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Effect of an External Medium on Tumor
Growth-induced Stress

Matthias Ngwa and Ephraim Agyingi

Abstract—This paper is concerned with modeling the me- delays the onset of necrosis, while reducing the growth rate
chanical effect of an external isotropic elastic medium on the and saturation size of the tumor. Although consistent with
stress induced by a growing tumor that is embedded within the ;4 experimental results at macroscopic level, the model in

medium. Two cases of nutrient availability to the tumor cells 191 is limited in that it d t allow f t ffect
are considered: ambient nutrient concentration and diffusion [19] is limited in that it does not allow for stress effects on

limited nutrient at tumor boundary. The quantitative stress C€ll proliferation and death rates.
effect of each of these parameters, including the initial radius ~ The present paper is based on a previously reported
e o et et e o Smoler model by Jorest al. 20) which descrbes tre
ulations thgt support experimental investigations are provided. development Of_ a radlally-symmetr!c, solid avascular t“”.‘or
whose growth is regulated by a single externally supplied
nutrient such as glucose or oxygen, that is assumed to diffuse
freely throughout the tumor. Following their analysis, we
extend the model to incorporate the stress effect of the
external medium on the growth of a spherical tumor when
I. INTRODUCTION nutrients are in abundance or limited supply at the periphery
)})f the tumor.

Index Terms—Tumor growth, Induce stress, Nutrient diffu-
sion, External medium.

The growth of a solid tumor is strongly influenced b
its microenvironment. In addition to well documented mi-
croenvironmental parameters, such as hypoxia [1], [2] and
angiogenesis [3], [4], mechanical stresses of the medium

surrounding the tumor do also play an important role [5], [6], Some basic assumptions of previous models, which we
[7], [8], [9], [10]. A solid tumor growing in a confined spacea|so use to formulate the model here, are as follogs:
defined by surrounding tissue needs to overcome the resultiig population of normal and abnormal cells form a single
compressive forces. It has been demonstrated experimentglyyulation, which is considered as a continuui) there
that the Shape of the solid stress field dictates the Shapaspfadhesion (restraining force) among ||V|ng tumor cells
tumor spheroids. The effect was attributed to suppressiongf the boundary which holds the tumor in the form of a
cell proliferation and induction of cell apoptosis in regiongolid and to balance the expansive force caused by internal
of high solid stress [5], [11]. Helmlingeet al. [12] also cell proliferation [21], [22]; (i) the tumor is a sphere and
demonstrated experimentally that mechanical effects, sugbherical symmetry is maintained at all times [21], [22];
as stress, affect solid tumor growth and hypothesized that) the tumor is in a state of diffusive equilibrium [22];
the converse may be true. (v) The rate of nutrient consumption and cell proliferation
Some of the factors that influence the evolution of tumotgte are proportional to both the nutrient concentration and
have been incorporated into existing mathematical modelgnor cell density, while cell death is proportional to cell
[13], [14], [15], [16], [17], [18]. The mechanisms of celldensity [20]; (vi) the tumor material is incompressible and
proliferation and cell death, with varying assumptions, ai@sponds to stress in a purely elastic and isotropic manner;

examined in almost all existing models. Most of the exand (vii) the external medium is elastic and incompressible.
isting models have focused dn vitro tumors growing in

homogeneous environments. These environments are mainly, the derivation of the model, the following notation for
considered to simplify the analysis. The mechanical effeghriables is used:
of the medium surrounding the tumor, which may have a

Il. MODEL FORMULATION

L variable description
significant effect on the tumor growth rate and growth sat ime
uration, has been given very little attention in mathematical radial coordinate
literature. Guided by the experimental work of Helmlinger radius of sphere at time
al. [12], Chenet al.in [19] developed a model to determine R radius of sphere at time= 0
the effect of the mechanical properties that a deformable c(rot) nutrient concentration inside tumor
medium had on the growth of an avascular tumor embedded C’ nutrient concentration at infinity
in the medium. The model in [19] predicts that an increase 0 :
in the stiffness of the gel increases the stress induced and’ * v(r;t) | tumor velocity and speed
9 U, U; displacement
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A. Nutrient Concentration As a consequence of the assumption of incompressibility of
. . ) P .
The tumor grows as a sphere of radiii§t). We consider tumor material, 5z + vz2 = 0. The growth equation then
two situations by which nutrients are made available to tfgkes the form

tumor cells: Vo =ac—k. 5)

