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Abstract—In this paper, we consider the Hamiltonian alter-
nating path problem for graphs, multigraphs, and digraphs. We
describe an approach to solve the problem. This approach is
based on constructing logical models for the problem. We use
logical models for the Hamiltonian alternating path problem to
solve the Hamiltonian path problem and the planning a typical
working day for indoor service robots problem. Also, we use
these models for Bennett’s model of cytogenetics, automatic
generation of recognition modules, and algebraic data.

Index Terms—Hamiltonian alternating path, Hamiltonian
path, the planning a typical working day for indoor service
robots problem, NP-complete, logical models.

I. INTRODUCTION

RECENTLY, a number of Hamiltonian problems for
edge-colored graphs were considered (see e.g. [1], [2]).

It should be noted that in the last years the concept of
alternating trails and the special cases, alternating paths
and cycles, appears in various applications (see e.g. [3],
[4]). In particular, we can mention that some problems in
molecular biology correspond to extracting Hamiltonian or
Eulerian paths or cycles colored in specified pattern [5]–[7],
transportation and connectivity problems where reload costs
are associated to pair of colors at adjacent edges [8], social
sciences [9], VLSI optimization [10], etc. Also, there are a
number of applications in graph theory and algorithms.

In this paper, we describe an approach to solve the Hamil-
tonian alternating path problem for graphs, multigraphs, and
digraphs. This approach is based on constructing logical
models for the problem. Also, we consider an application
of this approach to solve the Hamiltonian path problem and
the planning a typical working day for indoor service robots
problem [11].

II. PRELIMINARIES AND PROBLEM DEFINITIONS

Multiple edges are edges that have the same end nodes.
A multigraph is a set of nodes connected by edges which
is permitted to have multiple edges. Thus, in multigraph,
two vertices may be connected by more than one edge. In
this paper, we consider only edge-colored multigraphs. We
assume that each edge of a multigraph has a color and no
two multiple edges have the same color. All multigraphs
considered are finite and have no loops. When multigraphs
have no multiple edges, we call them graphs, as usual.
A digraph is a graph where the edges have a direction
associated with them.

An edge of graph with vertices x and y we denote by
(x, y). In this case, we assume that (x, y) = (y, x). For
multigraphs, an edge with vertices x and y we denote by
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z[x, y]. In this case, we assume that z1[x, y] = z2[x, y] if
and only if z1 = z2. For digraphs, we assume that an edge
(x, y) is considered to be directed from x to y. In this case,
we assume that (x, y) 6= (y, x).

If the number of colors is restricted by an integer c, we
speak about c-edge-colored multigraphs. In this paper, we
consider only simple paths and cycles. Let G be a c-edge-
colored multigraph. A cycle or path in G is called alternating
if its successive edges differ in color. An alternating path or
cycle is called Hamiltonian if it contains all the vertices of
G. If G has a Hamiltonian alternating cycle, G is called
Hamiltonian. An alternating path P is called an (x; y)-path
if x and y are the end vertices of P . The alternating Hamil-
tonian path problem and the alternating Hamiltonian cycle
problem are problems of determining whether an alternating
Hamiltonian path or an alternating Hamiltonian cycle exists
in a given multigraph.

III. THE ALTERNATING HAMILTONIAN PATH PROBLEM
FOR 2-EDGE-COLORED MULTIGRAPHS

The alternating Hamiltonian path problem and the alternat-
ing Hamiltonian cycle problem are extensively studied (see
e.g. [3], [14]). However, the computational complexity of
these problems are not quite clear. In [12], the authors noted
that the alternating Hamiltonian cycle problem, even for 2-
edge-colored graphs, is trivially NP-complete. However, the
authors of [12] have not given proof or any other evidence
of this fact. In [3], the authors noted that problems on
alternating cycles and paths in general 2-edge-colored graphs
are at least as difficult as the corresponding ones for directed
cycles and paths in digraphs. The authors of [3] gave the
following motivation for this fact. “To see that, we consider
the following simple transformation attributed to Häggkvist
in [13]. Let D be a digraph. Replace each arc xy of D by two
(unoriented) edges xzxy and zxyy by adding a new vertex zxy
and then colour the edge xzxy red and the edge zxyy blue.
Let G be the 2-edge-coloured graph obtained in this way. It
is easy to see that each alternating cycle in G corresponds to
a directed cycle in D and vice versa. Hence, in particular, the
following problems on paths and cycles in 2-edge-coloured
graphs are NP-complete: the Hamiltonian alternating cycle
problem and the problem to find an alternating cycle through
a pair of vertices.” It should be noted that the motivation is
incorrect. For instance, we can consider the digraph

D1 = ({1, 2, 3}, {(1, 2), (2, 3), (1, 3)}).

