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Abstract—This paper is concerned with modeling the me-
chanical effect of an external isotropic elastic medium on the
stress induced by a growing tumor that is embedded within the
medium. Two cases of nutrient availability to the tumor cells
are considered: ambient nutrient concentration and diffusion
limited nutrient at tumor boundary. The quantitative stress
effect of each of these parameters, including the initial radius
of the tumor and ratio of cell death rate to proliferation rate, on
the tumor growth-induced stress are examined. Numerical sim-
ulations that support experimental investigations are provided.

Index Terms—Tumor growth, Induce stress, Nutrient diffu-
sion, External medium.

I. I NTRODUCTION

The growth of a solid tumor is strongly influenced by
its microenvironment. In addition to well documented mi-
croenvironmental parameters, such as hypoxia [1], [2] and
angiogenesis [3], [4], mechanical stresses of the medium
surrounding the tumor do also play an important role [5], [6],
[7], [8], [9], [10]. A solid tumor growing in a confined space
defined by surrounding tissue needs to overcome the resulting
compressive forces. It has been demonstrated experimentally
that the shape of the solid stress field dictates the shape of
tumor spheroids. The effect was attributed to suppression of
cell proliferation and induction of cell apoptosis in regions
of high solid stress [5], [11]. Helmlingeret al. [12] also
demonstrated experimentally that mechanical effects, such
as stress, affect solid tumor growth and hypothesized that
the converse may be true.

Some of the factors that influence the evolution of tumors
have been incorporated into existing mathematical models
[13], [14], [15], [16], [17], [18]. The mechanisms of cell
proliferation and cell death, with varying assumptions, are
examined in almost all existing models. Most of the ex-
isting models have focused onin vitro tumors growing in
homogeneous environments. These environments are mainly
considered to simplify the analysis. The mechanical effect
of the medium surrounding the tumor, which may have a
significant effect on the tumor growth rate and growth sat-
uration, has been given very little attention in mathematical
literature. Guided by the experimental work of Helmlingeret
al. [12], Chenet al. in [19] developed a model to determine
the effect of the mechanical properties that a deformable
medium had on the growth of an avascular tumor embedded
in the medium. The model in [19] predicts that an increase
in the stiffness of the gel increases the stress induced and
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delays the onset of necrosis, while reducing the growth rate
and saturation size of the tumor. Although consistent with
the experimental results at macroscopic level, the model in
[19] is limited in that it does not allow for stress effects on
cell proliferation and death rates.

The present paper is based on a previously reported
simpler model by Joneset al. [20] which describes the
development of a radially-symmetric, solid avascular tumor
whose growth is regulated by a single externally supplied
nutrient such as glucose or oxygen, that is assumed to diffuse
freely throughout the tumor. Following their analysis, we
extend the model to incorporate the stress effect of the
external medium on the growth of a spherical tumor when
nutrients are in abundance or limited supply at the periphery
of the tumor.

II. M ODEL FORMULATION

Some basic assumptions of previous models, which we
also use to formulate the model here, are as follows:(i)
the population of normal and abnormal cells form a single
population, which is considered as a continuum;(ii) there
is adhesion (restraining force) among living tumor cells
at the boundary which holds the tumor in the form of a
solid and to balance the expansive force caused by internal
cell proliferation [21], [22];(iii) the tumor is a sphere and
spherical symmetry is maintained at all times [21], [22];
(iv) the tumor is in a state of diffusive equilibrium [22];
(v) The rate of nutrient consumption and cell proliferation
rate are proportional to both the nutrient concentration and
tumor cell density, while cell death is proportional to cell
density [20];(vi) the tumor material is incompressible and
responds to stress in a purely elastic and isotropic manner;
and(vii) the external medium is elastic and incompressible.