Case L Constant nutrient concentration at the tumoE. Kinematic Equation

boundary, i.e.c =co atr = R; The equation describing the motion of a surfdce- 0 is
given by [23]
Case lI: Diffusion limited exterior (constant nutrient con- dF
i P —— =0. (6)
centration at infinity), i.e.¢ — ¢g asr — oc. dt

_ o . Because of radial symmetry, takes the forn¥ = r — R(t)
By employing assumption§v) and (v) above, the equation gnq the velocity field has the form = (v,0,0). Then (6)
of nutrient concentration inside the tumor is becomes -

Oc dR
ot +0v.Ve= D.V?c— A.cp, Q) o V(t), (7)

whereD., is the rate of diffusion, which by our assumption igvhereV'(t) denotesu(R, t), the speed on the tumor bound-
constant; andi, is the nutrient consumption rate. We assum@'y, 7 = R. This equation describes the growth rate of the
that the tumor cell density (mass/unit volume) is constanttumor.

We show later that the velocity termhas a magnitude of
aco L. Hence both of the first two terms on the left hand side. Stress Equilibrium

of equation (1) have the same order of magnitude. It can thenAccording to Wassermaet al. [24], in order to model the

be shown that both of these terms are small in comparnspth ction of an object to a set of external forces, the stress-

. b >
with the diffusion and growth term iL”ac, /D, < 1. HeNCe gy ain relationship or constitutive equation for the material

in Case I, the equation of nutrient concentration is therefolrﬁ1der consideration must be known. As a consequence of

D.V%c = A.cp, (2) assumption (i) above, the tumor is considered as a continuum
and the forces (or force components) per unit area inside it
wherec = ¢, (constant) at the tumor boundafy = R). are represented by the stress tensgr Considering stress
equilibrium with no inertial effects, we have
In Case Il we have the same equation in the interior but Do
there is a diffusion limited exterior. Thus we have oz, + 15 =0, (8)
D% — Acep, T < R(Y), (3) Where F;, (i = 1,2,3), denotes the components of the
¢ 0, r > R(t), body-force per unit volume. We assume that body forces

are negligible in comparison to surface forces. The stress

wherec — ¢y asr — oo. At the tumor boundary and Lo .
equilibrium equation then becomes

dc/Or are continuous, where > R(t) assumes that the
diffusion coefficient is the same inside and outside the tumor; doij _ 0 (9)
physically this condition is that the flux into the boundary Oz ’
equals the flux out of the boundary. Note that tumor cells
consume nutrients at a greater rate than normal cells aBd Constitutive Equation
we have idealized this in equation (3) by assuming that theTpg constitutive equation for a given material describes the
nutrient consumption outside the tumor is zero. relationship between the stress;, on the material element
] and its straing;;. Turning to assumptiofws), and assuming

B. Growth Equation that cell growth is isotropic, so that the strain resulting from it

The competition between cell production (cell proliferais isotropic, we can approximate the stress-strain relationship

tion) and cell loss processes is expressed by by Hooke’s law for an isotropic elastic body:
rowth = cell production - cell loss. 1+v v
g p €ij = Taij — Eéijakk, (10)

Also, since cell proliferation is proportional to both nutrient _ . , ) .
concentration and cell density, and cell death is proportion’€r€ » is known as Poisson's ratio and E is

to cell density, the growth (mass conservation) equation ig’©Ung’s moduluswhich can be experimentally determined
5 for a given material.
P

