
 

  
Abstract—Sub-harmonic resonance in zero pressure 

gradient three-dimensional boundary layer flow occurs in the 
classical N-type pathway of turbulence transition.   Three-
dimensionality incurs exorbitant computational demands on 
the numerical simulations.  Imposition of a spectral method 
and a non-uniform grid countervails the impractical 
computational demands.   Eigenvalue analysis ascertains 
ranges of stability of the numerical method. Validation of the 
numerical method versus the three-dimensional OS equation 
avers confidence in the accuracy of the model.   Numerical 
realizations of the generation, amplification, and interaction of 
two- and three-dimensional sub-harmonic waves agree 
qualitatively with classical experiments.  

 
Index Terms— sub-harmonic resonance, spectral method, 

non-uniform grid, three-dimensional boundary layer flow 

I. INTRODUCTION 
ow does flow become turbulent?  The profundity of the 
question mandates a meticulous deconstruction of its 

coadjuvantly interacting metaphysics.   Underneath the 
artifice of seemingly chaotic cacophony lie deterministic 
symphonies of motion.   To the present day, knowledge of 
turbulence transition remains inchoate.   Some bespoke 
phenomena have consistently manifested in both 
experimental visualizations and numerical simulations.   
 At the onset of turbulence transition, the flow becomes 
three-dimensional, characterized by spanwise modulations 
of the streamwise velocity and the formation of a 
mysterious flow structure known as the Soliton-like 
Coherent Structure (SCS) [1-4].  An SCS is a strong, 
concentrated, self-enforcing non-linear wave.   It can persist 
for long durations of time, and it is strong in that it emerges 
from interactions with other SCSs with little change to its 
structures except for a shift in phase [3, 5, 6].    The SCSs 
travel downstream at much slower speeds than the mean 
boundary layer flow.  However, the transverse flow velocity 
in the SCS is close to the mean flow velocity [6].  So, the 
SCS will tend to shed a secondary closed vortex in the 
upward direction.  The interactions among the SCSs will 
ultimately lead to them merging together to form elongated 
low-speed streaks of coherent structures along the wall of 
the boundary layer [6].   

The SCSs and the spanwise modulation of velocity induce 
the formation of a signature structure of turbulence 
transition, the Λ-vortex [7, 8].    The Λ-vortices form at the 
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peak locations of the spanwise modulation [1, 3, 5].   The 
legs of the Λ-vortex comprise two tubes of streamwise 
vortices [9-12]. Above the Λ-vortex, a high shear layer 
develops featuring rapidly increasing velocity gradients [1, 
8-11, 13-15].   The interaction between the Λ-vortex and the 
high shear layer leads to a peculiar phenomenon.  The Λ-
vortex will incline and lift upwards [4, 5, 11, 15, 16].  The 
inclination of the Λ-vortex causes its tip to enter into the 
region of high shear.  The high shear stretches the tip of the 
Λ-vortex and elongates it [5, 11].  The elongating tip 
deforms into an Ω-shaped vortex [1, 5].  Further elongation 
would lead to the Ω-vortex detaching from the Λ-vortex.  
The detached ends of the Ω-vortex would reconnect to close 
the loop to form a ringed vortex [5].   

 At this point, the ringed vortex travels downstream and 
becomes a most crucial element of turbulence transition, the 
turbulent spot [8, 17, 18].  The turbulent spot is believed to 
be the flashpoint from which transition to turbulence 
initiates.  Consecutive ringed vortices would overtake one 
another downstream, propelled by the high shear layer, and 
merge [8].   Within the ringed vortex, disturbance waves 
generated in the flow propagate in concert in the form of 
wave packets.  Inside the wave packets the disturbance 
waves interact and synchronize [3, 18].  This concept is 
known as space-time focusing of wave energy, made famous 
by Landahl, 1972 [19].  When the waves synchronize, their 
mutual additive summation produces spiking signals in the 
flow velocity, one of the fascinating aspects of turbulence 
transition [1, 3, 5].  The pulsating spikes resonate to the 
point of unsustainable breakdown, and hence the onset of 
flow randomization that leads to turbulence.    

The high shear layer would form a “kink” at its apex that 
then rolls up into a vortex [1, 7, 9].  The rolled-up vortex 
exhibits similar behavior to that of the ringed vortex with 
spikes occurring within its core [5].  In fact, the rolled-up 
vortex has been observed to be in synchronization with the 
ringed vortex [5].  The rolling up of the high shear layer 
causes fluid away from the wall to be swept downwards 
towards the wall and vice versa with eruption of near-wall 
fluid upwards [9].  The transference of fluid leads to another 
signature feature of turbulence transition, low-speed streaks 
of high shear stress moving downstream along the wall 
famously known as Klebanoff modes [9, 13, 17, 18, 20].   
The high shear layer and low-speed streak both will undergo 
their own instabilities that conclude in breakdown to 
turbulence [13].   The physical mechanisms and dynamics 
responsible for the series of phenomena leading to 
turbulence remains a classical mystery of science.   This 
topic has drawn intense study with an illustrious history.  

In the alternative perspective, the  classical work, 
Schubauer and Skramstad, 1947 [21], conducts a famous 
experiment to examine the topic of boundary layer 
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turbulence transition.  The experiment entails a vibrating 
ribbon that is placed at the base of the inlet to a flow channel 
and acts to introduce perturbations into the flow.  The 
perturbations evolve into disturbance waves known as 
Tollmien–Schillichting (TS) waves that travel downstream.  
As the disturbance waves propagate downstream, they will 
begin to interact with one another in progressive stages of 
transition towards flow turbulence.  Initially, the wave 
interactions are linear in the linear instability stage [22].  
Further downstream, the wave interactions become 
nonlinear.  The nonlinear interactions spawn a secondary 
instability in the flow.  The secondary instability eventually 
becomes unsustainable and break down into turbulence.  
The stages of transition up to linear instability are well-
understood presently.  The linear wave interactions can be 
described accurately with the Orr-Sommerfeld (OS) 
equation of linear stability theory.  Chen and Chen, 2010 
[23] offers a scholastic study of the linear stage of 
turbulence transition.  However, once the waves undergo 
nonlinear interactions, the transition phenomenon becomes 
mysterious and is the subject of much cerebation.    
 A subsequent classical work, Klebanoff, et al., 1962 [24], 
would shed illuminating insight into the nonlinear stage of 
transition.  As transition to turbulence can occur via multiple 
pathways, Klebanoff, et al., 1962 [24] studies the pathway 
that has come to bear the namesake of its author, K-type 
transition.  When the amplitude of the initial perturbation 
exceeds 1% of the mean flow, the K-type transition 
mechanism activates to induce an explosive amplification of 
waves leading to breakdown into turbulence.  Klebanoff, et 
al., 1962 [24] observes definitive and reproducible behavior 
of nonlinear wave interactions beginning with the formation 
of the first set of waves from the perturbation known as the 
fundamental waves.  The fundamental wave exercises a 
fecundity that begets second and third harmonics of 
successively higher wave frequencies.  The harmonics 
would then cluster in wave packets as they traverse 
downstream.  Within the packets, the waves interact and 
synchronize.   The phase synchronization of the waves 
results in explosive spikes in the observed wave oscillations.  
These observations have become bespoke signature features 
of nonlinear turbulence transition [24]. 