In the derivation of the model, the following notation for
variables is used:

variable description
t time
r radial coordinate
R radius of sphere at timet
R0 radius of sphere at timet = 0

c(r, t) nutrient concentration inside tumor
c0 nutrient concentration at infinity

vi, v, v(r, t) tumor velocity and speed
u, ui displacement
σij stress tensor of tumor
σe
ij stress tensor of external medium

eij strain tensor of tumor
eeij strain tensor of external medium
ρ tumor cell density
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A. Nutrient Concentration

The tumor grows as a sphere of radiusR(t). We consider
two situations by which nutrients are made available to the
tumor cells:

Case I: Constant nutrient concentration at the tumor
boundary, i.e.,c = c0 at r = R;

Case II: Diffusion limited exterior (constant nutrient con-
centration at infinity), i.e.,c → c0 asr → ∞.

By employing assumptions(iv) and(v) above, the equation
of nutrient concentration inside the tumor is

∂c

∂t
+ v.∇c = Dc∇

2c−Accρ, (1)

whereDc is the rate of diffusion, which by our assumption is
constant; andAc is the nutrient consumption rate. We assume
that the tumor cell density (mass/unit volume) is constant.

We show later that the velocity termv has a magnitude of
αc0L. Hence both of the first two terms on the left hand side
of equation (1) have the same order of magnitude. It can then
be shown that both of these terms are small in comparison
with the diffusion and growth term ifL2αco/Dc ≪ 1. Hence
in Case I, the equation of nutrient concentration is therefore

Dc∇
2c = Accρ, (2)

wherec = c0 (constant) at the tumor boundary(r = R).

In Case II we have the same equation in the interior but
there is a diffusion limited exterior. Thus we have

Dc∇
2c =

{

Accρ, r < R(t),

0, r > R(t),
(3)

where c → c0 as r → ∞. At the tumor boundaryc and
∂c/∂r are continuous, wherer > R(t) assumes that the
diffusion coefficient is the same inside and outside the tumor;
physically this condition is that the flux into the boundary
equals the flux out of the boundary. Note that tumor cells
consume nutrients at a greater rate than normal cells and
we have idealized this in equation (3) by assuming that the
nutrient consumption outside the tumor is zero.

B. Growth Equation

The competition between cell production (cell prolifera-
tion) and cell loss processes is expressed by

growth = cell production - cell loss.

Also, since cell proliferation is proportional to both nutrient
concentration and cell density, and cell death is proportional
to cell density, the growth (mass conservation) equation is

∂ρ

∂t
+∇.(vρ)

︸ ︷︷ ︸

Growth

= αcρ
︸︷︷︸

Cell proliferation

− kρ
︸︷︷︸

Cell loss (death)

,

leading to

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ∇.v = (αc− k)ρ, (4)

where α and k, being both positive constants, are the
proliferation and death rates, respectively.

As a consequence of the assumption of incompressibility of
tumor material,∂ρ

∂t
+ v ∂ρ

∂x
= 0. The growth equation then

takes the form
∇.v = αc− k. (5)

C. Kinematic Equation

The equation describing the motion of a surfaceF = 0 is
given by [23]

dF

dt
= 0. (6)

Because of radial symmetry,F takes the formF = r−R(t)
and the velocity field has the formv = (v, 0, 0). Then (6)
becomes

dR

dt
= V (t), (7)

whereV (t) denotesv(R, t), the speed on the tumor bound-
ary, r = R. This equation describes the growth rate of the
tumor.

D. Stress Equilibrium

According to Wassermanet al. [24], in order to model the
reaction of an object to a set of external forces, the stress-
strain relationship or constitutive equation for the material
under consideration must be known. As a consequence of
assumption (i) above, the tumor is considered as a continuum
and the forces (or force components) per unit area inside it
are represented by the stress tensorσij . Considering stress
equilibrium with no inertial effects, we have

∂σij

∂xj

+ Fi = 0, (8)

where Fi, (i = 1, 2, 3), denotes the components of the
body-force per unit volume. We assume that body forces
are negligible in comparison to surface forces. The stress
equilibrium equation then becomes

∂σij

∂xj

= 0. (9)

E. Constitutive Equation

The constitutive equation for a given material describes the
relationship between the stress,σij , on the material element
and its strain,eij . Turning to assumption(vi), and assuming
that cell growth is isotropic, so that the strain resulting from it
is isotropic, we can approximate the stress-strain relationship
by Hooke’s law for an isotropic elastic body:

eij =
1 + ν

E
σij −

ν

E
δijσkk, (10)

where ν is known as Poisson’s ratio and E is
Young’s modulus, which can be experimentally determined
for a given material.