L4V = acp _ kp For a small displacement field;, the strain tensog;;, is
ot _ ~— —~— defined by
— Cell proliferation Cell loss (death) . .
Growth 1 ( 8”1 au] ) (11)
€ii — = .
leading to T2\ 0x; Oz
dp dp The standard stress-strain relationship for an elastic solid in
5 TVg, TPVL= (ac = k)p, (4)  a small displacement field; is given by
where o« and k, being both positive constants, are the 1 [/ 0u;  Ouj 14+v v
. . . = + = ——0;i — —0;iOkk. (12)
proliferation and death rates, respectively. 2\ 0z; Ox; E Y7 E
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By an earlier assumption above, we considered the mategah express\ and i in terms of E (Young's modulus) and

to be incompressible, so = 3. Thus, it follows that v (Poisson’s ratio) to obtain
Ev ou E
1 (0u; = Ouy 1 A M, S e 17
5 <5$j + 8$Z) = 5 (3(7”- — 5ij0kk) . (13) T4 (1+v)(1-2v) T Oz 1+v) Cijs 17)

X\ﬂ]ere we assume that (Poisson’s ratio) and® (Young's

The mechanical behavior of many practical materials su o
yP dulus) of the tumor and surrounding tissue are equal.

as biological tissues can be treated as elastic only as Iongmi . . . . ot

the deformations remain very small. Problems concerning the ince the elastic mate_rla_l undelr con5|dera_t|on_ 'S Ihcom-
elastic behavior of these materials therefore lie, in generg ,eSS'bI_e’ we tal_<e the limiz — 3. By con5|der!ng the
within the scope of classical theory of elasticity, whiclf*Pression ford in (17) we see thah — oo, which by
treats the deformations as infinitesimal. It is assumed

|i|;r11plication makesuy /Oxy, = err — 0. The product of the
the classical theory of elasticity that the stress-deformatigﬁ

o terms remains finite and we express;, — —p, where
relations are linear and independent of time. In the case’ called the isotropic pressure. In this limit, the stress can

biological tissues, strain (deformation) is often dependeﬁjien be expressed as

both upon the duration of application as well as the rate of
application of stresses [24]. That is, the strain experienced
by the tumor cells depends on both the rate at which thewe now discuss the boundary conditions on the stress.
neoplastic cells undergo growth and the mechanical streggthout loss of generality, we may take, = 0, So o5 =0

The effect requires other terms which we do not include &sr — co. The radial stressy,, and displacement;, are

our model here. The growth process influences the stregsntinuous at the tumor boundary= R.

strain law. We consider the effect of this by introducing a

growth factor. To account for the time dependence of growth, [1I. N ONDIMENSIONALISATION

we take a Jaumann derivative of equation (13). (A Jaumann , . _ .
derivative is a material derivative in a frame rotating at a W& NOW express the model's variables in spherically sym-

rate equal to the local angular velocity of the medium and'Retic coordinates and dimensionless form. We shall only
is one way of producing an objective constitutive equatiorgg(() this for Case [; the manipulations for Case Il are similar.

The left hand side becomes the rate of strain tensor and #fg introduce constants = \/D./A.p, T = 1/aco, and
full equation is co to denote length scale, tumor growth timescale and fixed

externally supplied nutrient concentration respectively. We

2
o5 = —pdij + S Ee

- el (18)

1D (Oui  Ou;\ _ [growth also define the dimensionless parameter
2Dt \Ox;  Ox; factor i
1 (D L
+55 4 75 (3005 — okkdij) + 3(wikok; — oikwrs) ¢, (14) aco
2F | Dt . .
- o which represents the death rate per unit volume to the
where wij-athe vorticity tensor, is given byw;; = maximum growth rate per unit volume. For the tumor
1 v, ov;

3 (5 — 5 ) Considering the tumor geometry, we se¢o grow significantly this parameter will be small. Using
that the vorticity tensor is equal to zero in our problem. asterisks to denote dimensionless variables, we write
Taking the trace of the rate of strain tensor term, which is

* T * Oij * * v
the volume strain or the change in volume per unit volume r* = —,  oj; = =, p* = L v = —,
. . . C . . L E E acy L
at a given point, givesv.v. This is the growth term in ¢ ., cC
equation (5). The growth term is given by.v = 3g, where v = T ¢~ co

g is the linear growth factor. It therefore follows that th

: o ; ®rhese are now substituted into (2), (5), (9), and the equations
stress-strain law inside the tumor is

are further simplified by using the radial symmetry assump-
L (v  Ov; 1 1 D tion, v = (v,0,0). Hence, after dropping the asterisks, the
_ :—V- 67, - —(3 i — 67, » Y » . ’ ’

