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Abstract—In this paper, we introduce and study weak and
strong convergence of a two-step implicit algorithm for a finite
family of asymptotically quasi-nonexpansive maps in a uni-
formly convex Banach space. The results are proved for a more
general implicit algorithm under weaker assumptions on the
control sequences of parameters. Our results are generalizations
of several well-known results in the current literature.

Index Terms—Asymptotically nonexpansive map, asymptoti-
cally quasi- nonexpansive map, common fixed point, condition
(A), demi-compactness.

I. INTRODUCTION

Throughout the paper, we assume that E is a uniformly
convex Banach space, T a selfmap on a nonempty subset
C of E, F (T ) = {x ∈ C : T (x) = x}, the set of
fixed points of T , {1, 2, 3, ...N} , the indexing set I and
F = ∩i∈IF (Ti), where Ti(i ∈ I) are selfmaps on C. The
map T is : (i) asymptotically nonexpansive if there is a
sequence {un} ⊂ [1,∞) with limn→∞ un = 1 such that
∥Tnx− Tny∥ ≤ un ∥x− y∥ for x, y ∈ C and n ≥ 1 (ii)
asymptotically quasi-nonexpansive if F (T ) ̸= ∅ and there
is a sequence {un} ⊂ [1,∞) with limn→∞ un = 1 such
that ∥Tnx− p∥ ≤ un ∥x− p∥ for x ∈ C, p ∈ F (T ) and
n ≥ 1 (iii) uniformly L-Lipschitzian if for some L ≥ 1,
∥Tnx− Tny∥ ≤ L ∥x− y∥ for x, y ∈ C and n ≥ 1.

A Banach space E is uniformly convex if for each r ∈
(0, 2], the modulus of convexity of E, given by

δ(r) = inf

{
1− 1

2
∥x+ y∥ : ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ r

}
,

satisfies the inequality δ(r) > 0. For a sequence, the
symbol → (resp.⇀) denotes strong (resp. weak) conver-
gence. The space E is said to satisfy Opial’s property [11]
if for any sequence {xn} in E, xn ⇀ x implies that
lim supn→∞ ∥xn − x∥ < lim supn→∞ ∥xn − y∥ for all
y ∈ E with y ̸= x. A map T : C → E is demiclosed
at y ∈ C if for each sequence {xn} in C and each
x ∈ E, xn ⇀ x and Txn → y imply that x ∈ C and
Tx = y.

In 1972, Goebel and Kirk [8] proposed and analyzed a
concept of asymptotically nonexpansive maps as an impor-
tant generalization of nonexpansive maps. Since then, the
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study of approximation theory of fixed points of asymptoti-
cally (quasi-)nonexpansive maps has been developed through
explicit and implicit algorithms in various settings (see, e.g.
[1-8, 10, 12, 15, 18]). Implicit algorithms have an advantage
over explict algorithms for nonlinear problems in Hilbert
spaces and Banach spaces in view of their accuracy. For
the existence of a common fixed point of a finite family
of maps in Hilbert and Banach space, we have to assume
that the maps are usually linear or at least to be weakly
continuous and affine. In nonlinear case, a stronger geometric
structure is required to obtain the desired existence result. So
approximation results are of paramount importance in this
field of investigations.

In 2001, Xu and Ori [16] proved the following result.
Theorem 1.1 ([16, Theorem 2]). Let {Ti : i ∈ I} be a family
of nonexpansive selfmaps on a closed convex subset C of a
Hilbert space with F ̸= ∅, let x0 ∈ C and let {αn} be
a sequence in (0, 1) such that limn→∞ αn = 0. Then the
algorithm xn = αnxn−1+(1−αn)Tnxn, where n ≥ 1 and
Tn = TnmodN , converges weakly to a point in F.

