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An Efficient Algorithm for the Diameter of Cayley
Graphs Generated by Transposition Trees

Ashwin Ganesan

Abstract—A problem of practical and theoretical interestisto  graph with vertex setG and with an arc from vertey to
determine or estimate the diameter of various families of Cayley vertexgs iff ¢ € G ands € S (cf. [6], [7]). When S is closed
networks. The previously known estimate for the diameter of under inverses, there is an arc frgnto /. if and only if there

Cayley graphs generated by transposition trees is an upper . .
bound given in the oft-cited paper of Akers and Krishnamurthy is an arc fromh to g, and soCay(G, S) can be considered

(1989). In this work, we first assess the performance of their t0 be an undirected graph. When the identity group element
upper bound. We show that for everyn, there exists a tree on [ is not in S, the Cayley graph also has no self loops.

n vertices, such that the difference between the upper bound  Cayley graphs possess a certain amount of symmetry. In
and the true diameter value is at leastn — 4. a symmetric network, the topology of the network looks the

Evaluating their upper bound takes time Q(n!). In this f de Iti K that famill f
paper, we provide an algorithm that obtains an estimate of the Same Irom every node. It 1S now known that many famifies o

diameter, but which requires only time O(n?); furthermore, the ~ Symmetric networks possess additional desirable properties
value obtained by our algorithm is less than or equal to the such as optimal fault-tolerance [8], [9], algorithmic efficiency

previously Knovyn diamgter upper bounq.Such an improvement [10], optimal gossiping protocols [11] [12], and optimal
to polynomial time, while still performing at least as well as routing algorithms [13], among others, and so have been

the previous bound, is possible because our algorithm works . S ) . -
directly with the transposition tree on n vertices and does not widely studied in the fields of interconnection networks. New

require examining any of the permutations. We also provide topologies continue to be proposed and assessed [14]. Cayley
a tree for which the value computed by our algorithm is not graphs, permutation groups, and distance-related questions

necessarily unique, which is an important result because such continue to be an active area of research, and have also found
examples are quite rare. For all families of trees we have gnyjications in computational biology [15] and wireless
investigated so far, each of the possible values computed by our

algorithm happens to also be an upper bound on the diameter. sensor networks [16]. .

The diameter of a network represents the maximum com-
munication delay between two nodes in the network. The de-
sign and performance of algorithms or bounds that determine
or estimate the diameter of various families of Cayley graphs

I. INTRODUCTION of permutation groups is of much theoretical and practical
A problem of practical and theoretical interest is to detef?t€rest. The problem of determining the diameter of a Cay-
mine or estimate the diameter of various families of Cayld§y nétwork is the same as that of determining the diameter
networks. In the field of interconnection networks, Cayle§f the corresponding group for a given set of generators; the
graphs generated by transposition trees were studied in Ak&er quantity is defined to be the minimum length of an
and Krishnamurthy [1], where it was shown that the diametg¥Pression for a group element in terms of the generators,
of some families of Cayley graphs is sublogarithmic in thEgiaximized over all group elements. This diameter problem is
number of vertices. This is one of the main reasons sufffficult even for the simple case when the symmetric group
Cayley graphs were considered a superior alternative to #§-9enerated by cyclically adjacent transpositions [17]. The
percubes for consideration as the topology of interconnectiBancake flipping problem, which corresponds to determining
networks. Since then, much work has been done in this arf}¢ diameter of a particular permutation group, was studied
for further details, we refer the reader to [2], [3], [4], [5]. " [18], and while some bounds were given there and an
Let G be a group generated by a set of elemeftdhe improvement was made recently [19], this problem remains
Cayley graph(or Cayley diagram) ofG with respect to the OP€n as well.

set of generatorss, denoted byCay(G, S), is a directed 1hroughout this paper, set of generateswill be a set
of transpositions of 1,2, ..., n}. GivenS, thetransposition
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many topologies of interconnection networks that have bediameter, propose a new(n?) algorithm to estimate the
well studied; some special cases include the family of stdiameter of Cayley graphs for any given transposition tree,
graphs, bubble-sort graphs, modified bubble-sort graphs, anti we investigate the properties and performance of our

hypercubes, among others [3]. algorithm.

Algorithms for the diameter of Cayley graphs have been
widely studied. When the generator set is fixed in advance, ||, PRELIMINARIES, AND SUMMARY OF OUR MAIN
there do exist polynomial time algorithms for the problem RESULTS

of expressing a group element as a producF of miNiMUM\ve now recall the previous relevant results and some
length in terms of the gengrators and other dlsta'nce-rela{g inology from the literature as well as summarize our
problems (cf. [17], [20]). Since a Cayley graph is Vertexso niributions to this problem.
transitive, these results provide a polynomial time algorithm Let S, denote the set of all permutations of, 2 n}

. X . n ,2,...,nt
for the dlstance'betweer) any two vlertlcesan'd.r in the e represent a permutationc S,, as a linear arrangement,
Cayley graph, since thelg distance is the minimum leng in [x(1), 7(2),...,(n)], or in cycle notationc(r) de-
generator sequence for” 7. However, thes'e results only o5 the number of cycles in including cycles of length 1.
provide polynomial time algorithms for the distance be'[weef\nus ifr = [3,5,1,4,2] = (1,3)(2,5) € S5, thene(r) = 3
one given pair of vgrtices in the Cayley g_raph and not fprt (rT €Sy, ’M’ is’ t’he perm’utati(’)n obtained by applying
diameter of the entire Cayley graph, which is the Maximugii and thenr. If = € S, andr — (i, f) is a transposition,

value of the distances between all pairs of vertices of the, c(rm) = ¢(m) + 1 if i andj are in the same cycle of

graph. Our focus in this paper is on the diameter problemﬁ andc(rr) = ¢(r) — 1 if i andj are in different cycles