For a small displacement fieldui, the strain tensor,eij , is
defined by

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

. (11)

The standard stress-strain relationship for an elastic solid in
a small displacement fieldui is given by

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

=
1 + ν

E
σij −

ν

E
δijσkk. (12)
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By an earlier assumption above, we considered the material
to be incompressible, soν = 1

2
. Thus, it follows that

1

2

(
∂ui

∂xj

+
∂uj

∂xi

)

=
1

2E
(3σij − δijσkk) . (13)

The mechanical behavior of many practical materials such
as biological tissues can be treated as elastic only as long as
the deformations remain very small. Problems concerning the
elastic behavior of these materials therefore lie, in general,
within the scope of classical theory of elasticity, which
treats the deformations as infinitesimal. It is assumed in
the classical theory of elasticity that the stress-deformation
relations are linear and independent of time. In the case of
biological tissues, strain (deformation) is often dependent
both upon the duration of application as well as the rate of
application of stresses [24]. That is, the strain experienced
by the tumor cells depends on both the rate at which the
neoplastic cells undergo growth and the mechanical stress.
The effect requires other terms which we do not include in
our model here. The growth process influences the stress-
strain law. We consider the effect of this by introducing a
growth factor. To account for the time dependence of growth,
we take a Jaumann derivative of equation (13). (A Jaumann
derivative is a material derivative in a frame rotating at a
rate equal to the local angular velocity of the medium and it
is one way of producing an objective constitutive equation.)
The left hand side becomes the rate of strain tensor and the
full equation is

1

2

D

Dt

(
∂ui

∂xj

+
∂uj

∂xi

)

=

[
growth
factor

]

+
1

2E

{
D

Dt
(3σij − σkkδij) + 3(ωikσkj − σikωkj)

}

, (14)

where ωij , the vorticity tensor, is given byωij =

− 1

2

(
∂vi
∂xj

−
∂vj
∂xi

)

. Considering the tumor geometry, we see
that the vorticity tensor is equal to zero in our problem.

Taking the trace of the rate of strain tensor term, which is
the volume strain or the change in volume per unit volume
at a given point, gives∇.v. This is the growth term in
equation (5). The growth term is given by∇.v = 3g, where
g is the linear growth factor. It therefore follows that the
stress-strain law inside the tumor is

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

=
1

3
(∇.v)δij+

1

2E

{
D

Dt
(3σij − σkkδij)

}

(15)

F. External Medium

We obtain the constitutive law for the medium surrounding
the tumor by applying the same assumptions as above.
The external medium, assumed to be elastic, satisfies the
generalized Hooke’s law for a linear elastic solid:

σe
ij = λδije

e
kk + 2µeeij

= λδij
∂uk

∂xk

+ 2µeeij, (16)

whereλ andµ are known asLamé constants, andui is the
displacement of the elastic medium subject to the effect of
the stressσe

ij . By assuming an isotropic elastic material, we

can expressλ andµ in terms of E (Young’s modulus) and
ν (Poisson’s ratio) to obtain

σe
ij =

Eν

(1 + ν)(1 − 2ν)
δij

∂uk

∂xk

+
E

(1 + ν)
eeij , (17)

where we assume thatν (Poisson’s ratio) andE (Young’s
modulus) of the tumor and surrounding tissue are equal.

Since the elastic material under consideration is incom-
pressible, we take the limitν → 1

2
. By considering the

expression forλ in (17) we see thatλ → ∞, which by
implication makes∂uk/∂xk = ekk → 0. The product of the
two terms remains finite and we expressλekk → −p, where
p is called the isotropic pressure. In this limit, the stress can
then be expressed as

σe
ij = −pδij +

2

3
Eeeij . (18)

We now discuss the boundary conditions on the stress.
Without loss of generality, we may takep∞ = 0, soσe

ij = 0
as r → ∞. The radial stress,σr, and displacement,ui, are
continuous at the tumor boundary,r = R.