They posed an open question: What condition on the maps
{Ti : i ∈ I} and (or) parameters {αn} are sufficient to
guarantee strong convergence of the algorithm in Theorem
1.1. The answer is given in affirmative by Sun [12] as
follows.
Theorem 1.2 ([12, Theorem 3.1]). Let C be a nonempty
closed convex subset of a Banach space. Let {Ti : i ∈ I}
be N asymptotically quasi-nonexpansive selfmaps of C with
sequence {uin} ⊂ [1,∞), such that

∑∞
n=1 uin < ∞ for

all i ∈ I and F ̸= ∅. Suppose that x0 ∈ C and {αn} ⊂
(s, 1 − s) for some s ∈ (0, 1

2 ). Then the algorithm {xn}
defined by the implicit iteration scheme

xn = αnxn−1 + (1− αn)T
k(n)
i(n) xn, n ≥ 1 (1.1)

where n = (k−1)N+i, i = i(n) ∈ I and k = k(n) ≥ 1 is a
positive integer such that k(n) → ∞ as n → ∞, converges
strongly to a common fixed point of {Ti : i ∈ I} if and only
if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = inf{d(x, p) :
p ∈ F}.
Theorem 1.3 ([12, Theorem 3.3]). Let C be a nonempty
bounded closed convex subset of a Banach space. Let {Ti :
i ∈ I} be N uniformly L-Lipschitizian asymptotically quasi-
nonexpansive selfmaps of C with sequence {uin} ⊂ [1,∞)
such that

∑∞
n=1 uin < ∞ for all i ∈ I and F ̸= ∅. Suppose

that there exists one semi-compact member T in {Ti : i ∈
I} and that x0 ∈ C and {αn} ⊂ (s, 1 − s) for some s ∈
(0, 1

2 ). Then the algorithm {xn} defined implicitly in (1.1)
converges strongly to a common fixed point of {Ti : i ∈ I}.
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Recently, Guo and Cho [10] have estab-
lished strong convergence of {xn} in (1.1)
under new conditions on the control sequences to a
common fixed point of the family {Ti : i ∈ I} of
asymptotically nonexpansive maps.

Inspired and motivated by these facts, we investigate
convergence of a two-step implicit algorithm.

Let C be a nonempty subset of a real Banach space E
and Ti : C → C be N asymptotically quasi- nonexpansive
maps. Let {αn} and {βn} be sequences in [0, 1] and x0 a
given point in C. We define the two-step implicit algorithm
in a compact form as

xn = αnxn−1 + (1− αn)T
k(n)
i(n) yn,

yn = (1− βn)xn + βnT
k(n)
i(n) xn.

(1.2)

Recall that a family {Ti : i ∈ I} of N asymptotically
quasi-nonexpansive selfmaps of C with F ̸= ∅ is said to
satisfy condition (A) if there exists a nondecreasing function
f : [0,∞) → [0,∞) with f(0) = 0, f(t) > 0 for all
t ∈ (0,∞) such that the inequality

∥x− Tx∥ ≥ f(d(x, F )) for all x ∈ C,

holds for at least one T ∈ {Ti : i ∈ I}.

In the sequel, we shall need the following lemmas.
Lemma 1.4 ([3, Lemma 3]). Let {an} and {bn} be two se-
quences of non-negative real numbers such that

∑∞
n=1 bn <

∞. If an+1 ≤ (1+ bn)an, n ≥ 1, then limn→∞ an exists.
Lemma 1.5 ([17, Theorem 2]). Let r > 0 be a fixed real
number. Then a Banach space E is uniformly convex if and
only if there exists a continuous strictly increasing convex
function g : [0,∞) → [0,∞) with g(0) = 0 such that

∥λx+ (1− λ)y∥2 ≤ λ ∥x∥2 + (1− λ) ∥y∥2

−λ(1− λ)g (∥x− y∥) ,

for all x, y ∈ Br [0] = {x ∈ E : ∥x∥ ≤ r} and 0 ≤ λ ≤ 1.

II. CONVERGENCE OF IMPLICIT ALGORITM

We start this section with the following technical result.
Proposition 2.1. Let C be a nonempty subset of E and
Ti : C → C be N asymptotically quasi-nonexpansive maps.
Then, for all n ≥ 1 and x, y ∈ C, p ∈ F (Ti)
(1) there exists a sequence {un} ⊂ [1,∞) with
limn→∞ un = 1 such that ∥Tn

i x− p∥ ≤ un ∥x− p∥ ,
(2) {Ti : i ∈ I} is uniformly L-Lipschitzian with a
Lipschitz constant L ≥ 1, that is, there exists a constant
L ≥ 1 such that ∥Tn

i x− p∥ ≤ L ∥x− p∥ .
Proof. (1) Since for each i ∈ I, Ti : C → C is
an asymptotically quasi-nonexpansive map, therefore, there
exists a sequence {ui

n} ⊂ [1,∞) with limn→∞ ui
n = 1, such

that
∥Tn

i x− p∥ ≤ ui
n ∥x− p∥ , for all n ≥ 1.