A givgn set of tra_nspositions of {1,2,.. -v”}_ge”efates of = (cf. [23]). Fix(7) denotes the set of fixed points of
the entire symmetric groups), iff the transposition graph \ye assume throughout that the transposition tree has at least
T'(5) is connected [21]. A transposition graph which iS & \ertices since the problem is easily solved for all smaller
tree is called a transposition tree. Hencefoghis a set of trees by using brute force.
transpositions such that the transposition graft) is a Throughout this work,I'" denotes the Cayley graph
tree. We often use the same symhlok= T'(S) to represent Cay(S,.,S) generated by a transposition trde = T/(S).
both the graph of the tree as well as a set of transpositi e previous bound on the diameter is as follows:
S, and the notatiorji, j) is used to represents both an edge '

of T as well as the corresponding transpositionSinSince Theorem 1. [1] Let T' := Cay(S,,, S) be the Cayley graph
each transposition is its own inverse, the Cayley griipk=  generated by a transposition trég(S). Then, for anyr €
Cay(S,,S) is a simple, undirected graph. Léistr(u,v) Sn.

denote the distance between vertieeandv in an undirected n
graphl’, and letdiam(T") denote the diameter @f. Note that distr(I,7) < c¢(m) —n + Z distr (i, m (1)),
distr(m, o) = distr (I, 7o), wherel denotes the identity i=1
permutation. Thus, the diameter dfis the maximum of \herec(r) is the number of cycles (including fixed points)
distr(Z, ) overm € Sy,. in the disjoint cycle representation af

In [1] (cf. also [22, p. 188]), it is shown that the diameter . - '
of I := Cay(Sn, S) is bounded as Since T' is vertex-transitive anddistp(m,7) =

distr(I,7~17), by taking the maximum over both sides of
the above inequality, we obtain:

Corollary 2. [22, p.188]

where the maximum is over all permutations $, c¢(r) {

TESy 1
1=

diam(T") < max {C(Tf) —n+ Z distr (4, ﬂ(z))} ,

denotes the number of cycles in the disjoint cycle represéﬁam(r) < e

e(m) —n+ ZdistT(z', w(i))} =: f(T).
tation of 7, anddistr is the distance function on pairs of i=1
vertices of the tree. In the sequel we shall often refer tf(7') as the the
Observe that evaluating this upper bound requfés!) previously known upper bound on the diameter of the Cayley
computations since the quantity in braces above needsgtaph orthe diameter upper boundNote that evaluating
be evaluated for each permutationp. When a bound or this estimatef (7") requires time2(n!) since the quantity in
algorithm is proposed in the literature, it is often of interest tbraces needs to be evaluated for each ofitheertices of the
determine how far away the bound can be from the true val@ayley graph. While one can investigate methods to optimize
in the worst case, and to obtain more efficient algorithnsaich an algorithm, at present there is no known polynomial
for estimating the parameters. In this paper, we assess tinee algorithm for computing (7). It is not known whether
performance of the previously known upper bound on then algorithm for computing(7') can be optimized to run
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in polynomial time or time better thaf1(n!). Our objective the interconnection networks community by then. There are
is to take a different approach and propose a new algoritteome subsequent papers, such as [25] and [26], which cite
that works directly with the transposition tree arvertices only [24] and not [1].
rather than the Cayley graph ar vertices. Note that the distance and diameter bounds above need
We now recall from [1] a proof sketch of these result§ot hold if 7" has cycles (the proof recalled above breaks
since we refer to this terminology in the sequel. Suppose WEWN because " has cycles, there existsraz I such that
are given a transposition treg on vertex set{1,2,...,n} 1 has no admissible edges for thix Thus, when we study
and a permutation € S,, for which we wish to determine the strictness of the diameter upper bound, we assume that
distp (I, 7). At each vertex: of the tree, we place a marker!' i a tree and™ is the Cayley graph generated by this tree.
labeledr(i). Thus, the permutation represents the current The exact diameter value of Cayley graphs generated by
position of the markers, 2, ...,n on the tree. Tapply an transposition trees is known in only some special cases.
edge(i, j) of the tree to the current position of markers i§0r example, if the transposition tree is a path graphmon
to say that we switch the markers at the endpoints of tNertices, the corresponding Cayley graph is called a bubble-
edge(i, ;). Note that the permutation corresponding to thgort graph. Itis well known that the diameter of this Cayley
new position of the markers is exacttyi, j) (here, we read graph is equal to the maximum number of inversions of a
products or compositions of permutations from right to leftpermutation, which ig(3) (cf. [1] [27]). When the transpo-
The problem of determiningistr (I, ) is thus equivalent to Sition tree is a stak; ,_1, the Cayley graph is called a star
that of determining the minimum number of edges necess&iaPh. and it has diameter equal [t8(n — 1)/2] (cf. [1]).
to ‘home’ each markeito vertexi of the tree, and the Cayley For the general case of arbitrary trees, only bounds such as
graphl represents the state transition diagram of the curréprollary 2 are known.
position of markers. This pr0b|em of p|acing marker@) Itis pOSSible to obtain a heuristic derivation of the diameter
at vertexi of an n-vertex graph and homing each marke#Pper bound formulg (T), as follows. It is straightforward
to its vertex is sometimes also referred to as ‘sorting’ @ derive the distance upper bound for the special case when
permutation using only the transpositions definedbyuch the transposition tree is a stéf; ,—1, and we get [1]
problems also arise in ro_ut.ing problems in Cayley networks; distr(I, ) < n + e(n) — 2| Fix(n)| — r(m).
for example, a node receiving a message destined to nede
of I, or equivalently, a node = 7~ !¢ receiving a message Observe that Fix(r)| = n — |Fix()|, which yields
destined to nodé, needs to figure out which of its neighbors . —
in T'is closest to the destination node, and this amounts to st (£, m) < ¢(m) —n + 2[Fix(m)[ —r(m).
determining which edge of the tree is optimal in terms q{ote that when the tree is a st&iFix(r)| is almost (i.e.
the objective of sorting the current permutation of markegithin 1 of) the sum of distance¥.", distr (4, 7()). This
using the minimum number of edges. Further details can kgds us to the question of whether the inequality
found in [1]. "
Let T be a tree on vertex sét,...,n}, and letr # I be distp(I,7) < e(m) —n+ ZdistT(z', (1))
the current position of markers on the tree. It can be shown i=1
thatT" always has an edgg such that the edge satisfies ongso nolds for all the remaining treds, and this question
of the following two gond|t|ons: Either (A) 'Fhe marker.at has been answered affirmatively by Theorem 1.
and the marker aj will both reduce their distance to(i) We shall later use the following result on the sharpness of