Using the transformation, we obtain the 2-edge-colored graph

G1 = ({1, 2, 3, z12, z23, z13},

{(1, z12), (z12, 2), (2, z23),
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(z23, 3), (1, z13), (z13, 3)})

where

{(1, z12), (2, z23), (1, z13)}

is the set of red edges and

{(z12, 2), (z23, 3), (z13, 3)}

is the set of blue edges. It is clear that D1 has a Hamiltonian
path. On the other hand, it is easy to check that G1 has no
alternating Hamiltonian path. Similarly, we can consider the
digraph

D2 = ({1, 2, 3, 4}, {(1, 2), (2, 3), (3, 4), (4, 1), (1, 3)}).

Using the transformation, we obtain the 2-edge-colored graph

G2 = ({1, 2, 3, 4, z12, z23, z34, z41, z13},

{(1, z12), (z12, 2), (2, z23), (z23, 3),

(3, z34), (z34, 4), (4, z41), (z41, 1),

(1, z13), (z13, 3)})

where

{(1, z12), (2, z23), (3, z34), (4, z41), (1, z13)}

is the set of red edges and

{(z12, 2), (z23, 3), (z34, 4), (z41, 1), (z13, 3)}

is the set of blue edges. It is easy to see that that D2 has a
Hamiltonian cycle, but G2 is not Hamiltonian.

In our investigations, we need an explicit proof of hardness
of the alternating Hamiltonian path problem. The proof of the
following Proposition 1 gives us an explicit reduction from
the Hamiltonian path problem to the alternating Hamiltonian
path problem.

Note that the decision version of the alternating Hamil-
tonian path problem for c-edge-colored multigraphs can be
formulated as following.

THE ALTERNATING HAMILTONIAN PATH PROBLEM FOR
c-EDGE-COLORED MULTIGRAPHS (c-AHP-M):

INSTANCE: A c-edge-colored multigraph G = (V,E)
where V is the set of vertices and E is the set of edges.

QUESTION: Does G have an alternating Hamiltonian
path?

Proposition 1. 2-AHP-M is NP-complete.
Proof. It is clear that c-AHP-M is in NP. Therefore,

we need to prove only NP-hardness of 2-AHP-M. Let us
consider the following problem:

HAMILTONIAN PATH PROBLEM FOR GRAPHS (HP-G):
INSTANCE: A graph D = (A,B).
QUESTION: Does D have a Hamiltonian path?
HP-G is NP-complete (cf. [15]). Now, we transform an

instance of HP-G into an instance of 2-AHP-M as follows:

V = A,

E = {r[x, y], b[x, y] | (x, y) ∈ B},

G = (V,E),

where

Er = {r[x, y] | (x, y) ∈ B}

is the set of red edges and

Eb = {b[x, y] | (x, y) ∈ B}

is the set of blue edges.
It is clear that if

(x1, x2), (x2, x3), . . . , (x|A|−1, x|A|)

is a Hamiltonian path in D, then

r[x1, x2], b[x2, x3], . . . , u[x|A|−1, x|A|],

where u = r for even |A| and u = b for odd |A|, is an
alternating Hamiltonian path in G. By definition of G, it is
easy to see that

u1[x1, x2], u2[x2, x3], . . . , u|A|−1[x|A|−1, x|A|]

is an alternating Hamiltonian path in G, then

(x1, x2), (x2, x3), . . . , (x|A|−1, x|A|)

is a Hamiltonian path in D. Therefore, the multigraph G has
an alternating Hamiltonian path if and only if the graph D
has a Hamiltonian path.

Let us consider the following problem:
THE ALTERNATING HAMILTONIAN CYCLE PROBLEM

FOR c-EDGE-COLORED MULTIGRAPHS (c-AHC-M):
INSTANCE: A c-edge-colored multigraph G = (V,E).
QUESTION: Does G have an alternating Hamiltonian

cycle?
Note that Hamiltonian cycle problem for graphs is NP-

complete (cf. [15]). Using the transformation from the proof
of the Proposition 1, it is easy to check that 2-AHC-M is
NP-complete.

IV. THE ALTERNATING HAMILTONIAN PATH PROBLEM
FOR 2-EDGE-COLORED DIGRAPHS

Let us consider the following problem:
THE ALTERNATING HAMILTONIAN PATH PROBLEM FOR

c-EDGE-COLORED DIGRAPHS (c-AHP-D):
INSTANCE: A c-edge-colored digraph G = (V,E).
QUESTION: Does G have an alternating Hamiltonian

path?
Proposition 2. 2-AHP-D is NP-complete.
Proof. It is easy to see that c-AHP-D is in NP. Therefore,

we need to prove only NP-hardness of 2-AHP-D. Let us
consider the following problem:

HAMILTONIAN PATH PROBLEM FOR DIGRAPHS (HP-D):
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INSTANCE: A digraph D = (A,B).
QUESTION: Does D have a Hamiltonian path?
HP-D is NP-complete (cf. [15]).
Let D be an instance of HP-D. Let H = (A1, B1) be a

digraph such that

A = {a1, a2, . . . , an},

A1 = A ∪ {an+1, an+2},

B1 = B ∪ {(an+1, ai), (ai, an+2) | 1 ≤ i ≤ n}.