2 (895]- * 8xi) 3( v) itoE { (8035 = owkdis) model equations are converted to the form

Dt
1 0 [ ,0c\
2o ( a) = (19)

subject to the boundary conditions= 1 atr = R andc is
We obtain the constitutive law for the medium surroundingnite atr = 0:

F. External Medium

the tumor by applying the same assumptions as above. iﬁ(r%) e (20)
The external medium, assumed to be elastic, satisfies the r2 Or ’
generalized Hooke’s law for a linear elastic solid: subject tov = 0 atr = 0; and
oij = Adijeiy + 2uey; oy 200 09+ 0s], , [100s
or r r r 00
Ay . 1 N 1 dog ) , _
= )\(Slja—l'k + 2,U/€,L-j, (16) + ” cot 9(00 U¢)} (S + {Sino ad) e¢ = 07 (21)

where A andy are known ad.anmé constants, and; is the where(e,, ey, e;) denote the unit vectors of the coordinate
displacement of the elastic medium subject to the effect sfstem. We have assumed here that, by the geometry of the
the stressr{;. By assuming an isotropic elastic material, wéumor growth, the off-diagonal elements.¢, 0,4, 09¢) Of
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the stress tensor are all zero. Using 09 = o, in the first equation of the preceding
Let fi1 = 20, — 09 — 0y, fo2 = 209 — 0, — 0y and fz3 = expression, we have

204 — 09 — o,. With the radially-symmetric geometry under do, 2

consideration, the constitutive equation, (15), of the model o ;(07- —0p) = 0. (29)

can be expressed as . . . . .
Since o, — 0y is a known quantity this equation can be

% 0 0 1 8 1 0 0 integrated to determine, (and hencery also).
0 2 0f= _2_(r%) 01 0 We now turn to the region exterior to the tumor. We will
0 0 ¢ 3r2 or 0 0 1 solve the constitutive equation there and use it to deduce a
F 0 0 boundary condition on.. for the tumor region. By the single-
170 0 M coordinate geometry of the model; = (u,.,0,0), and by
— | =4v= 0 foo O], (22 _ I .
2\ 0ot or 0 0 fss the incompressibility assumption,
from which we obtain three equations from the diag- %é(r%r) =0, (30)
onal elements (termed, respectively, the—, 69—, and _ " or
dp—equations). from which we obtain
AI

IV. RESULTS AND DISCUSSION ) )
Equation (18) can now be used to find the stress at the

A. Model simplification for ambient nutrient concentrationboundary of the tumor. Using the result from (31) in (18),

] o ) ) we have ,
We begin by deriving analytical expressions for the nu- oo = —p 4 ge I (32)
trient concentration and the cell velocity. The substitution rT TP RGP e
¢ = q/r, whereq = ¢(r,t), reduces equation (19) to angng
ordinary differential equation fog with solution
inh _ 2 _ 24’
ofr, ) = mh T (23) op=-ptze= —Pptgm
rsinh R I = 09 = 0y
ituti is i i i 2 2
By substituting this into equation (20), we obtain oo = —p+ Zeo= —p i =
10,5 Rsinhr o "
T—QE(T v) = rsoh RO (24)  From the stress equilibrium equations (28)= constant. To

satisfy the condition at infinityp = p. (= 0).