Additional classical works would ensue.  Kachanov and 
Levchenko, 1984 [25] and Kachanov, 1994 [3]  reveal 
another possible pathway towards turbulence called the N-
type transition.  The N-type transition facilitates a more 
controlled pathway to turbulence, evoked by a lower 
amplitude of the initial disturbance than K-type transition.  
As such, the N-type transition transpires with measurably 
exponential amplification of waves as contrasted with the 
incontinent explosion in the K-type.  Also, the N-type 
transition generates harmonics of lower frequencies than the 
K-type.   The N-type wave interactions are termed sub-
harmonic resonance that involves the initial TS disturbance 
waves of a given frequency ߚଵ and subsequently generated 
sub-harmonic waves with frequencies ߚଵ/ଶ ൎ  ଵ/2.  Forߚ
more details, Herbert, 1988 [4] offers an excellent review of 
the nonlinear transition stage. 

Chen, 2009 [26], Chen and Chen, 2010 [23] Chen and 
Chen, 2012 [27], Chen and Chen, 2011 [28], Chen and 
Chen, 2012 [29], Chen and Chen, 2012 [30], Chen and 

Chen, 2009 [22], Chen and Chen, 2010 [31], Chen and 
Chen, 2011 [32], Chen and Chen, 2011 [33], and Chen and 
Chen, 2012 [34] respectfully anthologize his study of 
boundary layer turbulence transition.  

II. THREE DIMENSIONALITY 
During the transition towards turbulence, the generated 

waves acquire a three-dimensional characteristic.   The 
formation of three-dimensional waves represents a key 
development in turbulence transition.  Saric, et al., 2003 
[35] explains that the three-dimensional waves arise from 
crossflow and centrifugal instabilities occurring in flow 
regions with pressure gradients.  The three-dimensional 
nature of the flow is the critical element that leads to rapid 
generation of additional harmonics and their subsequent 
explosive or exponential amplification.   Orszag and Patera, 
1983 [36] notes that, during wave interactions, the  two-
dimensional waves are unstable to the presence of even 
infinitesimal three-dimensional waves and will amplify 
exponentially from the encounter.   Orszag and Patera, 1983 
[36] systematically illustrates that the combination of vortex 
stretching and tilting terms in the governing Vorticity 
Transport Equation accelerates the growth of waves.  Both 
vortex stretching and tilting are required to produce the 
accelerated growth of waves [36].  Both are three-
dimensional phenomena and thus, concurringly underline 
the important role of three-dimensionality in turbulence 
transition.  Reed and Saric, 1989 [12]  and Herbert, 1988 [4] 
offer excellent reviews of the mechanisms that cause the 
formation of three-dimensional waves.   

Study of three-dimensional flows carves a frontier of 
great interest in cutting-edge fluid dynamics research.   
However, numerical visualization of three-dimensional 
waves incurs vast computational demands.  The 
computational demands quickly reach impractical levels for 
even typical flows.  Therefore, easing computational 
demands to within practical limits poses a mandate of 
utmost importance.  Spectral methods offer such a reprieve.   

III. PROBLEM DEFINITION 

A. Flow Domain 
Figure 1 depicts the flow problem as the classical three-

dimensional boundary layer flow problem of Schubauer and 
Skramstadt, 1947 [21].  A blowing and suction strip 
generates the disturbances. The spanwise z-direction covers 
one disturbance wavelength ߣ௭. A buffer domain before the 
outflow boundary ramps down the disturbances to prevent 
reflection [27, 31].  

 
Fig. 1.  Schematic of the flow domain. 

IAENG International Journal of Applied Mathematics, 42:2, IJAM_42_2_05

(Advance online publication: 26 May 2012)

 
______________________________________________________________________________________ 



 

B. Governing Equations 
Non-dimensional variables are used.  They are related to 

their dimensional counterparts, denoted by bars, as follows: 
 

ܴ݁ ൌ ௎ಮ௅
ఔ

, ݔ ൌ ௫
௅

, ݕ ൌ ௬√ோ௘
௅

,  (1a) 
 

ݐ ൌ ௎ಮ௧
௅

, ݑ ൌ ௨
௎ಮ

, ݒ ൌ ఔ√ோ௘
௎ಮ

 ,   and ݓ ൌ ௪
௎ಮ

 (1b) 
 

where the characteristic length ܮത  ൌ 0.05 m, freestream 
velocity ഥܷஶ = 30 m/s, kinematic viscosity ߥ ഥ= 1.5 × 10-5 
m2/s, ܴ݁ is the Reynolds number,  ݒ ,ݑ, and ݓ are the 
streamwise, transverse, and spanwise flow velocities.  

The total flow velocity and vorticity ሺܸ,  ሻ comprise aߗ
steady two-dimensional base flow ሺ ஻ܸ,  ஻ሻ and an unsteadyߗ
three-dimensional disturbance flow ሺܸԢ,  :Ԣሻ [11, 37]ߗ
 
ܸሺݐ, ,ݔ ,ݕ ሻݖ ൌ ஻ܸሺݔ, ,ݕ ሻݖ ൅ ܸᇱሺݐ, ,ݔ ,ݕ  ሻ, (2)ݖ

 
,ݐሺߗ ,ݔ ,ݕ ሻݖ ൌ ,ݔ஻ሺߗ ,ݕ ሻݖ ൅ ,ݐᇱሺߗ ,ݔ ,ݕ  ሻ, (3)ݖ

 
஻ܸ ൌ ሼݑ஻, ,஻ݒ 0ሽ, ஻ߗ ൌ ൛0, 0, ߱௭ಳൟ, and (4) 

 
ܸᇱ ൌ ሼݑᇱ, ,ᇱݒ ,ᇱሽݓ ᇱߗ ൌ ൛߱௫

ᇱ , ߱௬
ᇱ , ߱௭

ᇱ ൟ. (5) 
 