andr(j), respectively, if the edge, j) is applied, or (B) the e diameter upper bound inequality:
marker at one of or j is already homed, and the other marker

wishes to apply the edgg, j). Let fr(w) denote the upper

bound quantity in the right hand side of the inequality iTheorem 3. [28] Let I' denote the Cayley graph generated
Theorem 1 . Thusf(T) = max,cgs, fr(r). It can be shown by a transposition tre€’. Then the diameter upper bound
that during each step that a transposition correspondingifigquality

an edge of type A or type B is applied tg we get a new diam(T") < f(T)

position of markersr’” which has a strictly smaller value of
friie., fr(7') < fr(n), and it can be verified thaty (1) =

0. This proves the bounds above. The main results of this paper are as follows.

We point out that this same diameter upper bound inequal-It is of interest to know how far away the diameter upper
ity of Corollary 2 is also derived in [24]; however, this papebound f(T") bound can be from the true value in the worst
was published in 1991, whereas Akers and Krishnamurthgse. We show that for every, there exists a transposition
[1] was published in 1989 and widely picked up on inree onn vertices such that the difference between the

holds with equality ifT" is a path.
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n—1
diameter upper bound and the true diameter value of the
Cayley graph is at least — 4. This result gives a lower
bound on the difference, and we leave it as an open problem 1' 2' 3' 3 n—2
to determine an upper bound for this difference.
We provide a new algorithm (Algorithm A below) which n

more gfficiently computes, for any given transposition trégy, 1 A transposition tre@ on n vertices.
an estimate of the diameter of the Cayley graph generated
by the tree. Remarkably, the proposed algorithm requires
only time O(n?) to compute, whereas no polynomial timavhere7;, denotes the set of all trees anvertices.
algorithm is known for computing the previous boupd"). :
Furthermore, it is shown that the value computed by Algc')l'_heorem .4' For everyn > 5, thgre exists a tred = T(S)
nn vertices such that the difference between the actual

rithm A is at least as good as (i.e. is less than or equal to) t )
previous upper boundi(T"). Such a result is possible becaus !ameter of the Cayley g.rapbham(Cay(S?l, 5)) and the
iameter upper bound(T) is at leastn —4; in other words,

the new algorithm works directly with the transposition tre N 4
on n vertices and does not require examining the verticéy ="~ *
of the Cayley graph; it is only the proofs of our results that  Proof: Throughout this proof, we |ef' denote the trans-
require examining the individual permutations. It is provegosition tree defined by the edge $ét,2), (2,3),...,(n—
that sometimes the value obtained by Algorithm A is strictlg, n — 2), (n — 2,n — 1), (n — 2,n)}, which is shown in
better than (i.e. is strictly less than) the previous upper bouRiure 1. For conciseness, we I, j) denote the distance
in the literature (cf. Theorem 8). Some advantages of the n@wI" between vertices and j. Also, for leaf vertices, j of
algorithm over the previous upper bound are illustrated; fgr, we letT —{i, j} denote the tree on—2 vertices obtained
example, the proofs related to the worst case performance§9fremoving vertices and; of T.
n — 4) of the new algorithm are much simpler than those of Our proof is in two parts. In the first part we establish that
the previous upper bound (cf. Proposition 9 and the remarkgr’) is equal to(};) — 2. In the second part we show that
preceding it). It is also shown that the value computetie diameter of the Cayley graph generatedIbis at most
Algorithm A is not necessarily unique (Theorem 7); this ii";l) + 1. Together, this yields the desired result.
an important result because such counterexamples are quite
rare.