Let

(x1, x2), (x2, x3), . . . , (xn−1, xn)

be a Hamiltonian path in D. It is clear that

(an+1, x1), (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, an+2)

is a Hamiltonian path in H . Now, let

(x1, x2), (x2, x3), . . . , (xn+1, xn+2)

be a Hamiltonian path in H . Since

(x, an+1) /∈ B1

for any x, it is clear that

xi 6= an+1

where 2 ≤ i ≤ n+ 2. Similarly, since

(an+2, x) /∈ B1

for any x, it is clear that

xi 6= an+2

where 1 ≤ i ≤ n+ 1. Therefore, an+1 = x1, an+2 = xn+2.
Thence,

(x2, x3), (x3, x4), . . . , (xn, xn+1)

is a Hamiltonian path in D. Thus, the digraph H has
a Hamiltonian path if and only if the digraph D has a
Hamiltonian path.

Now, we transform H into an instance of 2-AHP-D as
follows:

Z = {zxixj
| (xi, xj) ∈ B1},

A2 = {an+3, an+4, . . . , a|B1|+2},

V = A1 ∪ Z ∪A2,

E = {(xi, zxixj ), (zxixj , xj) | (xi, xj) ∈ B1}∪

{(an+2, an+3)}∪

{(ak, zxixj ), (zxixj , ap) | n+ 3 ≤ k ≤ |B1|+ 1,

n+ 4 ≤ p ≤ |B1|+ 2, (xi, xj) ∈ B1},

G = (V,E),

where

Er = {(xi, zxixj ) | (xi, xj) ∈ B1}∪

{(an+2, an+3)}∪

{(zxixj , ap) | n+ 4 ≤ p ≤ |B1|+ 2, (xi, xj) ∈ B1}

is the set of red edges and

Eb = {(zxixj
, xj) | (xi, xj) ∈ B1}∪

{(ak, zxixj ) | n+ 3 ≤ k ≤ |B1|+ 1, (xi, xj) ∈ B1}

is the set of blue edges.
Let

(an+1, x1), (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, an+2)

be a Hamiltonian path in H . It is easy to check that

(an+1, zan+1x1), (zan+1x1 , x1),

(x1, zx1x2
), (zx1x2

, x2),

(x2, zx2x3
), (zx2x3

, x3),

. . . ,

(xn−1, zxn−1xn), (zxn−1xn , xn),

(xn, zxnan+2
), (zxnan+2

, an+2),

(an+2, an+3),

(an+3, u1), (u1, an+4),

. . . ,

(a|B1|+1, u|B1|−n−1), (u|B1|−n−1, a|B1|+2),

ui ∈ Z\{zan+1x1
, zx1x2

, zx2x3
, . . . , zxn−1xn

, zxnan+2
},

ui = uj ⇔ i = j,
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is an alternating Hamiltonian path in G.
Now, let

(x1, x2), (x2, x3), . . . , (x2|B1|, x2|B1|+1)

be an alternating Hamiltonian path in G. Note that
(y, an+1) /∈ E for any y. Therefore, it is clear that x1 =
an+1. So, x2 = zan+1ai where i ∈ {1, 2, . . . , n}. Since
(an+1, zan+1ai) ∈ Er, it is easy to see that (x2, x3) =
(zan+1ai

, ai). Similarly, (xj , xj+1) = (ank
, zank

ank+1
) or

(xj , xj+1) = (zank
ank+1

, ank+1
) for any 3 ≤ j ≤ 2n + 2.

Clearly,

(x3, x5), (x5, x7), . . . , (x2n+1, x2n+3)

is a Hamiltonian path in H . Therefore, the digraph G has
an alternating Hamiltonian path if and only if the digraph D
has a Hamiltonian path.

Let us consider the following problem:
THE ALTERNATING HAMILTONIAN CYCLE PROBLEM

FOR c-EDGE-COLORED DIGRAPHS (c-AHC-D):
INSTANCE: A c-edge-colored digraph G = (V,E).
QUESTION: Does G have an alternating Hamiltonian

cycle?
Proposition 3. 2-AHC-D is NP-complete.
Proof. It is easy to see that c-AHC-D is in NP. Therefore,

we need to prove only NP-hardness of 2-AHC-D.
Let D be an instance of HP-G. Let H = (A1, B1) be a