The governing equations for the disturbance flow are the 
Vorticity Transport Equations [11, 37]:  
 
డఠೣ

ᇲ

డ௧
൅ డ௔

డ௬
െ డ௖

డ௭
ൌ ଵ

ோ௘
డమఠೣ

ᇲ

డ௫మ ൅ డమఠೣ
ᇲ

డ௬మ ൅ ଵ
ோ௘

డమఠೣ
ᇲ

డ௭మ , (6) 
 

డఠ೤
ᇲ

డ௧
െ డ௔

డ௫
൅ డ௕

డ௭
ൌ ଵ

ோ௘
డమఠ೤

ᇲ

డ௫మ ൅ డమఠ೤
ᇲ

డ௬మ ൅ ଵ
ோ௘

డమఠ೤
ᇲ

డ௭మ , (7) 
 

డఠ೥ᇲ

డ௧
൅ డ௖

డ௫
െ డ௕

డ௬
ൌ ଵ

ோ௘
డమఠ೥ᇲ

డ௫మ ൅ డమఠ೥ᇲ

డ௬మ ൅ ଵ
ோ௘

డమఠ೥ᇲ

డ௭మ , (8) 
 

ܽ ൌ Ԣ߱௫ݒ
ᇱ െ Ԣ߱௬ݑ

ᇱ ൅ ஻Ԣ߱௫ݒ
ᇱ െ ஻߱௬ݑ

ᇱ ,  (9) 
 

ܾ ൌ ᇱ߱௬ݓ
ᇱ െ ᇱ߱௭ݒ

ᇱ ൅ ஻߱௭ݒ
ᇱ ൅  Ԣ߱௭ಳ, (10)ݒ

 
ܿ ൌ ᇱ߱௭ݑ

ᇱ െ ᇱ߱௫ݓ
ᇱ ൅ ஻߱௭ݑ

ᇱ ൅  Ԣ߱௭ಳ, and (11)ݑ
 

߱௫
ᇱ ൌ ଵ

ோ௘
డ௩ᇲ

డ௭
െ డ௪ᇲ

డ௬
, ߱௬

ᇱ ൌ డ௪ᇲ

డ௫
െ డ௨ᇲ

డ௭
, ߱௭

ᇱ ൌ డ௨ᇲ

డ௬
െ ଵ

ோ௘
డ௩ᇲ

డ௫
. (12) 

 
In addition, there is a set of Poisson’s equations [11, 37]:  
 
డమ௨ᇲ

డ௫మ ൅ డమ௨ᇲ

డ௭మ ൌ െ డఠ೤
ᇲ

డ௭
െ డమ௩ᇲ

డ௫డ௬
 ,    (13) 

 
ଵ

ோ௘
డమ௩ᇲ

డ௫మ ൅ డమ௩ᇲ

డ௬మ ൅ ଵ
ோ௘

డమ௩ᇲ

డ௭మ ൌ డఠೣ
ᇲ

డ௭
െ డఠ೥ᇲ

డ௫
, and (14) 

 
డమ௪ᇲ

డ௫మ ൅ డమ௪ᇲ

డ௭మ ൌ డఠ೤
ᇲ

డ௫
െ డమ௩ᇲ

డ௬డ௭
.  (15) 

 
Finally, the continuity equation completes the set:  
 
డ௨ᇲ

డ௫
൅ డ௩ᇲ

డ௬
൅ డ௪ᇲ

డ௭
ൌ 0.    (16) 

        
Zero pressure gradient (ZPG) boundary layer flow serves 

as the base flow. The solution procedure begins by solving 

the two-dimensional steady base flow followed by the three-
dimensional disturbance flow.  Chen and Chen, 2012 [27] 
copiously details this solution algorithm.  

C. Boundary Conditions 
Inflow Boundary Condition 

The inflow boundary introduces no disturbances; hence, 
ᇱ, ߱௫ݓ ,ᇱݒ ,ᇱݑ

ᇱ , ߱௬
ᇱ , and ߱௭

ᇱ  along with their first and second 
derivatives are all zero there. 

 
Freestream Boundary Condition 

Assuming potential flow at the freestream boundary, the 
vorticity is zero there: 

 
߱௫

ᇱ ൌ 0, డఠೣ
ᇲ

డ௬
ൌ 0, డమఠೣ

ᇲ

డ௬మ ൌ 0,    (17) 
 

߱௬
ᇱ ൌ 0, డఠ೤

ᇲ

డ௬
ൌ 0, డమఠ೤

ᇲ

డ௬మ ൌ 0, (18) 
 
߱௭

ᇱ ൌ 0, డఠ೥ᇲ

డ௬
ൌ 0, డమఠ೥ᇲ

డ௬మ ൌ 0, and (19) 
 
డ௩ᇲ

డ௬
ൌ െ ఈכ

√ோ௘
 ᇱ.  (20)ݒ

 
The parameter ݒԢ decays much slower, and so its wall-
normal derivative remains appreciable with a prescribed 
wave number of כߙ.  The other parameters ݑԢ and ݓԢ would 
result from the solution of the governing equations.  
 
Wall Boundary Condition 

The boundary conditions at the wall are: 
 

Ԣݑ ൌ 0,   (21) 
  
ᇱݒ ൌ 0, డ௩ᇲ

డ௬
ൌ 0,  (22) 

 
Ԣݓ ൌ 0, (23) 
 
డమఠೣ

ᇲ

డ௫మ ൅ డమఠೣ
ᇲ

డ௭మ ൌ െ డఠ೤
ᇲ

డ௫డ௬
൅ డ

డ௭
ቀ ଵ

ோ௘
డమ௩ᇲ

డ௫మ ൅ డమ௩ᇲ

డ௬మ ൅ ଵ
ோ௘

డమ௩ᇲ

డ௭మ ቁ, (24) 
 
߱௬

ᇱ ൌ 0, and (25) 
 
డమఠ೥ᇲ

డ௫
ൌ డఠೣ

ᇲ

డ௭
െ ቀ ଵ

ோ௘
డమ௩ᇲ

డ௫మ ൅ డమ௩ᇲ

డ௬మ ൅ ଵ
ோ௘

డమ௩ᇲ

డ௭మ ቁ. (26) 
 
Correct definition of the wall boundary conditions remains a 
hotly contested matter.  Problematic issues include the need 
to preserve continuity and vorticity.   Chen and Chen, 2010 
[23] engages in a tendentious intellection of the issue of 
defining the wall boundary condition.  
 The blowing and suction strip shown in Fig. 1 generates 
disturbances in spectral space according to:  
 