For all families of trees we have investigated so far, eachWe now present the first part of the proof; we establish
of the possible valueg computed by Algorithm A is an that f(T'), defined by
upper bound on the diameter, i.e. {

diam(I') < g < f(T); f(T) = max

c(o) —n+ Y distp(i, o(i))} ,
here, we prove that the second inequality holds for all trees, _ = o
and the first inequality holds for many families of trees (it €dual to(3) —2. We prove this result by examining several
fact for all trees investigated so far). sub-cases. Define
Some further interesting questions and open problems on L o
this algorithm and related bounds are discussed towards #d?) = c(0) —=n+5r(0),  Sr(o) := > distr (i, 0(i)).
end of this paper. =1
We consider two cases, (1) and (2), depending on whether
Ill. STRICTNESS OF THE DIAMETER UPPER BOUND 1 andn are in the same or different cycle of each of
Recall that the diameter of a Cayley graplyenerated by these cases will further involve subcases. In most of these
a transposition tre&" is bounded as subcases, we show that for a giventhere is as’ such that
} fr(0) < fr(o) and fr(o") < (3) — 2.
=: f(T).

diam(T") < max {c(ﬂ') —n—l—ZdistT(i,ﬂ-(z‘)) (1) Assume 1 andr are in the same cycle of. So

TESn = o = (1,ki,...,ks,n,71,...,70)6. The different subcases
We now assess the performance of this bound and deriv€psider the different possible values foand<.
strictness result. The results in this section also appear in thél-1) Supposes = 0, = 0. So o = (1,n)6 =
conference paper [29]. (Ln)oy...op. Then, fr(o) = c(o) —n+ Sr(o) =1 —
Define the worst case performance of this upper bound Byt 2(n —2) +S57_(1,,3(6) =2n =5+ (r—=2)+ (n —2) +
the quantity Sr—{1n3(6) =2n=5+¢(6) + (n = 2) + S7—(1,0}(6) =

2n =5+ fr_(1,03(6) < 2n—5+ (";%) = (3) — 2, where

An = rX [f(T) — diam(I')], by Theorem 3 the inequality holds with equality for some
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(1.6.1) Suppose < i < n — 2. Thend(1,i) + d(i,n) =
d(l,n).

/e 2 (1.6.1a) Ifj, = n — 1, thend(js,i) = n — i — 1 and

d(i,71) = |i — j1|, and so the inequality holds iff1 <
n |71 — 4| + 71 — 4, which is clearly true.

(1.6.1b) Suppose < j, < n — 2. Then, the inequality

holds iff d(n,j1) +je —1<n—2+4 i — j1| + |i — je| + 1,

which can be verified separately for the cages=n — 1
&. Thus, the maximum of (o) over all permutations that and2 < ji <n —2. _
contain(1, n) as a cycle is equal tf}) —2. It remains to show ~ (1.6.2) Supposé = n — 1. By symmetry inT" of the
that for all other kinds of permutations in the symmetric Verticesn andn — 1, this case is resolved by (1.4).

Fig. 2. Positions ofj; andj, arising in subcase (1.4.1).

group S, fr(o) < (%) —2. (1.7) Supposes > 2,4 = 0, s00 = (L, k1,...,ks,n)0.
(1.2) Suppose = 1,£ = 0. Soo = (1,i,n)0...0, = Since fr(o) = fr(oc—1), this case is resolved by (1'.4)1
(1,i,n)6. We consider some subcases. (1.8) Suppose > 2,¢ =1, 500 = (1, k1, ..., ks, n, j1)3-

(1.2.1) Supposé = n — 1. Then, f(0) = —n + (2n — Let o/ = (1,n)(k1,...,ks,71)0. We can assume that <
2) + St f1n1my () =20 — A+ fr 11 (6) < 20— k1 < n—2since thek; = n—1 case is resolved by (1.4) due
N AL . gto the symmetry irf". To showfr (o) < fr(¢’), it suffices to
. . N ' the inequalityl(1, k1) +d(ks, n)+d(n, j1)+d(j1,1) <
(1.2.2) Suppos€ < i < n—2; soo = (1,i,n)é. Let PrOVe k1 : , 1) <
o' = (1,n)(i)é. It is easily verified thatfr(c) < fr(o’), “Lm) |+ dk()n, 1)+ d(ksl,yl) +C.lé]1,_k’1) +h1. We- prove1 this
and so the desired bound follows from applying subcase (1!1fauallty by separately considering w ether=n — 1 or
to fr(o’). ks =n—1 or neither: o

(1.3) Supposes = 0,¢ = 1, soo = (1,n,i)6. Since (1.8.1) Supposg, = n — 1. Substitutingd(ks, n) = n —
fr(o) = fr(c™'), this case also is settled by (1.2). ks — L d(n, j1) = 2,d(j1,1) = jr — 1, etc, we get that the
(1.4) Supposes = 0,£ > 2, s00 = (1,n,j1,...,j0)5 inequality holds iffk; < |j1 — k1| +n — 2, which is clearly

' A A o J s JOUB true.,

Let o’ = (1,n)(j1,.-.,j¢)0. Observe thatfr(c) < fr(o’) < i< N
I dlon, )+ dle, 1) < d(n 1)+ (e, 1) +1. We prove the G52 SURPOSE < i = 2 ThemmJu) = nd L
latter inequality by considering 4 subcases: om 3+ (ke js) - d(r. k). I kl o _sl, g s

(1.4.1) Supposg: < j, < n — 2. Then, an inspection of 501 Ji,f1) T s = '

;S ; ! J1+k1 <2n—3+]j1—k1|, and is true, whereas ¥ < k; <

the tree in Figure 2 shows thétn, j,)+d(je, 1) = d(n, 1)+ - . .
. A ’ ’ — 2, this reduces tdi; — k;, <1 — kg — kql,
d(j¢,71), and so the inequality holds. " ! . ! < 1+ |+ 15 1

which is true due to the triangle inequality.
(1.9) Suppose s,l > 2, sO o =

o . , (Lkt, oo ks,n, g1, je)0

(1.4.2) Supposgy > je andji, je < n—2. Thend(n, ji)+ et o' = (1,ky,... ks, n)(j1,...,je)5. It suffices to

d(j¢,1) < d(1,n), and so the inequality holds. show thatSr(0) < Sr(o’) + 1, i.e., thatd(n, j1) + jo <
(1.4.3) Suppose; = n — 1. Thend(n,j1) = 2. Also, n+d(j1, jo).

