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Abstract— The Exponentially Weighted Moving Average 

(EWMA) procedure are used for monitoring and detecting 
small shifts in the process mean which performs quicker than 
the Shewhart control chart. Usually, the common assumption 
of the Statistical Process Control (SPC) is the observations 
are independent and identically distributed (IID). In practice, 
however, the observed data are from industry and finance is 
serially correlated with trend. In this paper, we extend to use 
CUSUM procedure to compare with EWMA procedure. The 
performance of latter is superior to the former when the 
magnitudes of shift are small to moderate. It is shown that 
EWMA procedure performs better than the CUSUM 
procedure for the case of trend exponential AR(1) processes. 
 

Index Terms— Trend AR(1), Exponentially Weighted 
Moving Average, Average Run Length, Exponential White 
Noise 

I. INTRODUCTION 

The observations are usually independent and identically 
distributed (IID), but in reality they might be serially 
correlations with trend. Some researchers have considered 
the problem of data correlation as it is related to SPC (see 
[1]). The Exponentially Weighted Moving Average 
(EWMA) procedures are used to monitor and detect small 
shifts in the process mean which is quicker than the 
Shewhart control chart. The control limits and 
performance measures for EWMA control chart of 
correlated processes is based on variables or attributes (see 
[2] and [3]). Recently, several researchers have shown an 
increasing interest in the formulation and analytical of 
non-Gaussian models for serially correlated data, e.g., [4] 
and [5]. Exponential white noise has been studied in the 
connection with pollution problem (see [6]), and some 
paper has studied with exponential white noise by [6], [7], 
[8], [9] and [10]. In our study, an explicit formula for the 
EWMA chart for trend stationary exponential AR(1) 
processes is presented. An overview of the EWMA 
procedure for serially dependent data is given in Section 2. 
Later, Section 3 reviews the performance method for 
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serially dependent data in EWMA procedure. Next, 
Section 4 discusses briefly the explicit formula for the 
average run length (ARL) for trend exponential AR(1) 
processes in EWMA procedure. In Section 5, a 
comparison of the performance of the EWMA procedure 
and CUSUM procedure is made. Finally, Section 6 
concludes the discussion in the paper.       
 

II. A REVIEW OF THE TREND EXPONENTIAL AR(1) 

PROCESSES IN EWMA PROCEDURE 

 
In [11], [12], [13], [14] and [15] give detailed explanations 
EWMA procedure for serially dependent data. In the 
monitoring of the trend exponential AR(1) process in 
EWMA procedure, assume that we have the observations 

 , 0,1, 2,...tY t   taken over time. The EWMA statistic tZ  

is given by: 
 

  11t t tZ Z Y           (1) 

 
where   is a smoothing constant  0 1  , the 

sequence   , 1, 2,3,...tY t   consists of the trend AR(1) 

processes and the initial value of 0Z  is usually selected to 

be the process target of tY  or the average of random data. 

The trend AR(1) processes is assumed to be as follow 
 

1 , 1t t tY t Y X t             (2) 

 
where   is a constant,   is the trend slope in term of t , 

and   is the autoregressive coefficient  0 1  . Let 

tX  is the independent random error term at time t  

following  Exp  . The variance of tZ  for the large t  

will be 
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     (3) 

 
Therefore the upper control limit (UCL) and lower control 
limit (LCL) for monitoring the process when plotting tZ  

versus the time t  are 
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(4) 

 
where L  is a constant to be chosen, and X   is the 

standard deviation of a known underlying probability 
distribution. The process will be declared to be in an out-
of-control state when tZ B . The alarm time for the 

EWMA in then given by 
 

 inf 0 : .tt Z B          (5) 

 
Assume  .E denote the expectation at time ,  where 

.    The ARLs of the EWMA control chart for the 
given process are that: 
 

 0 ,ARL E T         (6) 

 
where T  is given (usually large) and 
 

 1 1 .ARL E         (7) 

 

III. A REVIEWS OF THE PERFORMANCE METHOD FOR 

SERIALLY DEPENDENT DATA IN EWMA PROCEDURE 

Usually, the performance of the control chart is measured 
by the average run length (ARL). The 0ARL  is defined as 

the expectation of false alarm time    before an in-

control process is taken to signal to be out of control. For 
practical purposes, a sufficient large in-control 0ARL  is 

desired. When the process is out-of-control, the 
performance of a control chart is usually used as 1ARL . 