III. N ONDIMENSIONALISATION

We now express the model’s variables in spherically sym-
metric coordinates and dimensionless form. We shall only
do this for Case I; the manipulations for Case II are similar.
We introduce constantsL =

√

Dc/Acρ, T = 1/αc0, and
c0 to denote length scale, tumor growth timescale and fixed
externally supplied nutrient concentration respectively. We
also define the dimensionless parameter

ǫ =
k

αc0
,

which represents the death rate per unit volume to the
maximum growth rate per unit volume. For the tumor
to grow significantly this parameter will be small. Using
asterisks to denote dimensionless variables, we write

r∗ =
r

L
, σ∗

ij =
σij

E
, p∗ =

p

E
, v∗ =

v

α c0 L
,

t∗ =
t

T
, c∗ =

c

c0
.

These are now substituted into (2), (5), (9), and the equations
are further simplified by using the radial symmetry assump-
tion, v = (v, 0, 0). Hence, after dropping the asterisks, the
model equations are converted to the form

1

r2
∂

∂r

(

r2
∂c

∂r

)

= c (19)

subject to the boundary conditionsc = 1 at r = R and c is
finite at r = 0;

1

r2
∂

∂r
(r2v) = c− ǫ, (20)

subject tov = 0 at r = 0; and
{
∂σr

∂r
+

2σr

r
−

σθ + σφ

r

}

er +
{
1

r

∂σθ

∂θ

+
1

r
cot θ(σθ − σφ)

}

eθ +
{

1

sin θ

∂σφ

∂φ

}

eφ = 0, (21)

where(er, eθ, eφ) denote the unit vectors of the coordinate
system. We have assumed here that, by the geometry of the
tumor growth, the off-diagonal elements(σrθ, σrφ, σθφ) of
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the stress tensor are all zero.
Let f11 = 2σr − σθ − σφ, f22 = 2σθ − σr − σφ andf33 =
2σφ − σθ − σr. With the radially-symmetric geometry under
consideration, the constitutive equation, (15), of the model
can be expressed as





∂v
∂r

0 0
0 v

r
0

0 0 v
r



 =
1

3r2
∂

∂r
(r2v)





1 0 0
0 1 0
0 0 1





+
1

2

(
∂

∂t
+ v

∂

∂r

)




f11 0 0
0 f22 0
0 0 f33



 , (22)

from which we obtain three equations from the diag-
onal elements (termed, respectively, therr−, θθ−, and
φφ−equations).

IV. RESULTS AND DISCUSSION

A. Model simplification for ambient nutrient concentration

We begin by deriving analytical expressions for the nu-
trient concentration and the cell velocity. The substitution
c = q/r, where q = q(r, t), reduces equation (19) to an
ordinary differential equation forq with solution

c(r, t) =
R sinh r

r sinhR
. (23)

By substituting this into equation (20), we obtain

1

r2
∂

∂r
(r2v) =

R sinh r

r sinhR
− ǫ, (24)

It follows from the boundary conditionv = 0 at r = 0 that

v =
R

r2 sinhR
(r cosh r − sinh r) −

ǫr

3
. (25)

Subtracting theφφ- from theθθ-equation in (22), we obtain
(

∂

∂t
+ v

∂

∂r

)

(σθ − σφ) = 0. (26)

At the initial moment (t = 0), we further assume that there
are no stresses acting on the tumor. As such, it follows from
equation (26) that

σθ − σφ = 0,

implying thatσθ = σφ. Using this result in therr - equation
of expression (22), we obtain

(
∂

∂t
+ v

∂

∂r

)

(σr − σθ) =
2

3
r
∂

∂r

(v

r

)

. (27)

Sincev is a known quantity this equation can be integrated
to determine the stress differenceσr −σθ. In the subsequent
discussion, we thus considerσr−σθ to be a known quantity.

