max] = [—1050, —950]
we consider the following hierarchical two-objective stochas-

. . . . F3y = min> max| — _200750

tic linear programming problem under three hypothetical 52 = |fs2 Foamax] = [ ]

decision makers. On these intervals, each hypothetical decision maker defines
[HMOP1] hisfher membership functionsy, ,(fr¢),r =1,2,3,0=1,2

first level decision maker : DM; (Step 1).
in z = (¢! t- 2 ) _|_( 1 + - 2 ) frfffrﬁmax

min zy1(x) = (e1; + tuet)z + (ag; + tiogy i, (fre) = [ —

rémin — Jrfmax

o Corresponding to the intervalg,,,» = 1,2,3,¢ = 1,2, the
second level decision maker : DM ) intervals foru,,, (p-¢(x, f-¢)) can be obtained by solving the
min 1 (x) = (¢3; + f21631)x + (03 + I2103;) following problems.

min Zip(z) = (i + hi2ely)® + (afp + fi2a7,)

min 22 (33) - (C%Q + 522632)33 + (05%2 T 7?220(%2) Prémax = maxpré(mv f’rﬁmax)
) TreX

third level decision maker : DM;

min Zz3 (@) = (¢}, + fs163,)@ + (03; + t3103;) Prémin = 3:1,2,3,5311%,8#7#@pre(w“’ Frtmin)
min Zaa(x) = (€45 + t32¢5:) T + (a3y + f3203,) where z, is the optimal solution of the problem
_ def . maxgex Pre(E, fremin), 7 = 1,2,3, = 1,2. Then, we
subject to =z € X = {z € R | aixz < bi,i = optain the following values.
1,---,7,2 >0}
In HMOP1, & = (21,22, - - ,xlo)T is the decision column [P11mins P11max] = [0.023,0.959]
vector, a;,i = 1,---,7,¢ct,,c2,r = 1,2,3, £ = 1,2 are
the constant coefficient row vectors which are shown in [Pr2min; P12max] = [0.015,0.993]
Table 1, andaj; = —18,af; = 5,aj, = —27,ai, = [P21min: P21max] = [0.001, 0.999]
6,08 = —12,03, = 3,ady, = —15,03, = 4,0}, =
—10,03; = 4,a3, = —27,a3, = 6. The right side of the [P22mins P22max] = [0.259, 0.995],
constraints areh; = 140,b, = —220,b3 = —190,by = [P31min, P31max] = [0.136,0.859]
75,bs = —160,bs = 130,b; = 90. And t,e(w),r =
1,2,3,0 = 1,2 are Gaussian random variables defined as [P32min; P32max] = [0.001, 0.987]

y 2\ 1 2\ 2\ £
tn o~ N(4,27%),t12 ~ N(3,3%). 221 ~ N3, 1%).t2 ~ op these intervals, each hypothetical decision maker

N(3,2%), Z51 ~ N(3,2%), £3, ~ N(3,3%). sets his/her membership functio =
According to the proposed interactive algorithm, at Stepy 3 , _ 1 9 (Step 2). P Mo (Pre(E, fre)), ¥

1, the individual minimum and maximum @&(z,,(x)),r =
1,2,3,¢ = 1,2 are calculated. Considering such values, each

DPremin — Pre(T, fré
b (pre @ Fr0)) = Sati

decision maker (DN)) specifies the following intervals for Drémin — Premax
fte (fre)- At Step 3, set the initial reference membership values as
Fi1 = [fi1mins fiimax] = [2000,2200] e =1,7r=1,2,3,£=1,2, and the initial decision Powers
asw, = 1,7 = 1,2,3. At Step 4, solve MINMAX3{i, w)
F12 = [f12min, f12max] = [400, 700] by combined use of the bisection method with respect to

and the first-phase of the two-phase simplex method of linear
F31 = [f21min, f21max] = [800, 1000] programrl‘ning[]) WO-p implex ,