digraph defined in proof of the Proposition 2. Let

Z = {zxixj
| (xi, xj) ∈ B1},

A2 = {an+3, an+4, . . . , a|B1|+3},

V = A1 ∪ Z ∪A2,

E = {(xi, zxixj
), (zxixj

, xj) | (xi, xj) ∈ B1}∪

{(an+2, an+3), (a|B1|+2, a|B1|+3)}∪

{(ak, zxixj
), (zxixj

, ap) | n+ 3 ≤ k ≤ |B1|+ 1,

n+ 4 ≤ p ≤ |B1|+ 2, (xi, xj) ∈ B1},

G = (V,E),

where

Er = {(xi, zxixj
) | (xi, xj) ∈ B1}∪

{(an+2, an+3)}∪

{(zxixj
, ap) | n+ 4 ≤ p ≤ |B1|+ 2, (xi, xj) ∈ B1}

is the set of red edges and

Eb = {(zxixj
, xj) | (xi, xj) ∈ B1}∪

{(a|B1|+2, a|B1|+3)}∪

{(ak, zxixj
) | n+ 3 ≤ k ≤ |B1|+ 1, (xi, xj) ∈ B1}

is the set of blue edges.
It is not hard to check that the digraph G has an alternating

Hamiltonian cycle if and only if the digraph D has a
Hamiltonian path.

V. LOGICAL MODELS

The satisfiability problem (SAT) was the first known NP-
complete problem. The problem SAT is the problem of
determining if the variables of a given boolean function in
conjunctive normal form (CNF) can be assigned in such
a way as to make the formula evaluate to true. Different
variants of SAT were considered. In particular, the problem
3SAT is the problem of determining if the variables of a
given 3-CNF can be assigned in such a way as to make
the formula evaluate to true. Encoding problems as Boolean
satisfiability (see e.g. [11], [16]–[27]) and solving them with
very efficient satisfiability algorithms (see e.g. [28]–[32])
has recently caused considerable interest. In this paper we
consider reductions from c-AHP-M and c-AHP-D to SAT
and 3SAT.

Let G = (V,E) be a 2-edge-colored multigraph, Er is the
set of red edges of G and Eb is the set of blue edges of G.
Let

V = {v1, v2, . . . , vn}.

Let

ϕ[1] = ∧1≤i≤n ∨1≤j≤n x[i, j],

ϕ[2] = ∧1≤i≤n ∧1≤j[1]<j[2]≤n (¬x[i, j[1]] ∨ ¬x[i, j[2]]),

ϕ[3] = ∧1≤j≤n ∧1≤i[1]<i[2]≤n (¬x[i[1], j] ∨ ¬x[i[2], j]),

δ[1] = ∧1≤i<n ∧1≤j[1]≤n
1≤j[2]≤n

(vj[1],vj[2])/∈E

(¬x[i, j[1]]∨

¬x[i+ 1, j[2]]),

ψ[1] = ∧1≤i<n,i=2k−1 ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Er

(¬y∨

¬x[i, j[1]] ∨ ¬x[i+ 1, j[2]]),

ψ[2] = ∧1<i≤n,i=2k ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Eb

(¬y∨
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¬x[i, j[1]] ∨ ¬x[i+ 1, j[2]]),

ψ[3] = ∧1≤i<n,i=2k−1 ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Eb

(y∨

¬x[i, j[1]] ∨ ¬x[i+ 1, j[2]]),

ψ[4] = ∧1<i≤n,i=2k ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Er

(y∨

¬x[i, j[1]] ∨ ¬x[i+ 1, j[2]]),

ξ[1] = (∧3i=1ϕ[i]) ∧ δ[1] ∧ (∧4j=1ψ[j]).

It is clear that ξ[1] is a CNF. It is easy to check that ξ[1]
gives us an explicit reduction from 2-AHP-M to SAT.

Now, let G = (V,E) be a c-edge-colored multigraph, Et

is the set of edges of tth color where 1 ≤ t ≤ c. Let

ρ[1,m] = ∧1≤i≤m ∨1≤j≤c u[i, j],

ρ[2,m] = ∧1≤i≤m ∧1≤j[1]<j[2]≤c (¬u[i, j[1]]∨

¬u[i, j[2]]),

ρ[3,m] = ∧1≤j≤c ∧1≤i<m (¬u[i, j] ∨ ¬u[i+ 1, j]),

η[t] = ∧1≤i<n ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Et

(¬u[i, t]∨

¬x[i, j[1]] ∨ ¬x[i+ 1, j[2]]),

ξ[2] = (∧3i=1ϕ[i]) ∧ δ[1] ∧ (∧3j=1ρ[j, n− 1]) ∧ (∧ct=1η[t]).

Clearly, ξ[2] is a CNF. It is easy to check that ξ[2] gives
us an explicit reduction from c-AHP-M to SAT.