We now turn to the stress equilibrium equation (21), from
which we obtain

∂σij

∂xj

= 0 ⇒







∂σr

∂r
+

2σr

r
−

σθ + σφ

r

1

r

∂σθ

∂θ
+

1

r
cot θ(σθ − σφ)

1

sin θ

∂σφ

∂φ







= 0. (28)

Using σθ = σφ in the first equation of the preceding
expression, we have

∂σr

∂r
+

2

r
(σr − σθ) = 0. (29)

Since σr − σθ is a known quantity this equation can be
integrated to determineσr (and henceσθ also).

We now turn to the region exterior to the tumor. We will
solve the constitutive equation there and use it to deduce a
boundary condition onσr for the tumor region. By the single-
coordinate geometry of the model,ui = (ur, 0, 0), and by
the incompressibility assumption,

1

r2
∂

∂r
(r2ur) = 0, (30)

from which we obtain

ur =
A′

r2
. (31)

Equation (18) can now be used to find the stress at the
boundary of the tumor. Using the result from (31) in (18),
we have

σr = −p+
2

3
er = −p−

4A′

3r3
, (32)

and

σθ = −p+
2

3
eθ = −p+

2A′

3r3

σφ = −p+
2

3
eφ = −p+

2A′

3r3







⇒ σθ = σφ.

From the stress equilibrium equations (28),p = constant. To
satisfy the condition at infinity,p = p∞(= 0).

If R0 is the initial radius of the tumor andr = R at its
boundary, then it follows thatur|r=R = R−R0, leading to
A′ = R2(R −R0). Therefore

σr|r=R = −
4(R−R0)

3R
(33)

and

σθ|r=R = σφ|r=R =
2(R−R0)

3R
. (34)

By letting β = σr − σθ, equations (29) and (27) can be
written, respectively, as

∂σr

∂r
+

2β

r
= 0, (35)

and
(

∂

∂t
+ v

∂

∂r

)

β = γ, (36)

where
γ =

2

3
r
∂

∂r

(v

r

)

.

Then from (25), we have

γ =
R

r sinhR

(
2 sinh r

3
−

2 cosh r

r
+

2 sinh r

r2

)

. (37)

We first solve forβ in equation (36). Thenσr is obtained
by substituting forβ in equation (35) and integrating. Finally,
σθ can be obtained directly fromσθ = σr − β.
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B. Model simplification for diffusion limited nutrient

By employing the assumption of spherical symmetry, and
considering a single coordinate system, the boundary value
problem in this case can be expressed in dimensionless
variables as

1

r2
∂

∂r

(

r2
∂c

∂r

)

=

{

c, r < R(t),

0, r > R(t),
(38)

subject to c → 1 as r → ∞, and c and ∂c/∂r being
continuous at the tumor boundary.

The boundary value problem (38) has the solution

c =







sinh r

r coshR
, r < R(t),

(r −R+ tanhR)

r
, r > R(t).

(39)

However, we only need the value of the nutrient concentra-
tion within the regionr < R(t) for the numerical values of
the stresses within the tumor. Apart from the nutrient concen-
tration equation, the dimensionless versions of the model’s
equations, which arise from the growth, stress equilibrium,
constitutive law, and stress effect of the external medium, are
as in Case I, viz:

1

r2
∂

∂r
(r2v) = c− ǫ; (40)

∂σr

∂r
+

2

r
(σr − σθ) = 0; (41)

(
∂

∂t
+ v

∂

∂r

)

(σr − σθ) =
2

3
r
∂

∂r

(v

r

)

; (42)

σr|r=R = −
4(R−R0)

3R
. (43)

Using the nutrient concentration from (39) in (40), with the
accompanying boundary conditions, we obtain

v =
1

r2 coshR
(r cosh r − sinh r)−

ǫr

3
. (44)

As in section IV-A, we call the right side of (42)γ, and let
β = σr − σθ. Expressions for∂γ/∂r and ∂γ/∂t, required
for the numerical solution, are:

∂γ

∂r
=

1

r coshR

(
2 cosh r

3
−

8 sinh r

3r

+
6 cosh r

r2
−

6 sinh r

r3

)

, (45)

∂γ

∂t
= −

V tanhR

r coshR

(
2 sinh r

3
−

2 cosh r

r
+

2 sinh r

r2

)

. (46)