d(je,1) < d(n,1) andd(js,j1) > 1, and so the inequality (1.9.1) If j; < j,, thenj; < n — 2, and sod(n, j;) =

holds. n—j1 —1 andd(j1, j¢) = je — j1; the inequality thus holds.
(1.4.4) Supposg, = n — 1. Then,d(j¢, 1) = d(n,1) and  (1.9.2) If j; > j,, thend(j1, j¢) = j1—j¢, and so it suffices

d(n, j1) = d(je, j1), and so again the inequality holds.  to show thatd(n, j1) < n + j1 — 2j,. It can be verified that
(1.5) Supposes = 1,£ = 1, so o = (1,i,n,7)6. Let this holds ifj; =n — 1 and also if2 < j < n — 2.

o' = (1,n)(i,j)o. (2) Now suppose 1 and are in different cycles of. So
(1.5.1) Ifi = n — 1, by symmetry inT' between vertices let o = (1, ky, ..., ks)(n,j1,...,je)0.

n andn — 1, this subcase is resolved by subcase (1.4). (2.1) Supposes = 0. Then fr(o) < (”;1) — 2, by
(1.5.2) Let2 < i <n—2.Thend(1,i)+d(i,n) = d(1,n). induction onn.

So fr(o) < fr(o) iff d(n,j)+d(4,1) <d(1,n)+d(i,7)+ (2.2) Supposes = 1. So lete = (1,4)(n, j1,...,5¢)0.

d(j,4)+1, which is true sincel(n, j)+d(j,1) < d(1,n)+2. By symmetry inT between vertices» and n — 1 and
(1.6) Suppose = 1,¢ > 2. Soo = (1,4,n,j1,...,j¢)0. subcase (1.1), we may assume# n — 1. Let o/ =

Let o/ = (1,n)(i,41,-..,7¢)0. It suffices to show that (1,n)(i,j1,...,5¢)0. It suffices to show thatSr(o) <

fr(e) < fr(o'), ie., thatd(1,i) + d(i,n) + d(n,j1) + Sr(c’). If £ =0thisis clear since(1,:) < d(1,n). Suppose

d(je,1) < d(1,n) + d(1,n) + d(i,51) + d(je,?) + 1. We ¢ > 2. Then, by the triangle inequality(n, j1) + d(js, n) <

examine the terms of this latter inequality for various subkj,,¢)-+d(i,n)+d(4, je)+d(i,n) = d(j1,9)+d(i, je)+(n—

cases: i—1)2. Also,d(1,n) = d(1,i)+d(i,n) = d(1,i)+n—i—1.

4+ ("5°) < (%) — 2, where the inequality is by Theorem

(Advance online publication: 21 November 2012)



TAENG International Journal of Applied Mathematics, 42:4, [JAM 42 4 03

) . . . TABLE |
Hence 2d(1,1) + d(n, j1) + d(je,n) < 2d(1,n) +d(i, j1) + STRICTNESS OF THE DIAMETER UPPER BOUND
d(je,i). Hence,Sp(0) < Sr(c’). The case/ = 1 can be
similarly resolved by substituting; for j, in thel > 2 case n |5 6 7 8 9
s(n) | 3 6 11 23 47
here. A, |1 2 3 4 6
(2.3) Suppose > 2,/ = 0. Then, by Theorem 3f (o) <
n—1
5 )-
(2.4) Supposes > 24 = 1, sO o = These results imply that the — 4 lower bound forA,,
(1,k1,...,ks)(n,51)6. Let o' = (1,n)(k1,...,ks,j1)0. is best possible, and an open problem is to obtain an upper

It suffices to show thati(1, k1) + d(1,ks) + 2d(n,j1) < bound forA,. That this lower bound is exact fer = 5 can

2d(1,n)+d(ks, j1)+d(k1, j1). This inequality is established also be obtained using the results given above, as follows.

by considering the two subcases: There are only three nonisomorphic trees on 5 vertices,
(2.4.1) Supposg; = n — 1. Then the inequality holds iff namely the tree given in the proof of Theorem 4, for which

2ks+k1 < 3n—T7+|k1—71], which is true sincé, ko <n—2 then—4 lower bound is achieved, and the trees of maximum

and|ky — j1| > 1. diameter (the path) and minimum diameter (the star), for
(2.4.2) Supposg; # n — 1. Then the inequality holds iff which the diameter bound(T’) is known to be exact (cf.

ki —j1 + ks — j1 < [ky — j1| + |ks — j1], which is clearly [28]).

true.
(2.5) Suppose s,¢ > 2, so o = IV. THE ALGORITHM

(L koo ks) (s gu - o) o We now provide an algorithm that takes as its input a
Leto’ = (1,n)(k1,. ... ks, j1,-..,j0)6. Toshowfr(o) < transposition tred’(S) on n vertices and provides as output

fr(o"), it suffices to show that(1, k1) +d(ks, 1)+d(n,j1)+  an estimate of the diameter of the Cayley grépiy(S,. S).
d(je,n) < 2d(n,1)+d(ks, j1)+d(je, k1). By symmetry in'  The notation used to describe our algorithm should be self-

between vertices andn — 1, we may assume;, ..., ks # explanatory and is similar to that used in Knuth [30].
n — 1, since these cases were covered in (1). We establish
this inequality as follows: Algorithm A