Fs9 = [ f22min, f22max] = [650, 800] [MINMAX3( f1, w)]
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G TABLE |
min
TEX e INTERACTIVE PROCESSES
. 0 1 2 3 7
subject to i) 1 I T 06220
—1/, 1 1 7 1 1 1 0.6220
p,, (e = Afwr) = (€2 + ay) s 1 1 1 05275
—1¢,, =1/~ 2 2 7 1 1 1 0.5275
2 TM (/‘p,.g (MTE - )‘/w’f‘)) : (Crém + aré) Zij 1 1 1 0.53
r=1,2,3,¢=1,2 fi32 1 1 1 0.49
wy 1 1 1 1
The corresponding,,-Pareto optimal solution is obtained as w2 1 08 08 08
) ws 1 08 075 075
K, (@5 s (fire = A" /wr)) = 0.5452, /D, (@, J;;) 05452 0.6059 0.6220 0.6206
. . mp,, (", f;,) 05452 06059 06220 0.6206
r = 1,2,3, = 1,2. For the optimal solution(z™, \*),  ,p " (a*,f;) 0.5452 05074 0.5275 05257
DM, updates his/her decision powerag = 0.8 in order to  up,,, (x*, f3,) 0.5452 0.5074 0.5275 0.5257
improve his/her own membership functions at the expense 6b,,, (", f3;) 0.5452 0.5074 0.4960 0.5281
the membership functions of the other decision makers (Sté{fra, (" f32) 05452 05074 0.4960 0.4881
5), and go back to Step 4. Then, the corresponding optimal___ /11 2091 2079 2076 2076
- . I 5364 518.2 5134 5138
solution is obtained as ¥ 8910 8985 8945 8949
] : . . :
N B A 7182 723.9 7209 7211
po,, (&7, 1 (fae = A7 /wi)) = 0.6059, i -1005 -1001 -999.6 -1003
_ 5 -86.30 -76.85 -74.00 -72.02
¢=1,2,and pii(z*, f;) 05338 0.5907 0.6057 0.6044
“1n _ * 77,) 05484 0.6077 0.6235 0.6221
ko, (&% iy (e = X" /wr)) = 0.5074, i;iﬁﬁﬁfi 0.5460 0.5083 0.5284 0.5266
r = 2,3, = 1,2. For this optimal solution, DM is satisfied p?é::v;{zg 8-2282 g-gggg 8-%;3 g-g‘l‘gg
with the current values of the membership functions, but <y 55303 0:5021 04908 04330

DM, is not satisfied with the current values. Therefore, DM
updates his/her decision powerwag = 0.75 and the optimal
solution is obtained as

1D, (@7 (fine = X" fwr)) = 0.6220,
=12,
1Dy, (@17 (fize = N /w3)) = 0.5275,
{=1,2, and a
* —1/~ * o
PDy,, (@7, 1 (fize — A7 /ws)) = 0.4960, -

£ = 1,2. Since the decision makers (OMand DM,) are (6
satisfied with current values of the membership functions,
but the third level decision maker (D) is not satisfied
with the current values. Therefore, DMipdates his/her ref- [7
erence membership values as (0.53,0.49) in order to improve
KD, (z, f31) at the expense qﬁDm (z, f32). Then, since
the decision makers (DM DM2, and DM;) are satisfied (g
with the corresponding optimal solution, stop the interactive
processes.

(1]

(2]
(3]

El

VI. CONCLUSION [10]

In this paper, we have proposed an interactive decision
making method for hierarchical multiobjective stochastic
linear programming problems to obtain a satisfactory solution
from among a Pareto optimal solution set. In the proposé&d]
method, by considering the conflict between permissible
objective levels and and permissible probability levels, the
corresponding membership functions are integrated through
the fuzzy decision. In the integrated membership space, iﬂ@
candidate of a satisfactory solution is obtained from among
Pareto optimal solution set by updating the reference mem-
bership values and/or the decision powers. In our proposed
method, it is expected to obtain the satisfactory solution,
in which the proper balance between permissible objective
values and permissible probability levels are attained.
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