ො௞ݒ ൌ  ሻ, (27)ݐ௞ߚሻ√ܴ݁sin ሺݔ௞݂ሺܣ
 

݂ሺݔሻ ൌ ൜ ଺ߦ24.96 െ ହߦ56.16 ൅ ସߦ31.2

െ24.96ߦ଺ ൅ ହߦ56.16 െ  ସ , (28)ߦ31.2

 
ߦ ൌ ௫ି௫భ

௫౩౪ି௫భ
ଵݔ      ൏ ݔ ൏ ,ୱ୲    for the first caseݔ and       (29) 
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ߦ ൌ ௫భି௫
௫మି௫౩౪

ୱ୲ݔ       ൏ ݔ ൏  ଶ   for the second case  (30)ݔ
 
where ݇ = 0 or 1, ܣ௞ the disturbance amplitude ܣ௞ = 1.0 × 
10-4, and  the disturbance frequency ߚ௞ = 10.0.   The Fourier 
modes ݇ = 0 and 1 correspond to the two- and three-
dimensional disturbances, respectively. 

 
Outflow Boundary Condition 
 A buffer domain located at x = xB prior to the outflow 
boundary at x = xM ramps down the flow disturbances with 
ramping function: 

 
ܶሺܮ௕ሻ ൌ  ଴.ଽ଻଻଼ାଵ.ଷ଴଻ସୡ୭ୱሺగ௅್ሻା଴.ଷଷଵ଼଻ୡ୭ୱሺଶగ௅್ሻା଴.଴଴ଶଶଶ଻଼ୡ୭ୱሺଷగ௅್ሻ

ଵା଴.଺ଷ଻଴଻ୡ୭ୱሺగ௅್ሻା଴.ଵ଻ଶ଺ଵୡ୭ୱሺగ௅್ሻ
   (31) 

 

௕ܮ ൌ  ௫ಳି௫
௫ಳି௫ಾ

. (32) 
 
Spanwise Boundary Condition 

The spanwise boundaries located at 0 = ݖ and ߣ = ݖ௭ 
implement periodic boundary conditions where all 
disturbance flow parameters and their derivatives at 0 = ݖ 
are equal to their counterparts at ߣ = ݖ௭. 

IV. SPECTRAL METHOD 
Spectral methods offer the advantages of exponential 

convergence, numerical accuracy, and computational 
efficiency.  They have demonstrated superior performance 
to finite difference methods [38].   Spectral methods 
approximate the solution to a given set of governing 
equations, for example, by assuming the solution to be a 
Fourier series or Chebyshev polynomials [38].   In contrast, 
finite difference methods approximate the original 
governing equations and then seek to solve the approximate 
problem.  Spectral methods are especially suited for 
problems with periodic boundary conditions, which in this 
study occurs at the spanwise boundaries.  This study uses a 
Fourier series approximation for the solution [11, 37, 39]:  

 
݂Ԣሺݔ, ,ݕ ,ݖ ሻݐ ൌ ∑ ,ݔ௞ሺܨ ,ݕ ሻ௄ݖ௞ߛ݇ܫሻexp ሺݐ

௞ୀି௄        (33) 
 
where ݂Ԣ is a flow variable of interest such as the velocity, 
,ݔ௞ሺܨ ,ݕ  ሻ are the Fourier amplitudes, spanwise waveݐ
number ߛ௞ ൌ ݇ߨ2 ⁄௭ߣ , and ߣ௭ is the largest spanwise 
wavelength of flow disturbances. The mode ܨ௞ is the 
complex conjugate of ିܨ ௞, so the governing equations and 
boundary conditions can be transformed to 1+ܭ equations 
and boundary conditions in the two-dimensional x-y plane. 

For cases with symmetric flow, the Fourier expansion can 
be compacted to sines and cosines separately as [11, 37, 39]:  

 
ሺݑԢ, ,Ԣݒ ߱௭

ᇱ , ܾ, ܿሻ ൌ ∑ ሺݑො௞
ᇱ , ො௞ݒ

ᇱ , ෝ߱௭௞
ᇱ , ,௞ܤ ሻ௄ݖ௞ߛ௞ሻcos ሺܥ

௞ୀ଴  (34) 
 

ሺݓԢ, ߱௫
ᇱ , ߱௬

ᇱ , ܽሻ ൌ ∑ ሺݓෝ௞
ᇱ , ෝ߱௫௞

ᇱ , ෝ߱௬௞
ᇱ , ሻ.௄ݖ௞ߛ௞ሻsin ሺܣ

௞ୀଵ   (35) 
 

The parameters ݑᇱ , ݒᇱ, ߱௭
ᇱ , ܾ, and ܿ are symmetric; ݓᇱ,  ߱௫

ᇱ , 
߱௬

ᇱ , and ܽ are anti-symmetric.  This compaction requires the 
simulation of half of the wavelength, ߣ௭/2, hence, reduces 
computational demands by half [11, 37, 39].  

The governing equations in spectral representation are:  
 

డఠෝ ೣೖ
ᇲ

డ௧
൅ డ஺ೖ

డ௬
൅ ௞ܥ௞ߛ ൌ ଵ

ோ௘
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ᇲ

డ௫మ ൅ డమఠෝ ೣೖ
ᇲ

డ௬మ െ ఊೖ
మ

ோ௘
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ᇱ , (36) 
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െ డ஺ೖ
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ᇲ
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ᇱ , (37) 
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൅ డ஼ೖ

డ௫
െ డ஻ೖ

డ௬
ൌ ଵ
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ᇲ
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ᇲ

డ௬మ െ ఊೖ
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ෝ߱௭௞

ᇱ , (38) 
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ᇲ
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ᇲ

డ௬మ െ ఊೖ
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൅ ௞ߛ

డ௩ොೖ
ᇲ

డ௬
,  and (40) 

 
డమ௨ෝೖ

ᇲ

డ௫మ െ ௞ߛ
ଶݑො௞

ᇱ ൌ െߛ௞ ෝ߱௬௞
ᇱ െ డమ௩ොೖ

ᇲ

డ௫డ௬
. (41) 

V. OVERALL NUMERICAL METHOD 
The present study uses a spectral Fourier method in the 

spanwise direction.   By that, imagine the flow domain 
shown in Fig. 1 to be divided into a series of x-y planes.  For 
each x-y plane, the governing equations are given according 
to Eqs. (36) to (41).   Each x-y plane would then need its 
numerical discretization.  The spatial discretization uses 
12th-order Combined Compact Difference (CCD) schemes.  
The temporal discretization uses a 4th-order 5-6 alternating 
stages Runge-Kutta (RK) scheme.  Chen and Chen, 2011 
[28], Chen and Chen, 2012 [27], and Chen and Chen, 2012 
[30] comprise a graphomanic series on the development of 
these numerical methods.  