(2.5.1) Supposgi; = n — 1. Thend(n,j1) = 2 and Given a transposition tre& = 7'(S), this algorithm com-
d(n,ji) = n — j, — 1. So the inequality holds if2k, < putes a value3 which is an estimate for the diameter of
2(n—2)+|je— k1| +je — k1, which is true sincé:; <n—2 the Cayley graphCay(S,,S). |V(T)| denotes the current
and|je — k1| + je — k1 > 0. value of the number of vertices iff’; initially, V(T) =

(2.5.2) Supposg; # n—1. Thend(n,j1) =n—ji—1.1f {1,2,...,n}.
je = n—1, the inequality holds if2k; < 2(n—2)+j1—ks+ AL [Initialize.]
|71 — ks|,which is true sincés; <n —2.If j, £2n— 1, the SetB « 0.
inequality holds iffks — j1 + k1 — je < |ks — j1| + |k1 — Je|,  A2.[Find two vertices, j of T that are a maximum distance
which is true. apart.]

This concludes the first part of the proof. Find any two verticesi,j of T such thatdistr(i,j) =

We now provide the second part of the proof. llebe diam(T).
the Cayley graph generated By We show thatliam(I') < A3. [Update, and remove, j from 7]

(";") + 1. Let 7 € S,, and suppose each vertéxof T Setf < f + (2diam(T) — 1), and setl’ « T' — {i, j}. If
has markerr(i). We show that all markers can be homed’ still has 3 or more vertices, return to step A2; otherwise,
using at most the proposed number of transpositions. Sirgs 3 < 8+ |V(T')| — 1 and terminate this algorithmg
diam(T") = n — 2, marker 1 can be moved to vertex 1 using
at mostn — 2 transpositions. Now remove vertex 1 from the Example 1. Consider the transposition tree
treeT’, and repeat this procedure for marker 2, and then ft1,2), (2,3),(3,4), (4,5), (4,6),(3,7),(7,8)} shown
marker 3, and so on, removing each vertex frénafter its in Figure 3. If Algorithm A picks the sequence of vertex
marker is homed. Continuing in this manner, we eventualpairs during step A2 to bél, 8}, {5, 7} and{2,6}, then the
arrive at a stark;, 3, whose Cayley graph has diameter 4value returned by the algorithm =7 +5+5+ 1= 18.
Hence, the diameter df is at most[(n — 2) + (n — 3) + On the other hand, if Algorithm A picks the vertex pairs to
b +4+3]+4= ("51) + 1. This completes the proof. be {1,5},{6,8} and {2, 7}, then the value returned by the
m algorithmis still 5 = 7+ 74+ 3 4+ 1 = 18. In this example,

Let s(n) denote the number of non-isomorphic trees offie value returned by the algorithm is unique even though
n vertices. LetA,, be the strictness as defined above. TheHe subtreed” — {1,8} andT — {1,5} are non-isomorphic
computer simulations yield the results in Table I: and even have different diameter.
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previously known diameter upper bouridZ’). Furthermore,
we construct a rare transposition tree for which the value
computed by Algorithm A is not unique.

Theorem 5. Let 7' be a transposition tree on vertex set
{1,2,...,n}, and letg be the value obtained by Algorithm
A for this tree. Thenj is less than or equal to the previously
known upper bound on the diameter of the Cayley graph, i.e.

g < f(T).

Proof: Let {i1,j1}, {i2, 42}, .-, {ir, jr} be the vertex
pairs chosen by Algorithm A during theiterations of step

Despite the outcome in the above example where the vafyé Wherer = [(n — 1)/2]. Construct a permutatiom
computed by Algorithm A is independent of the vertex paird@s follows. If n is odd, thenT" contains only one vertex,
chosen in step A2, it is shown later that there do exist trebs-1 Say, When the algorithm terminates. In this case, we
for which the value computed by the algorithm is not uniquét @ = (i1, 1) - - (i, jr) (ir+1) € Sn. If n is even, therl
(i.e. the final value depends on which vertex pairs wef@ntains two vertices,..; andj,., say, when the algorithm
chosen during step A2), though this non-uniqueness propei@yminates. In this case, we tet= (i1, j1) ... (ir41,jr+1) €

Fig. 3. The transposition tree on 8 vertices in Example 1.

is rare. Sy. In either casey + 1 = [n/2], the value of3 computed
The eccentricity of a vertex in a graph is defined to be Py the algorithm equals

the maximum value of the distance fromto a vertex of r

the graph. The center of a graph is defined to be the set off = (Z {2distr(i¢, jo) — 1}) +{(n+1) mod 2},

vertices of minimum eccentricity. It is known that the center =1

of a tree is either a single vertex or two adjacent verticeg

Also, every path of maximum length in a tree passes throug d the quantityfr () := c(m) —n + > iy distr (i, w(3))

. aluates to
its center.
In view of this, one way to implement step A2, which _ d e
picks any two vertices of the tree that are a maximudf (7) = (r+1)—n+ 2;dlthW’”) +2{(n+1) mod2}.

distance apart, is as follows. Start with an arbitrary vertex
u of the tree, and do a depth-first search to find a veitex® quick check shows that the expressions aboveffa@nd
farthest that is fromu (i and u will be on different ‘sides’ fr(7) are equal. Hence, for every sequence of vertex pairs
of the center). Then start at vertéxand do another depth- chosen by Algorithm A, there exists a permutatiorsuch
first search to find a vertex that is farthest fromi. Then, that the values returned by Algorithm A is at mosfr ().