The 1ARL  is defined as the expected number of 

observations taken from an out-of-control process until the 
control chart signals that the process is out-of-control. 
Ideally, 1ARL should be small. 

A control chart based on the Exponentially Weighted 
Moving Average (EWMA) model was first proposed by 
[16]. The methods to evaluate the performance of EWMA 
control charts for serially correlated have been studied by 
[17]. They used simulation method based on the presence 
of autocorrelation for EWMA control chart. The ARL, and 
steady state ARL of EWMA were estimated numerically 
by [18] using an integral equation approach and a Markov 
chain approach to investigate EWMA and CUSUM 
procedures for the process mean when data was described 
by an AR(1) process with additional random error. The 
EWMA control charts based on the observations which 
follow an AR(1) process, plus a random error, and to 
detect changes in the process mean, or in the process 
variance, the authors using a simulation approach is 
discussed by [14]. In [19] presented the ARL of the 
EWMA control chart for monitoring the mean of an AR(1) 
process, plus a random error by using an integral equation 
method. In [20] compared the ARL for the EWMAST 

chart, the CUSUM residual chart, the EWMA residual 
chart, the X residual chart, and X chart using simulation. 

In [21] calculated the ARL of X  and EWMA charts 
using analytical and simulation techniques. In [22] studied 
the EWMA chart with residual-based approaches for 
detecting process shifts by using simulation. In [23] 
studied EWMA chart for an AR model and calculated 
ARL by Markov chain approach. In [24] evaluated the 
ARL of EWMA charts with heavy tailed distribution for 
monitoring the mean of the stationary processes by 
simulation method. In [25] computed exactly ARL with the 
Markov chain approach for a Poisson INAR(1) model of 
EWMA chart. In [26] designed the ARL performance of 
autocorrelated process control chart using a Monte Carla 
simulation. In [27] used finite Markov Chain imbedding 
technique to investigate the run length properties for 
control charts when the process observations were 
autocorrelated. Recently, [28] have derived explicit 
formula of performance for EWMA control charts for 
AR(1) process observations with exponential white noise, 
[29] have derived explicit formula of ARL for EWMA 
control chart for trend stationary exponential AR(1) 
processes. 
 

IV. EXPLICIT FORMULA FOR TREND EXPONENTIAL AR(1) 

PROCESSES IN EWMA PROCEDURE 

The performance of a control chart is measured by the 
average run length (ARL). The 0ARL  is defined as the 

expected of false alarm time    before an in-control 

process is taken to signal to be out of control. A sufficient 
large in-control 0ARL  is desired. When the process is out-

of-control, the performance of a control chart is usually 
used as 1ARL . It is the expected number of observations 

taken from an out-of-control process until the control chart 
signals that the process is out-of-control. Ideally, 1ARL  

should be small. The values of 0ARL  and 1ARL  for an 

EWMA control chart with exponential white noise 
observations are derived by [28]. The authors used an 
integral equation approach and derived a Fredholm 
integral equation of second type for the ARL. The explicit 
formulas obtained by solving the integral equations are: 
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      (8) 

 
where   is a constant,   is the trend slope in term of t , 

  is the autoregressive coefficient  0 1  ,   is a 

parameter of the exponential distribution,   is a 
smoothing parameter, ,u v  are initial values, and B  is 
boundary value.  