Let un = max1≤i≤N ui
n. Then we have {un} ⊂ [1,∞) with

limn→∞ un = 1 and

∥Tn
i x− p∥ ≤ ui

n ∥x− p∥ ≤ un ∥x− p∥ , for all n ≥ 1.

(2) Taking L = supn≥1 un, the conclusion (2)
can be obtained immediately from the conclusion

of (1). �

The following result extends Theorem 1.2 for the two-step
implicit scheme (1.2).
Theorem 2.2. Let C be a nonempty closed convex subset
of a uniformly convex Banach space E. Let {Ti : i ∈ I}
be N asymptotically quasi-nonexpansive selfmaps of C and
F ̸= ∅. Suppose that x0 ∈ C and {αn} and {βn} are
sequences in (0, 1) and satisfy the following conditions:
(C1) :

∑∞
n=1(uin − 1) < ∞

(C2) : There exists constant ϵ ∈ (0, 1
2 ) such that

0 < 1− αn ≤ ϵ and ϵ ≤ βn ≤ 1− ϵ.
Then the implicit algorithm {xn} generated by (1.2), con-

verges to a point in F if and only if lim infn→∞ d(xn, F ) =
0.

Proof. The necessity of the conditions is obvious. Thus we
only prove the sufficiency. Let p ∈ F, we have

∥yn − p∥ =
∥∥∥(1− βn)xn + βnT

k(n)
i(n) xn − p

∥∥∥
≤ (1− βn) ∥xn − p∥+ βnuin ∥xn − p∥
≤ uin ∥xn − p∥ .

So,

∥xn − p∥ =
∥∥∥αnxn−1 + (1− αn)T

k(n)
i(n) yn − p

∥∥∥
≤ αn ∥xn−1 − p∥+ (1− αn)uin ∥yn − p∥
≤ αn ∥xn−1 − p∥+ (1− αn)u

2
in ∥xn − p∥ .

(2.1)

Denote µn = u2
in − 1. From

∑∞
n=1 (uin − 1) < ∞, we get∑∞

n=1 µn < ∞.
Therefore, (2.1) becomes

∥xn − p∥ ≤ αn ∥xn−1 − p∥+ (1− αn)(1 + µn) ∥xn − p∥
≤ αn ∥xn−1 − p∥+ (1− αn + µn) ∥xn − p∥

≤ ∥xn−1 − p∥+ µn

αn
∥xn − p∥ .

(2.2)

Note that 1− ϵ ≤ αn. Hence (2.2) reduces to

∥xn − p∥ ≤ ∥xn−1 − p∥+ µn

1− ϵ
∥xn − p∥ .

Simplifying, we have

∥xn − p∥ ≤ 1− ϵ

1− ϵ− µn
∥xn−1 − p∥

≤ (1 +
µn

1− ϵ− µn
) ∥xn−1 − p∥ .

(2.3)

Since µn → 0, there exists a positive integer n0 such
that µn ≤ 1−ϵ

2 , for all n ≥ n0. It follows from (2.3) that

∥xn − p∥ ≤
(
1 +

2µn

1− ϵ

)
∥xn−1 − p∥ , for all n ≥ n0,

(2.4)
which further implies that

∥xn − F∥ ≤
(
1 +

2µn

1− ϵ

)
∥xn−1 − F∥ , for all n ≥ n0.

(2.5)
Now applying Lemma 1.4 to the inequalities (2.4)
and (2.5), we conclude that both limn→∞ d(xn, p) and
limn→∞ d(xn, F ) exist. Since lim infn→∞ d(xn, F ) = 0,
therefore limn→∞ d(xn, F ) = 0. Next we show that {xn}
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is a Cauchy sequence. Note that 1 + x ≤ ex for x > 0 and
hence by (2.4), we have

∥xn+m − p∥ ≤
(
1 +

2µn+m

1− ϵ

)
∥xn+m−1 − p∥

≤ exp

[
n+m∑
i=n

2µi

1− ϵ

]
∥xn − p∥

≤ exp

[
2

1− ϵ

∞∑
i=1

µi

]
∥xn − p∥

< M ∥xn − p∥ .

where M = exp
[

2
1−ϵ

∑∞
i=1 µi

]
.