VI. NON-UNIFORM GRID 

A. Computational Efficiency 
Since the numerical realization of turbulence transition 

exerts impractically onerous computational demands, one 
would do well to preserve computational resources as much 
as possible.   One method of conservation uses non-uniform 
grids that concentrate the computational resolution in 
regions of interest and relax to coarse resolutions in regions 
of less relevance.   For the case of boundary layer turbulence 
transition, this entails using very fine grids near the wall 
where the transition process occurs and gradually coarsening 
the grid with increasing distance away from the wall.   In so 
doing, the precious resource of computational capacity 
would be allocated with maximum utility.   

Furthermore, micro-scaled wave interactions in 
turbulence transition can be easily distorted by numerical 
errors.  So, high-order numerical methods would seem to be 
a logical remedy to control the errors.  However, the use of 
high-order numerical methods presents an additional issue at 
the wall boundary.   To properly close a high-order 
numerical method, the appropriate boundary scheme would 
generally be at least one order lower than the numerical 
scheme in the interior domain, in order to prevent numerical 
instability [40].   The difference in orders between the 
interior and boundary schemes widens with increasing order 
of the numerical method [40].    So, even when using a high-
order numerical method, the overall order of the numerical 
method would be diluted by the need for lower-order 
boundary schemes that poses a threat to the numerical 
stability [40].  One means to preserve numerical stability of 
high-order methods at the boundary and combat the dilutive 
effects of lowering the order of the boundary scheme uses 
non-uniform grids that concentrate fine grid spacing near the 
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wall. The solution would first generate a non-uniform grid 
and then derive a numerical method with coefficients 
bespoke to the non-uniform grid [40].  

B. Non-Uniform Grid Generation 
The non-uniform grid is generated in the wall-normal y-

direction using piecewise functions:   

ൌ ݕ ௖ݕ  ൭1 ൅
ୟୱ୧୬൬ିఈ೒ୡ୭ୱቀಘ೔

మ೎
ቁ൰

ୟୱ୧୬൫ିఈ೒൯
൱      for      0 ൑ ݅ ൑ ܿ    (42) 

ൌ ݕ ௖ݕ  ൅ ሺݕ௖ െ ௖ିଵሻݕ ൬
ఉ೒

ሺ೔ష೎ሻିଵ
ఉ೒ିଵ

൰    for  ܿ ൅ 1 ൑ ݅ ൑ ݊       (43) 

where ߙ௚ and ߚ௚ are the grid stretching parameters and c is 
the index for a designated node point where the two 
piecewise functions meet.  

C. Numerical Scheme Bespoke to Non-Uniform Grid 
The numerical scheme would be derived bespoke to the 

non-uniform grid. High-order combined compact difference 
(CCD) schemes provide the advantages of accuracy of 
simulations and control of numerical errors.   The CCD 
scheme combines the discretization for the function, f, its 
first derivative, F, and second derivative, S, with a, b, and c 
as the coefficients of the scheme and h as the grid size: 
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The coefficients of the CCD scheme are derived using 
Lagrange polynomial interpolation.  The Lagrange 
polynomial interpolation of a function ݕሺݔሻ is [40]:  
 
ሻݔሺݕ ൌ ∑ ݈௜ሺݔሻ݂ሺݔ௜ሻ௡

௜ୀଵ  (46) 
 
where ݈௜ሺݔሻ’s are Lagrange basis polynomials [40]: 
 
݈௜ሺݔሻ ൌ ∏ ൫௫ି௫ೕ൯

൫௫೔ି௫ೕ൯
௡
௝ୀଵ,௝ஷ௜ . (47) 

 
The Lagrange polynomial interpolation can be extended to 
include higher-order derivatives [40]: 
 
ሻݔሺݕ ൌ ∑ ∑ ூ೙א௜ሻ௜ݔሻ݂ሺௗሻሺݔௗ,௜ሺߩ

஽
ௗୀ଴ ൅ ∑ ூ೘א௜ሻ௜ݔሻ݂ሺݔ௜ሺݎ  (48) 

 
where ݂ሺௗሻሺݔ௜ሻ denotes the Dth-order derivative of the 
function ݂ሺݔ௜ሻ, ܫ௡ is the set of points defining ݂ሺௗሻሺݔ௜ሻ up to 
the ܦth-order derivative, ܫ௠ is the set of points defining only 
the function values of ݂ሺݔ௜ሻ, and  ߩௗ,௜ሺݔሻ and ݎ௜ሺݔሻ are 
additional interpolation polynomials.  The numerical 
schemes can be derived by differentiating Eq. (48) ݌ times 
to obtain the expressions for ݕሺ௣ሻሺݔሻ as [40]:  
 
ሻݔሺ௣ሻሺݕ ൌ ∑ ∑ ௗ,௜ߩ

ሺ௣ሻሺݔሻ݂ሺௗሻሺݔ௜ሻ௜אூ೙
஽
ௗୀ଴ ൅ ∑ ௜ݎ

ሺ௣ሻሺݔሻ݂ሺݔ௜ሻ௜אூ೘  (49) 
 
for ܦ , … ,2 ,1= ݌.  The coefficients of the scheme are 
derived from Eq. (49).  In this study, the numerical scheme 
derived is a 12th-order 5-point non-uniform CCD scheme.  
The concomitant boundary schemes are 10th and 11th-order.  

VII. STABILITY OF NUMERICAL METHOD 
With the objective of customizing the numerical method 

to a non-uniform grid for strengthening numerical stability, 
a logical evaluation of the numerical method would consider 
its ranges of stability.  The stability of a numerical method 
entails two facets, the temporal and spatial discretizations.   
Both aspects must be numerically stable.   Mathematical 
theory decrees that the properties of the eigenvalues of a 
spatial discretization define its range of numerical stability 
[41].   The eigenvalue analysis begins with applying the 
numerical method, in this case, a 12th-order 5-point non-
uniform CCD scheme with 10th and 11th-order boundary 
schemes, to a reference governing equation, the classical 
one-dimensional convective diffusion equation.    The 
theory mandates that the real part of the eigenvalue of the 
numerical discretization must be negative to ensure stability.   

For the temporal discretization, the theory examines its 
amplification factor [41].  A temporal discretization will be 
stable if the absolute value of the amplification factor is less 
than one.   Since the temporal discretization integrates the 
spatial discretization over time, the amplification factor is a 
function of the eigenvalue.  This linkage allows for 
concurrent examination of the stabilities of both 
discretizations.  The overall stability condition would 
require first that the real part of the eigenvalue be negative.  
Next, it selects the eigenvalues that limit the amplification 
factor to less than one.   