V. NUMERICAL COMPARISONS OF PERFORMANCE 

We present an explicit formula for trend exponential 
AR(1) processes in EWMA procedure. The numerical 
results for 0ARL  when 0   and 1ARL  when 1   
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are given for the trend exponential AR(1) processes in 
EWMA procedure was calculated from Eq. (8). To 
evaluate the performance of a control chart for monitoring 
trend AR(1) processes in EWMA procedure, we designed 
the trend exponential AR(1) processes with numerical 
parameters 0.3 0.9, 0, 0.2       and 0 0 0.1Z Y   

with weighting constant 0.3   is given for an in-control 
process. The CUSUM procedure was constructed with 
constants 2,3a   and control limit 3,4h   as suggested 
by [30]. The characteristics of the control charts measured 
in terms of ARL are examined for different values of 
shifts in the mean 

1 1.01, 1.03, 1.05, 1.07, 1.09, 1.1, 1.2   . 

TABLE 1 THE NUMERICAL RESULTS FOR 0ARL  OBTAINED 

FROM FORMULA (8) AND NUMERICAL INTEGRAL EQUATION 

FOR THE TREND EXPONENTIAL AR(1) PROCESSES IN EWMA 

PROCEDURE WHEN 0 1  , THE ENTRIES INSIDE THE 

PARENTHESES ARE THE CPU TIMES IN SECONDS 

  B 
ARLs 

Explicit formula Integral equation 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

0.2693    
0.2678  
0.2663  
 0.2647  
0.2632  
 0.2617   
0.2602  
0.2587 
0.2572 
0.2558  
0.2543  
0.2529  
0.2514    

99.6997 
101.2144 
102.4312 
99.8073 

100.3019 
100.4625 
100.2834 
99.7657 
98.9174 

101.2327 
99.6852 

101.3722 
99.1437 

99.6996 (44.1457) 
101.2144 (45.4545) 
102.4312 (44.3564) 
99.8073 (50.9680) 
100.3019 (45.7691) 
100.4625(48.5439) 
100.2834 (44.6353) 
99.7656 (45.5038) 
98.9173 (44.6866) 
101.2327 (43.4398) 
99.6852 (43.9520) 
101.3722 (43.8690) 
99.1437 (43.5503) 

 

TABLE 2 THE NUMERICAL RESULTS FOR 0ARL  OBTAINED 

FROM FORMULA (8) AND NUMERICAL INTEGRAL EQUATION 

FOR THE TREND EXPONENTIAL AR(1) PROCESSES IN EWMA 

PROCEDURE WHEN 0 5  , THE ENTRIES INSIDE THE 

PARENTHESES ARE THE CPU TIMES IN SECONDS 

  B 
ARLs 

Explicit formula Integral equation 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 

1.6830 
1.6810  
1.6790 
1.6770    
1.6750    
1.6730 
1.6710 
1.6690 
1.6671 
1.6651 
1.6631 
1.6611 
1.6592    

300.8045 
300.8805 
300.7862 
300.5217 
300.0877 
299.4855 
298.7169 
297.7841 
302.7630 
301.4660 
300.0088 
298.3959 
302.7290 

300.8043 (44.2737) 
300.8802 (43.8778) 
300.7859 (44.2318) 
300.5214 (45.1578) 
300.0875 (43.9042) 
299.4853 (45.9985) 
298.7166 (48.5696) 
297.7839 (45.1732) 
302.7628 (43.9773) 
301.4657 (43.7833) 
300.0085 (44.0086) 
298.3957 (44.2005) 
302.7287 (43.4986) 

 
 
In Table 1, the 0ARL ’s for EWMA procedure is 

reported. Consider, the 0ARL ’s for the chart on EWMA 

procedure for with parameters 0, 0.2, 0.3      and 

the trend AR(1) processes with parameter 0.3 0.9  . 

We compare the numerical results obtained by explicit 
formulas with the numerical results via integral equations 

method. Both methods gives 0ARL  for EWMA control 

chart for trend exponential AR(1) processes when 0 1  . 