C. Numerical simulations

The equations (35) and (36) (for ambient nutrient concen-
tration) and equations (41) and (42) (for diffusion limited nu-
trient)are solved numerically using the Lax-Wendroff method
(see [25] for more details). The Lax-Wendroff method is a
finite-difference method used to obtain numerical solutions
for first-order partial differential equations. In standard form
it is applied on an infinite spatial domain. We extend this
method to allow for the finite but varying domain of inte-
gration and also the functionγ on the right hand sides of
(36) and (42). We find the solution on a grid of thert-plane

0 10 20 30

0

50

100

150

Radial distance

R
ad

ia
l s

tr
es

s

0 10 20 30
−50

0

50

100

150

Radial distance

T
ra

ns
ve

rs
e 

st
re

ss

132.24

130.95

Fig. 1. Tumor growth-induced stress(solid lines) and effect of external
medium on the growth-induced stress (dashes lines). Over the integration
time considered, the tumor grows to a size of∼ 26.44 from an initial radius
R0 = 1 and parameter valuesǫ = 0.1, δt = 0.03.

defined by

ri = ih, i = 0, 1, 2, · · · , imax;

tj = jk, j = 0, 1, 2, · · · , jmax,

so h andk are the respective space and time stepsizes, and
i and j denote the corresponding spatial and time counters.
The number of spatial grid points is fixed, but the stepsizeh
is time dependent so thatimaxh = R(t). Thus the grid lines
are evenly distributed over the whole domain in space and
are set apart in time by a constant differenceδt. However,
since the domain is changing with time, the effect of this is
that the spatial grid lines are curves, not straight lines.

Graphical outputs of the numerical results are obtained
by choosing appropriate values for the physical parameters
ǫ, R0, and for the integration variablesδt, imax and jmax.
When ǫ (the ratio of death rate to proliferation rate)> 1,
the tumor shrinks to extinction; whenǫ ∼ 1, it grows to a
small size; and whenǫ ≪ 1, it grows to a large size. In
our integration we choose the valueǫ = 0.1 and initial radii
R0 = 1 andR0 = 5. Thus we are modelling a tumor that is
initially small and which grows to a large size. Withǫ = 0.1
the tumor grows to a maximum sizeR ≃ 26.

The integration constants used in the simulations are
δt = 0.03, imax = 480, jmax = 80/δt. The plots in figures
1–6 and Figures 7–10 were obtained for ambient nutrient
concentration and diffusion limited nutrient respectively.

Figure 1 shows the stresses induced by unrestrained
growth and the stresses induced in the presence of an elastic
external medium. Examining the transverse stress first we
see that it is negative (compressive) in the outer region of the
tumor and positive (tensile) in the interior of the tumor. The
compressive force is caused by the growth process pushing
cells together in the boundary layer near the tumor edge
where the nutrient concentration is high. However, as the
cells are drawn into the interior the death of some of the cells
causes the remaining cells to be stretched apart and so creates
the tensile force observed there. The radial stress has only a
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Fig. 2. Linear stress difference against radius at different times. Parameter
values:ǫ = 0.1, R0 = 1, δt = 0.03. The maximum value is≃ 1.28.
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Fig. 3. Plots of nutrient concentration against the radius for8 different
values of t as tumor grows to saturation size, from an initial radius of1.

very small region where it is negative (compressive). This is
near the tumor boundary and is caused by the elastic effect
of the exterior region. Mostly, however, the stress is positive
(tensile) so that the force (the divergence of the stress) is
such that it pulls the cells towards the center to replace the
cells dying there.

The difference in the growth induced stress and the stress
effect of the external medium at eight different times (t = 1,
2, . . . , 8) is illustrated in Figure 2. The difference approaches
a constant at large times since it is due to the compressive
effect of the external medium, which eventually becomes
constant when the tumor stops expanding. This effect of the
external medium is small compared to the stress induced by
the growth process.

The induced stress increases with decrease in the initial
radius of the tumor (compare Figures 1 and 2 with Figures
5 and 6 respectively).