Applying this two-step analysis to the one-dimensional 
convective diffusion equation indeed yields a set of 
eigenvalues for which the numerical method will remain 
stable, as depicted in Fig. 2.  The stability of the numerical 
method when applied to this reference case provides 
indications as to how it will fare on the actual flow problem.  

 
Fig. 2 Stability range of eigenvalues. 

VIII. VALIDATION OF NUMERICAL METHOD 
The stable numerical method then must be validated for 

accuracy.  An accurate numerical model would agree well 
with the Orr-Sommerfeld (OS) equation of linear stability 
theory.  Figure 3 affirms agreement amongst the present 
study, three-dimensional OS equation, and numerical study 
of Fasel, et al., 1990 [42] for the downstream amplification 
rates  ߙ௜ of the disturbance velocities ݑᇱ,   ݒᇱ, and   ݓᇱ: 

 
௜ߙ ൌ ௗ

ௗ௫
lnሺ݂Ԣሻ (50)   

 
where ݂Ԣ is the flow variable of interest.  Figure 4 asserts 
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further averment with a near complete overlap between the 
present study and the OS equation for the transverse profiles 
of the disturbance velocities ݑᇱ, ,ᇱݒ   and ݓᇱ.  With 
confidence in the model accuracy, it is now ready for 
investigation of turbulence transition.  

 
Fig. 3.  Comparison of model, OS equation, and Fasel, et al., 1990 [42]  for 
downstream amplification rates ߙ௜ of velocities (a) ݑᇱ,  (b) ݒᇱ, and (c) ݓᇱ.  
Flow conditions given in Section III.  
 

 
Fig. 4.  Comparison of model results and OS equation for transverse 
profiles of disturbance velocities ݑᇱ, ,ᇱݒ  and ݓᇱ. 

IX. SUB-HARMONIC RESONANCE 
The classical works Kachanov and Levchenko, 1984 [25] 

and Kachanov, 1994 [3]  reveal the N-type turbulence 
transition involving sub-harmonic resonance of the 
propagating waves in ZPG boundary layer flow.  The 
present study respectfully simulates the experiments in 
Kachanov and Levchenko, 1984 [25] using three Fourier 
modes in the spectral method with lowest wave number 
31.47. The blowing and suction strip generates two-
dimensional disturbances with ߚ଴ = 12.4 and ܣ଴ = 1.2 × 10-4 
and three-dimensional disturbances with ߚଵ = 6.2 and ܣଵ = 
5.1 × 10-6.  

Figure 5 shows comparison amongst the present study, 
Kachanov and Levchenko, 1984 [25], and numerical study 
of Fasel, et al., 1990 [42] for downstream amplification of 

waves ൫ ݑᇱଶ൯
ଵ ଶ⁄

/ܷஶ:  modes (1, 0), two-dimensional initial 
TS waves, and (1/2, 1), subsequently generated three-
dimensional sub-harmonic waves.  The first entry in the 
brackets such as (1, 0) stands for multiples of the 
fundamental TS wave frequency, and the second entry 
represents multiples of the spanwise wave number.  The 
three studies agree qualitatively.  Figure 6 shows further 
close agreement amongst the three studies for the transverse 
profile of the wave amplitude for the mode (1, 0).  The case 
for the mode (1/2, 1) in Fig. 7 displays less good agreement 
between the numerical studies and the experiments of 
Kachanov and Levchenko, 1984 [25]. 

 
Fig. 5.  Comparison amongst present study, Kachanov and Levchenko, 
1984 [25], and Fasel, et al., 1990 [42]   for downstream amplification of 
waves:  modes (1, 0) and (1/2, 1). Flow conditions given in Section III.   

 
Fig. 6.  Comparison amongst present study, Kachanov and Levchenko, 
1984 [25], and Fasel, et al., 1990 [42]   for transverse profiles of wave 
amplitudes of the mode (1, 0).  Flow conditions given in Section III.  

 
Fig. 7.  Comparison amongst present study, Kachanov and Levchenko, 
1984 [25], and Fasel, et al., 1990 [42] for transverse profiles of wave 
amplitudes of the mode (1/2, 1). Flow conditions given in Section III (% 
according to freestream velocity).  
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X. ASYMMETRICAL FLOW 

A. Full Fourier Expansion 
Extension of the numerical model to investigate 

asymmetrical flows would logically follow.  The previous 
assumption of symmetrical flow would no longer apply.  So, 
instead of the compacted sine and cosine Fourier expansion 
of Eqs. (34) and (35), the spectral method must now use the 
full Fourier expansion of Eq. (33).   Using Eq. (33), the 
governing equations become the following two sets.  The 
first set of equations comprises [11, 37, 39]:  
 
డఠෝ ೣೖ

ᇲ

డ௧
ൌ െ డ஺ೖ
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The terms in Eqs. (51) to (56) with the subscript I are 
imaginary, while all the other terms are real.  The second set 
comprises [11, 37, 39]:  
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The terms in Eqs. (57) to (62) with the subscript R are real, 
while all the other terms are imaginary. 

B. Adverse Pressure Gradient Flow 
Grid Independence Study 
 The numerical model of the present study with full 
Fourier expansion will simulate Borodulin, et al., 2002 [5].   
The freestream velocity is given as:  
 

௘ܷሺݔሻ ൌ ݔܥ
ഁH

మషഁH  (63) 
 
where ߚH is the Hartree parameter fixed as −0.115 and ܥ is 
adjusted to 8.374 to match the flow conditions in Borodulin, 
et al., 2002 [5].  Figure 8 shows a comparison of the 
freestream velocity between the present study and 
Borodulin, et al., 2002 [5] with good overlap.  

 
Fig. 8.  Comparison of the freestream velocity between the present study 
and Borodulin, et al., 2002 [5].  
 
Next, a grid independence test ensures that the numerical 
results would not be sensitive to the selection of grid 
spacing parameters.   Table I gives the parameters used for 
two cases in the grid independence study.  The test 
calibrates the initial disturbance strength at ݔҧ = 350 mm to 
match the experiments of Borodulin, et al., 2002 [5].  As 
such, the necessary initial amplitudes of fundamental and 
sub-harmonic waves are 0.1% and 0.01% of freestream 
velocity, respectively, corresponding to a disturbance 
frequency from the blowing and suction strip ߚ of 1.12 
(109.1 Hz in experiments).  Figure 9 shows the results for 
the transverse profile of the mean flow velocity using both 
grids along with the results of Borodulin, et al., 2002 [5].  
Figure 10 shows the results for the downstream growth of 
the boundary layer thickness.  Both figures exhibit complete 
overlap, indicating grid independence and concurrence with 
experimental data.  
 