the resultingi — j path has maximum length in the treeHence,f < maxrcs, fr(m). u
(Alternatively, one could also carry out a breadth-first searchSince each of the possible valugscomputed by Al-
rather than a depth-first search.) Since a depth-first seaffiithm A is at most the previous upper bourfdr’), it

on the transposition tree om vertices takes t|m@(n)’ the follows immediately that the Iargest of the pOSSib'e values
first iteration of Algorithm A takes time)(n), the second computed by Algorithm A, denoted B¥p.x, is also at most
iteration takes timeJ(n — 2), and so on. Thus, Algorithm the previous upper bound. We now show tiit. is an

A takes time O(n2). The previously known estimate inupper bound on the diameter the Cayley graph:

the Iiteraturv'a.for the diameter of Cayley graphs' generateflaorem 6. Let T be the Cayley graph generated by a
by transposition trees works on each of thevertices of ansnosition treel”. Let 8,a, denote the maximum possible

the Cayley graph and takes tinf&(n!) to evaluate; hence, 5 e returned by Algorithm A for this tree. Then,
Algorithm A, is a significant improvement over the previous

bound. diam(T") < Bmax < f(T).

Proof: The second inequality has already been proved.
V. PROPERTIES AND PERFORMANCE OF THE ALGORITHM \\a now prove the first inequality. Let € S,,. Suppose that
In this section we prove that the value obtained by Alnitially each vertext of the tree has marker(k). It suffices
gorithm A is less than or equal to the previously knowito show that all markers can be homed to their respective
diameter upper bound. We also show that there exist ivertices using at most,,.. edges of the tree.
stances where the diameter estimate computed by AlgorithnmConsider the following procedure. Pick any two vertices
A is strictly better than (i.e. is strictly less than) than the, j of T that are a maximum distance apart. We consider
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two cases, depending on the distancd’ibbetween vertex
and the current location—!(i) of the markeri:

Case 1:Suppose that the distance Thbetween vertices
i and7~1(i) is at mostdiam(7) — 1. Then markeri can
be homed using at mostiam(7") — 1 transpositions. And
then, markerj can be homed using at masiam(7") edges.
Hence, markers andj can both be homed to leaf verticés
andj, respectively, using at mo&tdiam(7") — 1 edges. We
now leti; =4 andj; = j.

Case 2:Now consider the case where the distancé’in
between vertices and 7—1(i) is equal todiam(7). Let
= be the unique vertex of the tree adjacentsto’(:). In  (6,8),(6,9)}, which is shown in Figure 4. If Algorithm
the first sequence of steps, marker! (i) can be homed to A picks the sequence of vertex pairs during step A2 to
vertexr ! (i) using at mostliam(7") edges. The last of thesebe {1, 5}, {2, 7}, {4,8} and {3,9}, then the value returned
transpositions will home marketr—'(i) and place markei by the algorithm isf = 7+ 5+ 5 + 3 = 20. And if
at vertexz, whose distance tois exactlydiam(7')—1. In the ~ Algorithm A picks the vertex pairs to bgl, 7}, {5, 8}, {2,9}
second sequence of steps, markean be homed to vertexand {4,6}, then the value returned by the algorithm is
i using at mostliam(7") — 1 edges. Hence, using these tw@3 = 7 + 7 + 5 + 3 = 22. Hence,B contains{20,22}. ®m
sequences of steps, markeémnd~ (i) can both be homed
using at most diam(7") — 1 edges. We now let; =i and
g1 =m1(0). In addition to time complexity, another advantage of

We now remove fronf" the verticesi; andj;, and repeat Algorithm A over the previous upper bound is that the value
this procedure or?” — {i1,j:} to get another paifiz, j}. computed by Algorithm A can sometimes Istrictly less
Continuing in this manner until’ contains at most two than the previous upper bound on the diameter.

vertices, we see that all markers can be homed using at most ) ,
Theorem 8. The value computed by Algorithm A is always

r ) o less than or equal to the previously known upper bound on
{Z (2distr (ie, je) — 1)} +{(n+1) mod 2} the diameter, and there exist transposition trees for which
=1 the value computed by Algorithm A is strictly less than the
edges. This quantity is equal to the val@ieeturned by the previous upper bound.
Algorithm when it choose$iy, j1 }, . . ., {i, j- } @s its vertex
pairs during each iteration of step A2, and hence this quantit):(l i
is at mostSnax. Thus,distr(I,7) < Bmax for all = € S,,. cartl

Fig. 4. The transposition tree used in the proof of Theorem 7 and
Theorem 8.

Proof: The first part of the assertion has been proved
er. For the second part, consider the transposition tree
shown in Figure 4. It can be confirmed with the help of a

Let B denote the set of possible values that can be tﬁgmputer that the true diameter value of the Cayley graph

output of Algorithm A. Thus,3 — maxges 8. An open génerated by this tré€ is 18 and the previous upper bound
. Ymax +— S . . .
problem is to determine whetheachof the possible values f(T') on the diameter evaluates to 22. As mentioned above,

. . ! if Algorithm A picks the sequence of vertex pairs during
returned by the algorithm is an upper bound on the diamete
i.e. whethers is an upper bound on the diameter of thg{ép A2 to be{1,5},{2_,7},{4,8} and{3, 9}, then the vglue
Cayley graph for eaclt € B. The examples studied so fareturned by the algorithm i§ = 7+ 5 45 + 3 = 20, which

yley grap ' P is strictly less than the previous upper bound. [ ]

show that for many families of trees (in fact, for all the trees In Theorem 4 (cf. also the recent work Ganesan [29]), it

investigated so far), the minimum possible value returned Was shown that the difference between the previous upper

the algorithm is also an upper bpund on the qliameter. Th%sciundf(T) and the actual diameteliam(T) is at leastr —
we believe that each of the possible values Bis an upper 4. The proof given there is quite involved and required an

bound on the diameter of the Cayley graph, but we donot =~ ™.
have a proof of this. examination of several (over 25) subcases.