Let

δ[2] = ∧1≤j[1]≤n
1≤j[2]≤n

(vj[1],vj[2])/∈E

(¬x[n, j[1]] ∨ ¬x[1, j[2]]),

ψ[5] = ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Er

(¬y∨

¬x[n, j[1]] ∨ ¬x[1, j[2]])

and

ψ[6] = ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Eb

(y∨

¬x[n, j[1]] ∨ ¬x[1, j[2]])

for n = 2k − 1,

ψ[5] = ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Eb

(¬y∨

¬x[n, j[1]] ∨ ¬x[1, j[2]])

and

ψ[6] = ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Er

(y∨

¬x[n, j[1]] ∨ ¬x[1, j[2]])

for n = 2k,

ξ[3] = (∧3i=1ϕ[i]) ∧ (∧2p=1δ[p]) ∧ (∧6j=1ψ[j]),

τ [t] = ∧1≤j[1]<j[2]≤n

e[vj[1],vj[2]]/∈Et

(¬u[n, t]∨

¬x[n, j[1]] ∨ ¬x[1, j[2]]),

ξ[4] = (∧3i=1ϕ[i]) ∧ (∧2p=1δ[p]) ∧ (∧3j=1ρ[j, n])∧

(∧ct=1η[t]) ∧ (∧ct=1τ [t]).

Note that ξ[3] is a CNF and ξ[4] is a CNF. It is easy to
check that ξ[3] gives us an explicit reduction from 2-AHC-M
to SAT and ξ[4] gives us an explicit reduction from c-AHC-
M to SAT. Note that

α ⇔ (α ∨ β1 ∨ β2) ∧
(α ∨ ¬β1 ∨ β2) ∧
(α ∨ β1 ∨ ¬β2) ∧
(α ∨ ¬β1 ∨ ¬β2), (1)

∨lj=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧
(∧l−4i=1(¬βi ∨ αi+2 ∨ βi+1)) ∧
(¬βl−3 ∨ αl−1 ∨ αl), (2)

α1 ∨ α2 ⇔ (α1 ∨ α2 ∨ β) ∧
(α1 ∨ α2 ∨ ¬β), (3)

∨4j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧
(¬β1 ∨ α3 ∨ α4) (4)

where l > 4. Using relations (1) – (4) we can obtain explicit
transformations of ξ[i] into γ[i], 1 ≤ i ≤ 4, such that ξ[i]⇔
γ[i] and γ[i] is a 3-CNF. It is not hard to check that we can
use ξ[i] for 2-AHC-D and c-AHC-D.

IAENG International Journal of Applied Mathematics, 42:4, IJAM_42_4_02

(Advance online publication: 21 November 2012)

 
______________________________________________________________________________________ 



VI. SAT SOLVERS FOR ALTERNATING HAMILTONIAN
PROBLEMS

There is a well known site on which solvers for SAT are
posted [33]. In addition to the solvers the site also represented
a large set of test problems. This set includes a randomly
generated problems of 3SAT and SAT. We have designed
generators of natural random instances for 2-AHP-M, c-
AHP-M, 2-AHC-M, c-AHC-M, 2-AHP-D, c-AHP-D, 2-
AHC-D, c-AHC-D. We used the algorithms fgrasp and posit
from [33]. Also, we consider our own genetic algorithms
OA[1] (see [30]), OA[2] (see [31]), and OA[3] (see [32])
for SAT which based on algorithms from [33]. We used
heterogeneous cluster based on three clusters (Cluster USU,
umt, um64) [34]. Each test was runned on a cluster of at least
100 nodes. Note that due to restrictions on computation time
(20 hours) we used savepoints.

Selected experimental results are given in Tables I – III.

TABLE I
EXPERIMENTAL RESULTS FOR 2-AHP-M

time average max best
1 26 h 214 h 42 min
2 23 h 208 h 38 min
3 32 h 226 h 46 min
4 31.4 h 213 h 43 min
5 23.1 h 236 h 32.8 min
6 20.2 h 227 h 27.3 min
7 27.9 h 249 h 49 min
8 26.8 h 234 h 47.4 min
9 2.3 h 54.2 h 2.4 min
10 1.7 h 53.8 h 1.9 min
11 9.1 h 61.3 h 2.8 min
12 8.6 h 59.7 h 3.2 min
13 8.2 h 57.3 h 27 sec
14 7.9 h 56.9 h 8 sec
15 9.4 h 64.2 h 29 sec
16 9.7 h 63.7 h 19 sec
17 2.6 h 55.9 h 2.9 min
18 1.9 h 56.7 h 1.8 min
19 9.6 h 63.2 h 3.3 min
20 9.1 h 61.5 h 3.4 min
21 8.6 h 60.1 h 36 sec
22 8.4 h 59.2 h 43 sec
23 10.1 h 66.1 h 18 sec
24 9.9 h 65.8 h 24 sec
25 1.2 h 17.2 h 3.9 min
26 47 min 6.8 h 2.7 min
27 4.3 h 13.7 h 1.5 min
28 4.2 h 11.4 h 1.2 min
29 5.6 h 16.2 h 3 sec
30 5.8 h 16.7 h 8 sec
31 6.1 h 17.9 h 11 sec
32 6.7 h 17.8 h 14 sec