Figures 3 and 4 illustrate the variation of nutrient concen-
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Fig. 4. Plots of velocity against radius for 8 different valuesof time, t
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Fig. 5. Tumor growth-induced stress(solid lines) and effect of external
medium on the growth-induced stress (dashes lines). Over the integration
time considered, the tumor grows to a size of∼ 27.00 from an initial radius
R0 = 5 .
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Fig. 6. Linear stress difference against radius at differenttimes. Parameter
values:ǫ = 0.1, R0 = 5, δt = 0.03. The maximum value is≃ 1.09.
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Fig. 7. Initial radius,R0 = 1; Tumor growth-induced stress (solid lines)
and effect of external medium on the growth-induced stress (dashes lines).
With parameter valuesǫ = 0.1, R0 = 1, δt = 0.03, tumor grows to a size
of R ∼ 4.85 .
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Fig. 8. Linear stress difference of∼ 1.06 at large times. Parameter values:
ǫ = 0.1, R0 = 1 .

tration and tumor growth velocity, respectively, at 8 different
times as the tumor increases in size fromR0 = 1. When
the tumor is small, nutrient availability to the tumor cells is
high and proliferating cells are present throughout the tumor.
The velocity of the tumor growth is significantly high with a
positive profile. As the tumor increases in size, the nutrient
concentration decreases from the center of the tumor toward
the boundary. There is increased rate of cell death toward
the center of the tumor while a proliferating rim begins to
develop as a result of sufficient nutrient availability to cells
towards the boundary. A high volume loss arises from the
disintegrating death cells in the center resulting to an inward
movement of cells from the boundary to replace the lost cells.
This leads to a steady decrease in the tumor growth velocity.

The general trend in the diffusion limited case is similar
to that observed for ambient nutrient concetration. However,
with the diffusion limited exterior, the growth rate is much
slower than in Case I (compare Figure 10 with Figure 4).
This results in a much slower rate of increase in the growth-
induced stress (stress related to the elastic behavior of the
tumor) although as before, this stress continues to increase
without limit (compare Figure 7 with Figure 1). Another
consequence of the nutrient limitation is that the tumor
equilibrates at a much smaller size∼ 4.88 as compared with
∼ 29 in Case I. As a result of this, the confinement stress
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Fig. 9. Plots of nutrient concentration against radius for 8 different values
of t .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.1

−0.05

0

0.05

0.1

0.15
V

el
oc

ity

Radial distance

t=3

t=4

t=1

t=2

t=7

t=8

t=5
t=6

Fig. 10. Plots of velocity against radius for 8 different values of t

.

(caused by the external medium) is much less than in Case
I (compare Figure 8 with Figure 2), although it is relatively
larger when compared with the growth-induced stress. The
marked differences in the growth velocity and saturation size
in Case I and II illustrate the strong dependence of tumor
growth rate and saturation size on nutrient supply from the
surrounding medium.

V. CONCLUSION

In most existing models, one of the main features is that
tumor growth rate and saturation size are regulated by the
diffusion limited nutrient supply of the surrounding medium.
The mechanical effect of the surrounding medium is usually
ignored. In our model, attention has been focussed on the
effect of the external isotropic elastic medium. We assume
that the tumor is in its early avascular stage and there is
no formation of a necrotic core. We have examined the
effect of the stress induced by growth in the presence of the
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external elastic medium on tumor growth rate and saturation
size. The assumption of the dependence of tumor growth
rate and saturation size on nutrient supply was also checked
by comparing two cases. In one case the nutrient supply
was maximized at the tumor surface while in the other the
nutrient had to overcome a diffusion gradient from infinity.
Simulations of the model show that the direct mechanical
effect of the external medium is small when compared to the
effect due to growth. The stress effect is dependent on the
initial tumor size: stress effect increases with decrease in the
initial radius of the tumor. The effect of the external stresses,
resulting from the effect of the external medium, is mainly
compressive, offering resistance to the growing tumor. The
results show that the saturation size of the tumor does depend
on the stress effect of the external isotropic medium. There
is a significant difference between the saturation size in
the two cases considered. This is a clear indication that
the limitation of the nutrient supply due to diffusion has
significant quantitative effects on the tumor saturation size.
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