Since limn→∞ d(xn, F ) = 0, so for any given ϵ > 0, there
exists a positive integer n1 such that d(xn, F ) < ϵ

2M . That
is, there exists p0 ∈ F such that ∥xn0

− p0∥ < ϵ
2M . Hence,

for any n ≥ n1 and m ≥ 1, we have

∥xn+m − xn∥ ≤ ∥xn+m − p0∥+ ∥xn − p0∥

≤ exp

[
2

1− ϵ

n+m∑
i=n0

µi

]
∥xn0 − p0∥

+exp

[
2

1− ϵ

n∑
i=n0

µi

]
∥xn0 − p0∥

≤ exp

[
2

1− ϵ

∞∑
i=1

µi

]
∥xn0 − p0∥

+exp

[
2

1− ϵ

∞∑
i=1

µi

]
∥xn0 − p0∥

< 2M ∥xn0 − p0∥
< ϵ.

This proves that {xn} is a Cauchy sequence in E and
so it must converge. Let limn→∞ xn = q(say). As
limn→∞ d(xn, F ) = 0, therefore, d(q, F ) = 0. This implies
that there exists p ∈ F such that d(q, p) = 0. That is
q = p. Hence q is a common fixed point of Ti for all
i ∈ I. �
Corollary 2.3. Suppose that all the conditions of Theorem
2.2 hold. Then the implicit algorithm{xn} generated by (1.2),
converges to a point p ∈ F if and only if {xn} has an infinite
subsequence {xnj} with limit p.

Now, we prove weak convergence of the implicit algorithm
(1.2).

Theorem 2.4. Suppose that all the conditions of Theorem
2.2 hold. Further, if J is the identity map and (J − Ti) is
demiclosed at 0 for every i ∈ I, then the implicit algorithm
{xn} in (1.2) converges weakly to a common fixed point of
{Ti : i ∈ I}.
Proof. The inequality (2.4) in the proof of Theorem 2.2
implies with the help of Lemma 1.4 that limn→∞ ∥xn − p∥
exists. We may assume that limn→∞ ∥xn − p∥ = d ≥ 0.
Since {∥xn − p∥} is convergent, so {xn} is bounded. There-
fore, there exists r > 0 such that {xn} ⊂ Br [p] ∩ C = D
and so D is a nonempty closed bounded and convex subset
of C.

From the scheme (1.2) and Lemma 1.5, we have

∥yn − p∥2 =
∥∥∥(1− βn)xn + βnT

k(n)
i(n) xn − p

∥∥∥2
≤ (1− βn) ∥xn − p∥2 + βnu

2
in ∥xn − p∥2

−βn(1− βn)g
(∥∥∥T k(n)

i(n) xn − xn

∥∥∥)
≤ u2

in ∥xn − p∥2

−βn(1− βn)g
(∥∥∥T k(n)

i(n) xn − xn

∥∥∥) .

So,

∥xn − p∥2 ≤ αn ∥xn−1 − p∥2 + (1− αn)u
2
in ∥yn − p∥2

−αn(1− αn)g
(∥∥∥xn−1 − T

k(n)
i(n) yn

∥∥∥)
≤ αn ∥xn−1 − p∥2 + (1− αn)u

4
in ∥xn − p∥2

−(1− αn)u
2
inβn(1− βn)g

(∥∥∥T k(n)
i(n) xn − xn

∥∥∥)
−αn(1− αn)g

(∥∥∥xn−1 − T
k(n)
i(n) yn

∥∥∥)
≤ ∥xn−1 − p∥2 + ϵMu4

in

−ϵ3u2
ing

(∥∥∥T k(n)
i(n) xn − xn

∥∥∥)
−ϵ2g

(∥∥∥xn−1 − T
k(n)
i(n) yn

∥∥∥) .

This implies that

ϵ3h2
k(n)g

(∥∥∥T k(n)
i(n) xn − xn

∥∥∥) ≤ ∥xn−1 − p∥2 − ∥xn − p∥2

+ϵMu4
in

and

ϵ2g
(∥∥∥xn−1 − T

k(n)
i(n) yn

∥∥∥) ≤ ∥xn−1 − p∥2−∥xn − p∥2+ϵMu4
in.