In Table I, 1 – fgrasp with 3SAT reduction γ[1] and
random data from [33]; 2 – fgrasp with 3SAT reduction γ[1]
and natural random data; 3 – fgrasp with 3SAT reduction
γ[2] and random data from [33]; 4 – fgrasp with 3SAT
reduction γ[2] and natural random data; 5 – posit with 3SAT
reduction γ[1] and random data from [33]; 6 – posit with
3SAT reduction γ[1] and natural random data; 7 – posit
with 3SAT reduction γ[2] and random data from [33]; 8 –
posit with 3SAT reduction γ[2] and natural random data; 9 –
OA[1] with 3SAT reduction γ[1] and random data from [33];
10 – OA[1] with 3SAT reduction γ[1] and natural random
data; 11 – OA[1] with 3SAT reduction γ[2] and random data
from [33]; 12 – OA[1] with 3SAT reduction γ[2] and natural
random data; 13 – OA[1] with SAT reduction ξ[1] and
random data from [33]; 14 – OA[1] with SAT reduction ξ[1]

and natural random data; 15 – OA[1] with SAT reduction
ξ[2] and random data from [33]; 16 – OA[1] with SAT
reduction ξ[2] and natural random data; 17 – OA[2] with
3SAT reduction γ[1] and random data from [33]; 18 – OA[2]
with 3SAT reduction γ[1] and natural random data; 19 –
OA[2] with 3SAT reduction γ[2] and random data from [33];
20 – OA[2] with 3SAT reduction γ[2] and natural random
data; 21 – OA[2] with SAT reduction ξ[1] and random data
from [33]; 22 – OA[2] with SAT reduction ξ[1] and natural
random data; 23 – OA[2] with SAT reduction ξ[2] and
random data from [33]; 24 – OA[2] with SAT reduction ξ[2]
and natural random data; 25 – OA[3] with 3SAT reduction
γ[1] and random data from [33]; 26 – OA[3] with 3SAT
reduction γ[1] and natural random data; 27 – OA[3] with
3SAT reduction γ[2] and random data from [33]; 28 – OA[3]
with 3SAT reduction γ[2] and natural random data; 29 –
OA[3] with SAT reduction ξ[1] and random data from [33];
30 – OA[3] with SAT reduction ξ[1] and natural random
data; 31 – OA[3] with SAT reduction ξ[2] and random data
from [33]; 32 – OA[3] with SAT reduction ξ[2] and natural
random data. It is easy to see that OA[3] demonstrates the
best performance. Note that SAT reductions give us slightly
better best time, but 3SAT reductions give us significantly
better average time. It should be noted that these observations
are also valid for c-AHP-M, 2-AHC-M, c-AHC-M, 2-
AHP-D, c-AHP-D, 2-AHC-D, c-AHC-D. Therefore, we
consider only OA[3] with 3SAT reductions in in Tables II
and III.

TABLE II
EXPERIMENTAL RESULTS FOR c-AHP-M, 2-AHC-M, AND c-AHC-M

time average max best
1 4.9 h 16.8 h 2.1 min
2 4.3 h 13.2 h 1.7 min
3 5.1 h 19.2 h 5.7 min
4 4.7 h 14.1 h 4.4 min
5 7.2 h 28.1 h 11 min
6 6.3 h 16.3 h 9.2 min

In Table II, 1 – OA[3] for c-AHP-M with 3SAT reduction
γ[2] and random data from [33]; 2 – OA[3] for c-AHP-
M with 3SAT reduction γ[2] and natural random data;
3 – OA[3] for 2-AHC-M with 3SAT reduction γ[3] and
random data from [33]; 4 – OA[3] for 2-AHC-M with 3SAT
reduction γ[3] and natural random data; 5 – OA[3] for c-
AHC-M with 3SAT reduction γ[4] and random data from
[33]; 6 – OA[3] for c-AHC-M with 3SAT reduction γ[4]
and natural random data.

TABLE III
EXPERIMENTAL RESULTS FOR 2-AHP-D, c-AHP-D, 2-AHC-D, AND

c-AHC-D

time average max best
1 19 min 2.3 h 57 sec
2 9 min 1.6 h 32 sec
3 1.3 h 4.7 h 1.9 min
4 1.1 h 3.4 h 1.1 min
5 2.2 h 5.3 h 3.8 min
6 1.9 h 3.9 h 2.4 min
7 4.3 h 21.4 h 6.3 min
8 3.8 h 9.7 h 4.8 min

In Table III, 1 – OA[3] for 2-AHP-D with 3SAT reduction
γ[1] and random data from [33]; 2 – OA[3] for 2-AHP-
D with 3SAT reduction γ[1] and natural random data;
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3 – OA[3] for c-AHP-D with 3SAT reduction γ[2] and
random data from [33]; 4 – OA[3] for c-AHP-D with 3SAT
reduction γ[2] and natural random data; 5 – OA[3] for 2-
AHC-D with 3SAT reduction γ[3] and random data from
[33]; 6 – OA[3] for 2-AHC-D with 3SAT reduction γ[3] and
natural random data; 7 – OA[3] for c-AHC-D with 3SAT
reduction γ[4] and random data from [33]; 8 – OA[3] for c-
AHC-D with 3SAT reduction γ[4] and natural random data.