It follows from the boundary condition = 0 atr = 0 that If R is the initial radius of the tumor and — R at its

R . er boundary, then it follows that,|,.—r = R — Ry, leading to
== shr — sinhr) — —. 25 ! rir=R 0
Zsmn g (" ooshr —sinhr) = 3 @) 4 Z R (R — Ry). Therefore
Subtracting thep¢- from the #9-equation in (22), we obtain
) 9 g.|._R:_4(R7_RO) (33)
— + v—) (09 —og) =0. (26) 3R
At the initial moment (t = 0), we further assume that there (R — Ro)
are no stresses acting on the tumor. As such, it follows from 09lr=r = Oplr=r = a0 (34)
equation (26) that 3R
09— 0y =0, By letting § = o, — 0y, equations (29) and (27) can be
. _ _ . . ~written, respectively, as
implying thatoy = o,. Using this result in ther - equation
of expression (22), we obtain dor + 26 -0 (35)
or r ’
0 0 2 9 /v
= = _ 2.2 (2 and
<8t+var> (o7 = 00) 3" or (r) 27)
Sincew is a known gquantity this equation can be integrated (% + vaé) B =, (36)
T

to determine the stress differeneg— oy. In the subsequent
discussion, we thus consider — o4 to be a known quantity. where 5 9 v
We now turn to the stress equilibrium equation (21), from y=—-r— (—) .

which we obtain
Then from (25), we have

0o, 20, o09+o04
A
_ R <2$inhr _ 2coshr N 2sinhr) (37)
97 oo 2990 4 L ipiey 0y S —0.(28) | rsmhE\ 3 r r
O, L We first solve forg in equation (36). Thew, is obtained
1 Ooy by substituting fors in equation (35) and integrating. Finally,
sin @ a—¢ op can be obtained directly fromy = o — .
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B. Model simplification for diffusion limited nutrient . .

By employing the assumption of spherical symmetry, ar 13,4
considering a single coordinate system, the boundary val 3

b
problem in this case can be expressed in dimensionle %
variables as 109
1007
10 5 0c ¢, r<R(),
S\ ) = 38
r2 or <r 8r> {O, r > R(t), (38)

Radial stress
a
o
5

subject toc — 1 asr — oo, and ¢ and d¢/9r being
continuous at the tumor boundary.
The boundary value problem (38) has the solution

Transverse stress

sinh r
rcoshR’ r < R(®),
c= ( ) (39)
r— R+ tanh R SO | |
, > R(1). 0 10 20 o % 10 20 30
T Radial distance Radial distance

However, we only need the value of the nutrient concentr..

tion within the_re_glonr < R(t) for the numerical _Values of Fig. 1. Tumor growth-induced stress(solid lines) and effecexdernal

the stresses within the tumor. Apart from the nutrient conceRedium on the growth-induced stress (dashes lines). Over the integration
tration equation’ the dimensionless versions of the modeise considered, the tumor grows to a size~o26.44 from an initial radius
equations, which arise from the growth, stress equilibriurffo = 1 and parameter valuas= 0.1, ot = 0.03

constitutive law, and stress effect of the external medium, are

as in Case |, viz:

1o defined by
2,0\ —
g =c—6 (40) ri=1ih, i=0,1,2, -, imas;
oo, 2 T .
S+ S(or—09) = 0; (41) ti =gk 3=0.1.2 " jmas,
T T
P P 9 9 /v so h and k are the respective space and time stepsizes, and
<— + v—> (o0p —09) = =r— (—) ; (42) ¢ andj denote the corresponding spatial and time counters.
ot or 3 0rr The number of spatial grid points is fixed, but the stepsize
~ 4(R—-Ry) 43 is time dependent so th@t,,,» = R(t). Thus the grid lines
Orlr—r =~ 3R : (43) are evenly distributed over the whole domain in space and

Using the nutrient concentration from (39) in (40), with th&'® Set apart in time by a constant differer¢e However,
accompanying boundary conditions, we obtain since the domain is changing with time, the effect of this is

1 that the spatial grid lines are curves, not straight lines.
= ———— (rcoshr —sinhr) — < (44) Graphical outputs of the numerical results are obtained
recosh 17 3 by choosing appropriate values for the physical parameters
As in section IV-A, we call the right side of (42), and let ¢ R, and for the integration variable¥, i,a: and jimae-
B = or — 0g. Expressions foty/dr and 9v/0t, required \when ¢ (the ratio of death rate to proliferation rate) 1,

for the numerical solution, are: the tumor shrinks to extinction; when~ 1, it grows to a
oy 1 2coshr  8sinhr small size; and wher < 1, it grows to a large size. In
9r  rcoshR < 3 3 our integration we choose the valee= 0.1 and initial radii