It follows from the above inequalities that, for any m > 0,

ϵ3u2
in

m∑
n=1

g
(∥∥∥T k(n)

i(n) xn − xn

∥∥∥) ≤ ∥x0 − p∥2 − ∥xm − p∥2

+ϵM
m∑

n=1

u4
in

and

ϵ2
m∑

n=1

g
(∥∥∥xn−1 − T

k(n)
i(n) yn

∥∥∥) ≤ ∥x0 − p∥2 − ∥xm − p∥2

+ϵM

m∑
n=1

u4
in

which imply on letting m → ∞,

∞∑
n=1

g
(∥∥∥T k(n)

i(n) xn − xn

∥∥∥) < ∞

and
∞∑

n=1

g
(∥∥∥xn−1 − T

k(n)
i(n) yn

∥∥∥) < ∞.

Hence
lim
n→∞

∥∥∥T k(n)
i(n) xn − xn

∥∥∥ = 0, (2.6)

and
lim

n→∞

∥∥∥xn−1 − T
k(n)
i(n) yn

∥∥∥ = 0. (2.7)

IAENG International Journal of Applied Mathematics, 42:3, IJAM_42_3_08

(Advance online publication: 27 August 2012)

 
______________________________________________________________________________________ 



Set
∥∥∥T k(n)

i(n) xn − xn−1

∥∥∥ = σn. Now, we prove that σn → 0
as n → ∞.
Note that

σn ≤
∥∥∥T k(n)

i(n) xn − T
k(n)
i(n) yn

∥∥∥+
∥∥∥xn−1 − T

k(n)
i(n) yn

∥∥∥
≤ uin ∥xn − yn∥+

∥∥∥xn−1 − T
k(n)
i(n) yn

∥∥∥
≤ uinβn

∥∥∥xn − T
k(n)
i(n) xn

∥∥∥+
∥∥∥xn−1 − T

k(n)
i(n) yn

∥∥∥ → 0

as n → ∞.
(2.8)

Using (2.6) and (2.7) in (2.8), we get that

lim
n→∞

σn = 0. (2.9)

Since ∥xn − xn−1∥ ≤ (1− αn)
∥∥∥T k(n)

i(n) yn − xn−1

∥∥∥ ,
therefore

lim
n→∞

∥xn − xn−1∥ = 0. (2.10)

and

lim
n→∞

∥xn − xn+j∥ = 0, for j = 1, 2....N. (2.11)

For any positive integer n > N, n = (n−N)(modN). Also
n = (k(n) − 1)N + i(n). Hence n − N = ((k(n) − 1) −
1)N + i(n) = (k(n−N)N + i(n−N).
That is, k(n−N) = k(n)− 1 and i(n−N) = i(n).
Therefore, for n > N,

∥xn−1−Tnxn∥ ≤
∥∥∥xn−1−T

k(n)
i(n) xn

∥∥∥+
∥∥∥T k(n)

i(n) xn−Tnxn

∥∥∥
≤ σn + L

∥∥∥T k(n)−1
i(n) xn−xn

∥∥∥
= σn + L2 ∥xn − xn−N∥

+L
∥∥∥T k(n−N)

i(n−N) xn−N − x(n−N)−1

∥∥∥
+L

∥∥x(n−N)−1 − xn

∥∥
= σn + L2 ∥xn − xn−N∥

+Lσn−N + L
∥∥x(n−N)−1 − xn

∥∥ ,
which yields(on using (2.9) and (2.11):

lim
n→∞

∥xn−1 − Tnxn∥ = 0. (2.12)

On using (2.9) and (2.12), it follows that

lim
n→∞

∥xn − Tnxn∥ ≤ lim
n→∞

∥xn − xn−1∥

+ lim
n→∞

∥xn−1 − Tnxn∥ = 0.
(2.13)

Consequently, for any j = 1, 2, ..., N, from (2.11) and (2.13),
we have

∥xn − Tn+jxn∥ ≤ ∥xn − xn+j∥+ ∥xn+j − Tn+jxn+j∥
+ ∥Tn+jxn+j − Tn+jxn∥

≤ (1 + L) ∥xn − xn+j∥
+ ∥xn+j − Tn+jxn+j∥ .

Letting n → ∞, we have

lim
n→∞

∥xn − Tn+jxn∥ = 0.

This implies that the sequence
N∪
j=1

{∥xn − Tn+jxn∥}∞n=1 → 0 as n → ∞.