The explicit formulas give results which are very closed to 
the numerical integral equations. Notice that, calculations 
with explicit formula equation (8) are simple and 
considerable much faster from the point of view of 
computation times. For example, if we set 0.3  , 

calculations time based on our technique takes less than 1 
sec., while the CPU time required to obtain numerical 
solutions of integral equation for the EWMA run, show 
inside the brackets is 50-60 times larger. The in-control 
ARL’s for the EWMA procedure used explicit formula and 
numerical integral equation are reported in Table 2 when 

0 5  . 

TABLE 3 COMPARISON OF ARLS VALUES WITH CUSUM 

FOR TREND EXPONENTIAL AR(1) PROCESSES 

    
EWMA CUSUM 

0.3   2, 3a h   

0.40 
 
 
 
 
 
 
 
 

0.75 

1.00 
1.01 
1.03 
1.05 
1.07 
1.09 
1.10 
1.20 

 
1.00 
1.01 
1.03 
1.05 
1.07 
1.09 
1.10 
1.20 

38.4541 
26.8849 
17.0025 
12.5827 
10.0771 
8.4634 
7.8544 
4.7772 

 
17.4376 
14.6171 
11.1412 
9.0786 
7.7131 
6.7423 
6.3551 
4.1985 

38.5615 
36.8709 
33.8117 
31.1263 
28.7588 
26.6627 
25.7041 
18.5466 

 
17.4509 
14.0336 
13.1689 
12.4020 
11.7187 
11.1068 
10.8245 
8.6495 

 

TABLE 4 COMPARISON OF ARLS VALUES WITH CUSUM 

FOR TREND EXPONENTIAL AR(1) PROCESSES 

    
EWMA CUSUM 

0.3   3, 4a h   

0.40 
 
 
 
 
 
 
 
 

0.75 

1.00 
1.01 
1.03 
1.05 
1.07 
1.09 
1.10 
1.20 

 
1.00 
1.01 
1.03 
1.05 
1.07 
1.09 
1.10 
1.20 

437.0680 
72.4236 
27.7236 
17.4499 
12.8821 
10.3013 
9.3906 
5.2439 

 
256.7971 
63.7623 
26.0144 
16.6214 
12.3577 
9.9230 
9.0594 
5.0976 

435.3320 
406.8440 
356.7320 
356.7320 
278.3280 
247.5360 
233.8180 
139.4190 

 
257.6000 
241.4070 
212.8330 
188.5710 
167.8600 
150.0900 
142.1500 
87.0196 

 
 
In Tables 3-4, we compare the numerical results 

obtained by explicit formulas were both gives 0ARL  and 

1ARL  for the trend exponential AR(1) processes in 

EWMA and CUSUM procedures. The trend exponential 
AR(1) processes  with parameters 0.4, 0.75  , 
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1 1.01, 1.03, 1.05, 1.07, 1.09, 1.1, 1.2  . The EWMA 

procedure with parameters 0.3   and 0, 0.2   . 

The CUSUM procedure with parameters constants 3,2a  

and control limits 4,3h , respectively. In Table 3-4, it is 
clear that when a process is correlated, the EWMA 
procedure performs better than CUSUM procedure when a 
process is positively autocorrelated.  

 

VI. CONCLUSION 

Several control charts or procedures have been proposed 
for autocorrelated data. In this article, we extend to use 
CUSUM procedure to compare with EWMA. The 
performance of latter is superior to the former when the 
magnitudes of shift are small to moderate. The 
performance of the analytical results for EWMA 
compared with the analytical results for CUSUM.  The 
performance of the EWMA procedure proposed by [29] is 
better than the CUSUM procedure proposed by [30] based 
on ARL for trend exponential AR(1) processes.  
 

REFERENCES 
[1] G.W. Don, H. Moskowitz, and R.D. Plante, Run-Length Distributions 

of Special-Cause Control Charts for Correlated Processes. 
Technometrics 36 (1994) pp.3-17. 

[2]   S.M. Scariano, and J.L. Hebert, Adapting EWMA Control Charts for 
Batch-Correlated Data. Quality Engineering 15 (2003) pp.545-556. 