We now prove that the value returned by the algorithm is As another advantage of Algorithm A over the previous
not necessarily unique: Upper boundf(T"), we show Fhat the value computed by
Algorithm A can also have a difference of at least 4 from
Theorem 7. There exist transposition trees for which thehe actual diameter value but that the proof of this result is
value returned by Algorithm A is not unique. much simpler than the corresponding result for the previous

Proof: Consider the transposition tree defined bypper boundf (T):

the edge set{(1,2),(2,3), (3,6),(3,4),(4,5), (6,7), Proposition 9. For everyn, there exists a transposition tree
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n—1
an upper bound on the diameter of Cayley graphs generated
by transposition trees. We showed that for every 4, there
1 9 3 3 exists a tree om vertices such that the difference between
the previous upper bound(T") and the true diameter is at
n leastn — 4. Such results are of interest because they give
us insight as to how far away these bounds can be from the
true diameter value in the worst case and sometimes tell us
for which families of graphs this bound can be utilized or
on n vertices, such that the difference between the valuet utilized.
computed by Algorithm A and the actual diameter value of The n — 4 lower bound onA, was seen to be best
the Cayley graph is at least — 4. possible in the sense that it is attained for some values of
Proof: Consider the transposition treeNOW consider the tree on 9 vertices consisting of the edge
{(1’ 2)7 (2’ 3)7 o (n _ 37 n— 2)’ (n _ 2’ n— 1)7 (n _ 2’ Tl)} set {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (6, 8), (6, 9)}
shown in Figure 5. The diameter of this treenis- 2. After Then', it can be confirmed with the help of a Cor.nputer.that
Algorithm A picks and removes two vertices from this tred€ diameter of the Cayley graph generated by this tree is 24,
that are a distance — 2 apart, we obtain the path graph orfind the dlamgter upper bourfdT) for this tree evaluates to
n — 2 vertices. The unique value computed by Algorithm A0- Hence, this: — 4 lower bound is not the exact value of
is thus{2(n—2) — 1} +{2(n—3) — 1} +{2(n—5)— 1} +---, the strictness\,,, and an open problem is to obtain an upper
which equals{2(n —2) — 1} + (";%) = (*;") +n—3. ~ boundfora,.. . .

Now, any permutation can be sorted on this tree using atAn efficient algorithm (Algorithm A) for the diameter of
most(";') +1 edges. Indeed, marker 1 can be homed to ifs@yley graphs generated by transposition trees was given.
vertex using at most — 2 edges, and this vertex can then b&emarkably, the algorithm has time complex@yn?), com-
removed from the tree. Marker 2 can then be homed usingR@'ed to the previous upper bound in the literatyid’)
mostn — 3 edges, and so on, and marker 4 can be homed for which no polynomial time algorithm is known and for
using at most 3 edges. At this point, we arrive at a sfas, Which the existing methods take tim@(n!) to compute.
and any permutation on this star can be sorted using at m¥4 proved that the value obtained by our algorithm is less
4 edges since the diameter of the Cayley graph generated!ign or equal to the previously known diameter upper bound.
this star is equal to 4. Thus, the diameter of the Cayley gragemetimes the value computed by the algorithnstisctly
generated by this tree is at m@st—2)+(n—3)+...4+3+4 = less than the previous upper bound. Such an improvement in
(ngl) +1. efficiency from timeQ(n!) to polynomial timeO(n?), while

Hence, for this transposition tree, the difference betweéfill performing at least as well as the previous bound, was

the value computed by Algorithm A and the actual diamet@ossible because we worked directly with the transposition
value is at least, — 4. m (tree onn vertices, and so our algorithm does not require

examining any of the permutations.
We described some further advantages of our algorithm
Note that Theorem 6 implies that the value computed myver the previous bound, besides the improvement in time
Algorithm A is an upper bound on the diameter for altomplexity. We provided a tree for which the value computed
trees for which|B| = 1 since for such trees any valy2 by the algorithm is not necessarily unique. This is an
computed by the algorithm is equal ... For such trees, important fact because such counterexamples are quite rare.
Algorithm A efficiently computes a value which is both an We believe that each of the possible values computed
upper bound on the diameter as well as better than (or at lelggt Algorithm A is an upper bound on the diameter of
as good as) the previously known diameter upper bound.tlie Cayley graph, but we do not have a proof for this.
the rare case when the value computed by Algorithm A fsor the families of trees investigated so far, the maximum
not unique, it still seems likely that that each of the possibfsossible value returned by our algorithm is exactly equal to
values computed by the algorithm is an upper bound on ttiee previously known diameter upper bound. However, our

Fig. 5. The transposition tree used in the proof of Proposition 9

diameter, though we do not have a proof for this. algorithm arrived at the same value using a very different
(and also simpler and more efficient) method than the previ-
V1. CONCLUDING REMARKS ously known diameter upper bound, and investigating further

Cayley graphs have been studied as a suitable model ps@perties of this algorithm might lead to new insights on this
the topology of interconnection networks, and a problem @foblem.
both theoretical and practical interest is to obtain bounds forThe algorithm presented here raises many further interest-
the diameter of Cayley graphs. In this work, we investigatédg questions and problems. For example, is it true that the
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