VII. BENNETT’S MODEL OF CITOGENETICS

Regularities in a biological sequence can be used to
identify important knowledge about the underlying biolog-
ical system (see e.g. [35]–[37]). In particular, the study of
genome rearrangements has drawn a lot of attention in recent
years (see e.g. [38], [39]). According to Bennett’s model
of cytogenetics (see e.g. [40]) the order in chromosome
complements is based on a similarity relation which gives
rise to a multigraph G. The multigraph G is the edge disjoint
union of two of its subgraphs G1 and G2. We can assume
that the edges of G1 is the set of red edges and the edges of
G2 is the set of blue edges. The order of the chromosomes
is determined by an alternating Hamiltonian path of G (see
e.g. [40]).

We have designed generators of natural instances of 2-
AHP-M for Bennett’s model of cytogenetics. Selected ex-
perimental results are given in the Table IV.

TABLE IV
EXPERIMENTAL RESULTS FOR BENNETT’S MODEL OF CYTOGENETICS

time average max best
1 36 min 5.2 h 3.4 min
2 24.1 min 3.7 h 23 sec

In Table IV, 1 – OA[3] with 3SAT reduction γ[1]; 2 –
OA[3] with 3SAT reduction γ[2]. It should be noted that in
this case γ[2] gives us significantly better performance.

VIII. AUTOMATIC GENERATION OF RECOGNITION
MODULES

Usage of specialized modules of recognition gives us a
significant advantage in solving concrete robotic and techni-
cal vision tasks (see e.g. [41]–[43]). However, in this case,
we need a large number of such modules. It is clear that we
get a significant advantage if we use an automatic generation
of such modules (see e.g. [44]). One of the main problems of
automatic generation of recognition modules is a problem of
study of new objects. In many self-learning systems, to solve
this problem we need a training set which represents a set of
configurations of the system and a set of confirmations and
contradictions for the object (see e.g. [44], [45]). It is easy
to see that such training set can be represented by some 2-
edge-colored digraph D. In this case, to setup a self-learning
process we need to solve 2-AHP-D for D. We have designed
a generator of natural instances for automatic generation of
recognition modules. Selected experimental results are given
in the Table V.

In Table V, 1 – OA[3] with 3SAT reduction γ[1]; 2 –
OA[3] with 3SAT reduction γ[2].

TABLE V
EXPERIMENTAL RESULTS FOR AUTOMATIC GENERATION OF

RECOGNITION MODULES

time average max best
1 31.4 min 7.5 h 2.9 min
2 54.6 min 11.1 h 19.3 min

IX. ROBOT SELF-AWARENESS

Robot self-awareness is an another area where we need
to consider a set of configurations of the system and a
set of confirmations and contradictions for the object. In
particular, we have considered Occam’s razor model to
anticipate collisions of the mobile robot with objects from
the environment [46].

Using a model of on-line navigation in environments with
dynamic obstacles, the robot needs to solve the question “Is
it true that an obstacle 1 has continued behind an obstacle
2?” and to construct a local strategy of motion depending
on the answer. To solve the question the robot can use
some Occam’s razor model. Such model can be constructed
by some genetic algorithm. Another genetic algorithm can
be used to construct a local strategy of motion depending
on the answer. Usage of two genetic algorithms requires
some solution of the problem of their co-training. We use
a sequential approach to learning. First, we train a genetic
algorithm for Occam’s razor model. After this, we train
a genetic algorithm for construction of a local strategy of
motion depending on the answer.

It should be noted that quality of learning of a genetic
algorithm for construction of a local strategy depends es-
sentially on the distribution of obstacles (see Tables VI and
VII).

TABLE VI
QUALITY OF PREDICTION OF A GENETIC ALGORITHM WITH DIFFERENT

PROBABILITY OF ANSWER “YES”

number of p = 0.5 p = 0.3 p = 0.1 p = 0.7 p = 0.9
generations
0 43 % 37 % 49 % 38 % 47 %
10 44 % 39 % 50 % 39 % 48 %
102 46 % 41 % 53 % 40 % 49 %
103 55 % 42 % 54 % 41 % 50 %
104 71 % 47 % 55 % 45 % 52 %
105 94 % 56 % 56 % 55 % 53 %
106 97 % 68 % 59 % 63 % 57 %

In Table VI, we consider random distributions where p is
the probability of answer “yes”.