Since for each l = 1, 2, ..., N,
{∥xn − Tlxn∥}∞n=1 is a subsequence of
∪N
j=1 {∥xn − Tn+jxn∥}∞n=1 , therefore we have

lim
n→∞

∥xn − Tlxn∥ = 0 for l = 1, 2, ...N. (2.14)

Next, we prove that ωω(xn), the weak ω−limits set of {xn},
is nonempty and ωω(xn) ⊂ F. Indeed, since E is uniformly
convex and D is a nonempty closed bounded convex subset
of C so D is weakly compact and weakly closed. This
implies that there exists a subsequence {xni} of {xn} such
that {xni} converges weakly to a point q ∈ ωω(xn), which
shows that ωω(xn) is nonempty. For any q ∈ ωω(xn), there
exists a subsequence {xnk

} of {xn} such that xnk
⇀ q.

Again, by (2.14), we have limn→∞ ∥xnk
− Tlxnk

∥ = 0.
Now for each l ∈ I, (J − Tl) is demiclosed at 0, therefore
(J − Tl)q = 0. Hence ωω(xn) ⊂ F. In a similar fashion
we can prove that, if q1 ∈ ωω(xn), then q1 ∈ F. For the
uniqueness, assume that q ̸= q1, and xnk

→ q, xnj → q1.
By Opial’s condition, we conclude that

lim
n→∞

∥xn − q∥ = lim
n→∞

∥xnk
− q∥ < lim

n→∞
∥xnk

− q1∥

= lim
n→∞

∥xn − q1∥ = lim
n→∞

∥∥xnj − q1
∥∥

< lim
n→∞

∥xnj − q∥ = lim
n→∞

∥xn − q∥ .

This is a contradiction. Thus {xn} converges
weakly to a common fixed point of
{Ti : i ∈ I}. �
Remark 2.5. (1) It is remarked that Theorem 2.2 also holds
for a two-step algoritm with bounded error terms given
below

xn = αnxn−1 + βnT
k(n)
i(n) yn + γnθn,

yn = αnxn + βnT
k(n)
i(n) xn + γnθ

′

n.

Furthermore, it is a matter of routine to investigate weak and
strong convergence results of an algorithm with error terms
under appropriate conditions on the control sequences of
parameters. Therefore, Theorem 2.2 extends and improves
Theorems 2.1-2.2 in [9] and Theorem 3.1 in [12-14].
(2) Note that weak convergence results: Theorems 1-2 in
[4], Theorems 2.3-2.4 in [9], Theorem 2.2 in [15], Theorem
2 in [16] and Theorems 1-2 in [18] are direct consequences
of Theorem 2.4.

As an application of our Theorem 2.2, we establish
another strong convergence result as follows.
Theorem 2.6. Let E be a uniformly convex Banach space
and C be a nonempty closed convex subset of E. Let {Ti}
and {xn} be as in Theorem 2.2. If {Ti} satisfies condition
(A), then {xn} converges strongly to a point in F ̸= ∅.
Proof. As in the proof of Theorem 2.2, we have that
limn→∞ d(xn, F ) exists. Furthermore, (2.14) implies that
limn→∞ ∥xn − Tlxn∥ = 0 for l = 1, 2, ...N. So condition
(A) guarantees that limn→∞ f(d(xn, F )) = 0. Since f is
a non-decreasing function and f(0) = 0, it follows that
limn→∞ d(xn, F ) = 0. Therefore, Theorem 2.2 implies that
{xn} converges strongly to a point in F. �
Remark 2.7.
(1) Observe that the condition (A) is much weaker than
the demi-compactness. Therefore, Theorem 2.6 is an
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improvement and generalization of several well-known
results in the current literature such as Theorem 1.3,
Theorems 3.1-3.2 in [1], Theorems 4-5 in [4], Theorem
4 in [10], Theorem 2.3 in [15] and Theorem 3 in [18].
Furthermore, Theorem 2.2 and Theorem 2.6 answer in
affirmative the question posed by Xu and Ori [16].
(2) Following the line of action of the results proved so far,
we can prove these results with suitable changes for the
following classes of functions :
(i) generalized asymptotically-quasi nonexpansive
maps
(i.e., ∥Tnx− p∥ ≤ un ∥x− p∥+δn, where limn→∞ un =

1 and limn→∞ δn = 0).
(ii) asymptotically nonexpansive maps in the intermediate
sense [2]
{i.e., lim supn→∞ supx,y∈C(∥Tnx− Tny∥ −

∥x− y∥) ≤ 0}.
We leave the details to the reader.
Open Question : Can Theorem 2.2 be proved without the
fast rate of convergence condition (C1).
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