Table I. Computational parameters for grid independence study.  The 
parameters m and n are the number of grids in the x- and y-directions, 
respectively and k is the number of Fourier modes used in the z-direction.  
X, Y, and Z are the physical dimensions in those directions.  
 

 m n k X(mm) Y(mm) Z(mm) 

Case 1 280 60 4 200-760 0-17.4 0-48 

Case 2 850 80 16 200-880 0-17.4 0-48 

 
 

 
Fig. 9.  Grid independence study for the transverse profiles of the flow 
velocity using a coarse grid (case 1), fine grid (case 2), and Borodulin, et 
al., 2002 [5].  
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Fig. 10.  Grid independence study for the downstream growth of the 
boundary layer thickness using a coarse grid (case 1), fine grid (case 2), and 
Borodulin, et al., 2002 [5].  
 
Sub-harmonic Resonance 
 The numerical model proceeds to simulate the sub-
harmonic resonance of the generated waves in flow.  Figure 
11 shows the amplification of the wave amplitudes for the 
modes (1, 0) and (1/2, 1) with good agreement with 
Borodulin, et al., 2002 [5].  In Fig. 12, the transverse 
profiles of the wave amplitudes for the modes (1, 0) and 
(1/2, 1) once again agree with those of Borodulin, et al., 
2002 [5]. 
 

 
Fig. 11.  Amplification of the wave amplitudes for the modes (1, 0) and 
(1/2, 1) using a coarse grid (case 1), fine grid (case 2), and Borodulin, et al., 
2002 [5].  
 

 
Fig. 12.   Comparison of transverse profiles of the wave amplitudes using a 
coarse grid (case 1), fine grid (case 2), and Borodulin, et al., 2002 [5]:  (a) 
mode (1, 0) and (b) mode (1/2, 1). 

XI. TURBULENT STRUCTURE FORMATION 
In the alternative perspective, the aforementioned sub-

harmonic resonance translates into the formation of 
definitive flow structures signaling the onset of turbulent 
transition.  Section I describes these turbulent structures.  
Amongst them is the commonly observed Λ-vortex.  Figure 
13 confirms that the present study can capture the formation 
of the Λ-vortex when visualizing contours of the disturbance 
velocity ݑ′ in the x-z plane.  Interaction of the Λ-vortex with 
the high shear layer, another commonly observed structure, 
leads to the elongation of the tip of the Λ-vortex to form the 
Ω-vortex.  Figure 14 captures the downstream development 
of the Λ-vortex using the Q-criterion technique of Jeong and 
Hussain, 1995 [43].  Indeed, the elongation towards an Ω-
vortex is clearly evident.   
 

 
Fig.13. Contours u’ in the x-z plane at y = 2.3 mm and t = 0.105 s. 
 

 
Fig. 14. Vortex formation visualized at t = 0.105 s.  

XII. BROADBAND DISTURBANCE FLOW 

A. Broadband Disturbance 
More realistic turbulent conditions would entail a 

randomized disturbance.   The present study continues by 
imposing a randomized signal from the blowing and suction 
strip shown in Fig. 1.  Figure 15 shows the randomized 
disturbance amplitudes also known as broadband 
disturbance.  The characteristics of the broadband 
disturbance is adopted from the experiments of Borodulin, et 
al., 2002 [5].   The size of the computational domain is 500 
× 25.3 × 48 (mm) in the streamwise, transverse, and 
spanwise directions, respectively.  The non-uniform grid 
generation uses parameters ߙ௚ = 0.98 and ܿ = 30.16.   

Figure 16 affirms once again good agreement between the 
present study and Borodulin, et al., 2002 [5] for the 
transverse profile of the amplitudes of ݑ′.   With confidence 
in the numerical model, it could proceed to  investigate 
whether the coherent structures seen previously would 
persist in a randomized disturbance environment.  Would 
there still be symphony in the midst of cacophony? 
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Fig. 15.  Randomized disturbance introduced into the flow.  

 
Fig. 16. Transverse profile of amplitudes of u’ at x = 450 mm, z = 14 mm. 

B. Formation of Coherent Turbulent Structures 
Λ-Vortex 
The formation of the Λ-vortex indeed persists in the 

broadband disturbance flow as depicted in the evolutionary 
series from Figs. 17 a to d using the Q-criterion of Jeong and 
Hussain, 1995 [43].   The dark region below the Λ-vortex 
signals the formation of another flow structure known as the 
Soliton-like Coherent Structure (SCS).   
 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

 
 
(c) 

 
 
(d) 

 
Fig. 17. Evolution of Λ-vortex formation at (a) t = 0.061 s, (b) t = 0.0622 s, 
(c) t = 0.0635 s, and (d) t = 0.0649 s.  
 

Streamwise Vortices 
The legs of the Λ-vortices induce streamwise rotation 

commonly observed in boundary layer turbulence 
transitional flows [3, 25].  Visualizations of the flow vector 
field in the z-y plane at a downstream location x = 0.4323 m 
confirms the formation of streamwise vortices (see Fig. 18).  
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Fig. 18. Flow vector field with streamwise rotation at x = 0.4323 m and t = 
0.053 s. The shaded contours represent u’. 

 
Ω-Vortex 

 The flow structure evolution continues in Fig. 19.  The tip 
of the Λ-vortex elongates and lifts up to form the Ω-vortex.  
Further elongation of the Ω-vortex results in its breaking 
away from the Λ-vortex to form a separated ringed vortex.   
Figure 20 shows the uplifting flow vectors that contribute to 
this sequence.  
 
(a) 

 
 
(b) 

 
Fig. 19. Formation of Ω-vortex and subsequent break-off to form ringed 
vortex:  (a) t = 0.066 s and (b) t = 0.0675 s.  
 

 
Fig. 20. Flow vector field with upward lift at x = 0.4508 m and t = 0.059 s. 
The shaded contours represent u’. 
 
Soliton-like Coherent Structure 

The Λ-, Ω-, and ringed vortices interact with the SCS in 
interplay that would ultimately lead to flow randomization. 
The SCS is a persistent flow structure that resists breakdown 
by its surrounding flow.  Figure 21 indeed depicts a 
powerful flow structure traversing along the wall region.  
The SCS plays a primary role in the evolution of the Λ- and 
Ω-vortices as can be seen in Figs. 17 and 19, as the SCS 
undergirds these structural formations.  
 