TABLE VII
QUALITY OF PREDICTION OF A GENETIC ALGORITHM WITH

PROBABILITY p = 0.5 OF ANSWER “YES”

number of constant polynomial exponential
generations
0 46 % 44 % 41 %
10 48 % 45 % 42 %
102 50 % 47 % 43 %
103 60 % 53 % 48 %
104 77 % 63 % 56 %
105 97 % 85 % 74 %
106 99 % 91 % 86 %

In Table VII, we consider sequences of answers with
constant, polynomial, and exponential subword complexities.
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In view of results of Tables VI and VII, it is of interest to
consider 2-AHP-D to generate a set of configurations of the
system and a set of confirmations and contradictions for the
object. Selected experimental results are given in the Table
VIII.

TABLE VIII
THE DEPENDENCE OF THE NUMBER OF GENERATIONS AND QUALITY OF

PREDICTION OF THE GENETIC ALGORITHM

0 10 102 103 104

44 % 47 % 58 % 83 % 96 %

X. ALGORITHMIC PROBLEMS IN ALGEBRA AND GRAPHS

Many algorithmic problems of algebra are solved by in-
vestigation of sequences of applications of defining relations.
In particular, we can mention algorithmic problems of rings
(see e.g. [47]–[50]), semigroups (see e.g. [51]–[55]), and
groups (see e.g. [56]). Such sequences can be represented
by different graph models.

There are a number of general connections between graphs
and algorithmic problems in algebra. In particular, we can
mention Cayley networks (see e.g. [39]), rewrite systems (see
e.g. [57]), configuration graph for interpretations of Minsky
machines (see e.g. [58]–[65]) and Turing machines (see e.g.
[66]), etc. Note that in case of Minsky machines and Turing
machines, traditional connections with graphs are slightly
inconvenient. In Minsky machines and Turing machines, we
consider directed transformations. In algebraic models, we
consider undirected transformations. Therefore, it is natural
to use Häggkvist transformation [13] and consider 2-edge-
colored multigraphs instead of traditional digraphs.

Using this approach we have created a test set based on
the algebraic data. Selected experimental results are given in
the Table IX.

TABLE IX
EXPERIMENTAL RESULTS FOR THE ALGEBRAIC DATA

time average max best
1 38.2 min 4.9 h 7.2 min
2 1.8 h 16.3 h 43.6 min

In Table IX, 1 – OA[3] with 3SAT reduction γ[1]; 2 –
OA[3] with 3SAT reduction γ[2].

XI. THE PLANNING A TYPICAL WORKING DAY FOR
INDOOR SERVICE ROBOTS PROBLEM

Different problems of planning and scheduling are among
the most rapidly developing areas of modern computer
science (see e.g. [67]–[71]). In particular, planning problems
for mobile robots are of considerable interest for many years
(see e.g. [11], [18], [22], [31], [72]–[81]). In [11], we have
obtained an explicit reduction from the planning a typical
working day for indoor service robots problem to HP-D.
Also, in [11], we have used an explicit reduction [82] from
HP-D to 3SAT. Note that we can use γ[1] and γ[2] to to
create a solver for the planning a typical working day for
indoor service robots problem and HP-D. We have designed
generators of natural instances for the planning a typical
working day for indoor service robots problem and HP-D.
Selected experimental results are given in the Table X.

TABLE X
EXPERIMENTAL RESULTS FOR THE PLANNING A TYPICAL WORKING DAY

FOR INDOOR SERVICE ROBOTS PROBLEM

time average max best
1 35.2 sec 57.3 min 2.3 sec
2 2.7 min 6.1 h 19 sec
3 3.2 min 8.4 h 23 sec
4 1.2 h 11.2 h 22.1 min
5 51.8 min 14.1 h 16.3 min

In Table X, 1 – OA[3] with 3SAT reduction γ[1]; 2 –
OA[3] with 3SAT reduction γ[2]; 3 – OA[3] with 3SAT
reduction [82]; 4 – fgrasp with 3SAT reduction [82]; 5 –
posit with 3SAT reduction [82].

XII. THE HAMILTONIAN PATH PROBLEM

It is easy to see that we can use SAT solvers for 2-AHP-M
and c-AHP-M to solve HP-D. Selected experimental results
are given in the Table XI.

TABLE XI
EXPERIMENTAL RESULTS FOR THE HAMILTONIAN PATH PROBLEM

time average max best
1 15.2 min 2.7 h 43 sec
2 26.1 min 5.4 h 8.4 min

In Table XI, 1 – OA[3] with 3SAT reduction γ[1]; 2 –
OA[3] with 3SAT reduction γ[2].

XIII. CONCLUSION

In this paper we have considered an approach to create
solvers for alternating Hamiltonian problems. In particular,
explicit polynomial reductions from the decision versions
of these problems to 3SAT is constructed. Also, we have
considered computational experiments for alternating Hamil-
tonian problems, Bennett’s model of cytogenetics, automatic
generation of recognition modules, algebraic data, the plan-
ning a typical working day for indoor service robots problem,
and the Hamiltonian path problem.
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