6coshr  6sinhr Ry =1 andRy = 5. Thus we are modelling a tumor that is
2,3 ) , (45) initially small and which grows to a large size. With= 0.1

the tumor grows to a maximum size ~ 26.
The integration constants used in the simulations are
5t = 0.03, imazr = 480, jmaz = 80/0t. The plots in figures
1-6 and Figures 7-10 were obtained for ambient nutrient
_ ) ) concentration and diffusion limited nutrient respectively.
C. Numerical simulations Figure 1 shows the stresses induced by unrestrained
The equations (35) and (36) (for ambient nutrient concegrowth and the stresses induced in the presence of an elastic
tration) and equations (41) and (42) (for diffusion limited nuexternal medium. Examining the transverse stress first we
trient)are solved numerically using the Lax-Wendroff methoske that it is negative (compressive) in the outer region of the
(see [25] for more details). The Lax-Wendroff method is aumor and positive (tensile) in the interior of the tumor. The
finite-difference method used to obtain numerical solutiom®mpressive force is caused by the growth process pushing
for first-order partial differential equations. In standard forroells together in the boundary layer near the tumor edge
it is applied on an infinite spatial domain. We extend thiwhere the nutrient concentration is high. However, as the
method to allow for the finite but varying domain of intecells are drawn into the interior the death of some of the cells
gration and also the function on the right hand sides of causes the remaining cells to be stretched apart and so creates
(36) and (42). We find the solution on a grid of thieplane the tensile force observed there. The radial stress has only a

3 r r2

oy Vitanh R (2sinhr 2coshr = 2sinhr
1 __ . (46
ot rcosh R ( * ) (46)

(Advance online publication: 21 November 2012)
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=
0.05 , 0.05 1 |
. . o . .
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Radial distance Radial distance 0 5 10 15 20 25 30

Radial distance

Fig. 2. Linear stress difference against radius at differemés. Parameter

values:e = 0.1, Ro = 1, 6t = 0.03. The maximum value is- 1.28 Fig. 4. Plots of velocity against radius for 8 different valu#gime, t

15 ‘ :
ik Icrgfﬁlilemratloﬂ 1 t=3  t=4 t=5 t=6 t=7 t=8 142.80->

Radlal dlstance

100

o
oS

o
P
3]
o

Nutrient concentration
Radial stress
Transverse stress

o
£

10 20 0 10 20 30
Radial distance Radial distance

Fig. 3. Plots of nutrient concentration against the radius8fatifferent

values of t as tumor grows to saturation size, from an initial radius of Fig. 5. Tumor growth-induced stress(solid lines) and effécexternal
medium on the growth-induced stress (dashes lines). Over the integration
time considered, the tumor grows to a size~o27.00 from an initial radius

very small region where it is negative (compressive). This {20
near the tumor boundary and is caused by the elastic effect
of the exterior region. Mostly, however, the stress is positi\ o o1
(tensile) so that the force (the divergence of the stress)
such that it pulls the cells towards the center to replace t
cells dying there.

The difference in the growth induced stress and the stre
effect of the external medium at eight different times (t = 1
2, ..., 8)islllustrated in Figure 2. The difference approach
a constant at large times since it is due to the compress
effect of the external medium, which eventually become
constant when the tumor stops expanding. This effect of t
external medium is small compared to the stress induced
the growth process. 3 10 20 o %% 10 20 30

The induced stress increases with decrease in the ini Radial distance Radial distance

radius of the tumor (compare Figures 1 and 2 with F|gures 6 L i g i o
tress difference agamst radius at diffetieme¢s. Parameter
5 and 6 respectively). Fig. inear s
values:e = 0.1, Ro = 5, 6t = 0.03. The maximum value s~ 1.09
Figures 3 and 4 illustrate the variation of nutrient concen-

o

Radial stress difference

Transverse stress difference
]
o
o
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0.3r

t=2

0.25-
Initial
concentration =5

Radial stress
Transverse stress

Nutrient concentration

2 3 4
Radial distance

2 3
Radial distance

Fig. 7. Initial radius,Ry = 1; Tumor growth-induced stress (solid lines)