 
Fig. 21. Flow vector field showing SCS at z = 0.0135 m and t = 0.053 s. 
The shaded contours represent u’. 
 
Flow Randomization 

The interplay amongst the Λ-, Ω-, and ringed vortices, as 
well as, with the SCS produces downstream flow 
randomization shown in Fig. 22.   At this point the flow is 
turbulent.  The nature of turbulence transition remains a 
mystery.  The classical works of Klebanoff, et al., 1962 
[24], Kachanov and Levchenko, 1984 [25], and Kachanov, 
1994 [3] intimate that wave generation, amplification, and 
interaction dynamics lead to turbulence.  Fourier 
decomposition of the flow velocity reveals five underlying 
harmonic waves shown in Fig. 23.  The author predilects 
that perhaps their mysterious synchronization underlies the 
turbulence transition phenomenon.  
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Fig. 22.  Evolution of Λ-, Ω-, and ringed vortices, as well as, with the SCS 
towards downstream flow randomization.  

 
Fig. 23. Frequency spectrum disturbances measured at x = 450 mm. 
 

XIII. CONCLUSION 
This has been a study of sub-harmonic resonance in three-

dimensional ZPG boundary layer flow.   Sub-harmonic 
wave generation, amplification, and interaction drive the N-
type pathway in turbulence transition made famous by the 
classical works of Kachanov and Levchenko, 1984 [25] and 
Kachanov, 1994 [3].  At the onset of turbulence transition, 
the wave dynamics become three-dimensional.  
Investigation of three-dimensional flows stands at the 
forefront of cutting-edge fluid dynamics research at the 
present time.  Three-dimensionality incurs exorbitant 
computational demands on the numerical simulations that 
exponentially increase to impractical levels.  The present 
study countervails such onerous computational demands by 
the imposition of a spectral method and a non-uniform grid.   
The symmetrical characteristic of the flow in the present 
study further improves upon the computational efficiency by 
needing only sine and cosine expansions in the spectral 
method, thereby reducing the computational demands by 
half.  The non-uniform grid raises numerical stability issues 
at the wall boundary.  Eigenvalue analysis ascertains ranges 
of stability of the numerical method. Validation of the 

numerical method versus the three-dimensional OS equation 
avers confidence in the accuracy of the model.   The present 
study respectfully emulates the classical experiments of 
Kachanov and Levchenko, 1984 [25].   The model 
simulations realize the resonance of the two-dimensional 
initial TS waves and the subsequently generated three-
dimensional sub-harmonic waves with qualitative agreement 
to Kachanov and Levchenko, 1984 [25].    

Extension of the numerical model to investigation of 
asymmetrical flows entails using the full Fourier expansion 
in the spectral method.  Validation of the expanded model 
with Borodulin, et al., 2002 [5] affirms accuracy.  The 
present study captures wave amplification dynamics for the 
modes (1, 0) and (1/2, 1) in good agreement with those of 
Borodulin, et al., 2002 [5].  A grid independence study 
proves that the numerical results do not depend on the 
specifications of the grid spacing.   

Converting the input perturbation to a random signal adds 
closer verisimilitude to real turbulent flows.  The commonly 
observed turbulent flow structures, Λ-, Ω-, and ringed 
vortices, manifest under these conditions also.  Underlying 
mechanisms of streamwise vortices, upward lift away from 
the wall, and persistent SCS near the wall would appear to 
contribute to the observed structure formation.   Ultimately, 
the turbulent structures break down into flow randomization.  

The author respectfully anthologizes his epistemology on 
the fascinating topic of turbulence transition in boundary 
layer flows.  Chen, 2009 [26] invites readers to a 
bibliolatrous appreciation of the paper that has become the 
fulcrum for turbulent fluid dynamics research, Kolmogorov, 
1941a [44], The Local Structure of Turbulence in 
Incompressible Viscous Fluid for Very Large Reynolds 
Numbers, better known as K41, which derives the very 
famous universal 5/3 law of Kolmogorov.  A scholastic 
foray into the fundamental physics, mathematics, and 
numerical simulation of the Navier-Stokes equations and its 
variant form, the Vorticity Transport Equation, follows in 
Chen and Chen, 2010 [23].   The burgeoning study of the 
author logically proceeds into the numerical simulation of 
the linear stability stage of wave interactions leading to 
turbulence.   Chen and Chen, 2009 [22] presents its findings 
at the 6th International Conference on Flow Dynamics, 
Sendai, Japan and the 62nd Meeting of the Division of Fluid 
Dynamics of the American Physical Society, Minneapolis, 
MN, USA.   This stage signifies the completion of the 
fundamental background studies.  Prior to investigating the 
question of interest, how flow becomes turbulent, Chen and 
Chen, 2012 [27] interlards a reportorial study of two very 
important preliminary issues of concern in the numerical 
simulation of turbulence transition:  control of numerical 
errors and preservation of the generation, amplification, and 
interaction of microscopic-amplitude waves.  Chen and 
Chen, 2010 [31] presents this work at the 7th International 
Conference on Flow Dynamics, Sendai, Japan and 63rd 
Meeting of the Division of Fluid Dynamics of the American 
Physical Society, Long Beach, CA, USA.  The contributions 
of the author to the field begins to receive recognition from 
the academic community beginning with Chen and Chen, 
2011 [32], which further expands on the preceding work and 
makes presentation at the International Multi-Conference of 
Engineers and Computer Scientists 2011 where it earns the 

IAENG International Journal of Applied Mathematics, 42:2, IJAM_42_2_05

(Advance online publication: 26 May 2012)

 
______________________________________________________________________________________ 



 

distinction of the Best Paper Award.  The scribomania 
continues in order to satisfy rising interest from the 
academic community with the invited paper, Chen and 
Chen, 2011 [28], and invited edited book chapter, Chen and 
Chen, 2012 [30].  The present study addresses the issue of 
turbulence transition in three-dimensional flows, a topic that 
lies at the forefront of contemporary research in the field.   
Chen and Chen, 2011 [33] presents this work at the 8th 
International Conference on Flow Dynamics, Sendai, Japan 
and 64th Meeting of the Division of Fluid Dynamics of the 
American Physical Society, Baltimore, MD, USA.  Copious 
details of that study resides in Chen and Chen, 2012 [29].   
Chen and Chen, 2012 [34] presents this assiduous work at 
the International Multi-Conference of Engineers and 
Computer Scientists 2012.  How does flow become 
turbulent?  Knowledge of this profound question remains 
hitherto inchoate.   Thank you for your consideration. 
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