and effect of external medium on the growth-induced stress (dashes line 0 05 1 15 2Radia%dsistan03e 35 4 45 5
With parameter values = 0.1, Ro = 1, 6t = 0.03, tumor grows to a size
of R~ 4.85
Fig. 9. Plots of nutrient concentration against radius forfiedint values
0.0 . . . . 0.0 of t
0.0 1 0.0
A 3 A
g 04 g 0.04 0.15 :
c
g oo £ 00
£ o
o 0 g 0
] @ 0.1
% -0.02 $ -0.02
= g
o 1%}
& -004 £ -0.04
=
-0.06 {1 -0.08 0.05
2
-0.08 { -0.08 8
Q
-0 -0 g
2 3 4 5 ' 2 3 5 0
Radial distance Radial distance
Fig. 8. Linear stress difference of 1.06 at large times. Parameter values:
-0.05
e=01 Ry=1

tration and tumor growth velocity, respectively, at 8 differer ~ °% o5 1 15 2 25 3 35 4 a5 s
times as the tumor increases in size frdtg = 1. When

the tumor is small, nutrient availability to the tumor cells is

high and proliferating cells are present throughout the tuméifg. 10. Plots of velocity against radius for 8 different valusf t
The velocity of the tumor growth is significantly high with a

positive profile. As the tumor increases in size, the nutrient

concentration decreases from the center of the tumor towz%

the boundary. There is increased rate of cell death tow : _ ; o .
the center of the tumor while a proliferating rim begins t compare Figure 8 with Figure 2), although it is relatively
rger when compared with the growth-induced stress. The

develop as a result of sufficient nutrient availability to cell . . . . :
towards the boundary. A high volume loss arises from tk{garked differences in the growth velocity and saturation size

disintegrating death cells in the center resulting to an inwafd Caﬁe | and cljl |IIustra.te th? strong dgpendencle ?f tumrc])r
movement of cells from the boundary to replace the lost cel@owth rate and saturation size on nutrient supply from the

This leads to a steady decrease in the tumor growth Velocﬁy_rroundlng medium.

The general trend in the diffusion limited case is similar
to that observed for ambient nutrient concetration. However, V. CONCLUSION
with the diffusion limited exterior, the growth rate is much In most existing models, one of the main features is that
slower than in Case | (compare Figure 10 with Figure 4dumor growth rate and saturation size are regulated by the
This results in a much slower rate of increase in the growttiffusion limited nutrient supply of the surrounding medium.
induced stress (stress related to the elastic behavior of ige mechanical effect of the surrounding medium is usually
tumor) although as before, this stress continues to increageored. In our model, attention has been focussed on the
without limit (compare Figure 7 with Figure 1). Anothereffect of the external isotropic elastic medium. We assume
consequence of the nutrient limitation is that the tumdhat the tumor is in its early avascular stage and there is
equilibrates at a much smaller size4.88 as compared with no formation of a necrotic core. We have examined the
~ 29 in Case I. As a result of this, the confinement stresdfect of the stress induced by growth in the presence of the

used by the external medium) is much less than in Case

(Advance online publication: 21 November 2012)
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size.

The assumption of the dependence of tumor growth

rate and saturation size on nutrient supply was also check
by comparing two cases. In one case the nutrient supply
was maximized at the tumor surface while in the other the

nutrient had to overcome a diffusion gradient from infinity.

Simulations of the model show that the direct mechanical

effect of the external medium is small when compared to th&l

effect due to growth. The stress effect is dependent on the

initial tumor size: stress effect increases with decrease in thez]

initial radius of the tumor. The effect of the external stresses,

resulting from the effect of the external medium, is mainlyp,3
compressive, offering resistance to the growing tumor. Thg4]
results show that the saturation size of the tumor does depenpd
. . ) 25]
on the stress effect of the external isotropic medium. TherIe

is a significant difference between the saturation size in
the two cases considered. This is a clear indication that
the limitation of the nutrient supply due to diffusion has
significant quantitative effects on the tumor saturation size.
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