[3]  C.H. Weiß, Detecting mean increases in Poisson INAR(1) processes 
with EWMA control charts. Journal of Applied Statistics 38 (2010) 
pp.383-398. 

[4]  Diggle, P.J. and Zeger, S.L., A Non-Gaussian Model for Time Series 
with Pulses, Journal of the American Statistical Association, 
84(1989) pp. 354-359. 

[5]  Walker, S. G., A Note on the Innovation Distribution of a Gamma 
Distributed Autoregressive Process, Scandinavian Journal of 
Statistics, 27(2000), pp. 575-576. 

[6]  Turkman, M.A. Turkman, “Bayesian Analysis of an Autoregressive 
Process with Exponential White Noise,” Statistics, 21 (1990), pp. 
601 – 608. 

[7]   A. J. Lawrance and P.A. W. Lewis, “A New Autoregressive Time 
Series Model in Exponential Variables (NEAR(1)),” Advances in 
Applied Probability, 13 (1981),  pp. 826-845. 

[8]    H. Fellag and M. Ibazizen, “Estimation of the First-order 
Autoregressive Model with Contaminated Exponential White 
Noise,” Journal of Mathematical Sciences, 106 (2001), pp.2652- 
2656. 

[9]  I. Mohamed and F. Hocine, “Bayesian estimation of an AR(1)  
process with exponential white noise,” Statistics, 37(2003), pp. 365-
372. 

[10]   I. M. S. Pereira and M.A. Turkrman, “Bayesian prediction in  
threshold autoregressive models with exponential white noise,” 
Sociedad de Estadistica e Investigacion Operativa Test, 13(2004),  
pp. 45-64. 

 [11] T.J. Harris, and W.H. Ross, Statistical process control procedures 
for correlated observations. The Canadian Journal of Chemical 
Engineering 69 (1991) pp.48-57. 

[12] C.M. Mastrangelo, and D.C. Montgomery, SPC with correlated 
observations for the chemical and process industries. Quality and 
Reliability Engineering International 11 (1995) 79-89. 

 [13] L.N. Vanbrackle, and M.R. Reynolds, EWMA and cusum control 
charts in the presence of correlation. Communications in Statistics - 
Simulation and Computation 26 (1997) 979-1008. 

[14] C.W. Lu and M.R. Reynolds, “EWMA control charts for  
monitoring the mean of autocorrelated processes,” Journal of 
Quality Technology, vol. 31, no. 2, pp. 165-188, 1999. 

[15] N.F. Zhang, Statistical control charts for monitoring the mean of a 
stationary process. Journal of Statistical Computation and 
Simulation 66 (2000) 249-258. 

[16] S.W. Roberts, “Control chart tests based on geometric moving 
average,” Technometrics, 1 (1959), pp. 239–250, 1959. 

[17] C.M. Mastrangelo and D.C. Montgomery, “SPC with correlated 
observations for the chemical and process industries,” Quality and 
reliability engineering international, 11 (1959), 79-89. 

[18] L.N. Vanbrackle and M.R. Reynolds, “EWMA and CUSUM  
control charts in the presence of correlation,” Communications in 
Statistics - Simulation and Computation, 26(1997), 979-1008. 

[19] C.W. Lu and M.R. Reynolds, “EWMA control charts for  
monitoring the mean of autocorrelated processes,” Journal of 
Quality Technology, 31(1999), pp.165-188. 

[20] N.F. Zhang, “Statistical control charts for monitoring the mean  
of a stationary process,” Journal of Statistical Computation and   

Simulation, 66(2000),  pp. 249-258. 
[21] J.R. English, S.C. Lee, T. W. Martin and C. Tilmon, “Detecting  

changes in autoregressive processes with X and EWMA charts,” 
IIE Transactions, 32 (2000), pp. 1103-1113. 

[22] B.L. Maccarthy and T. Wasusri, “Statistical process control for  
monitoring scheduling performance-addressing the problem of  
correlated data,” Journal of the Operational Research Society, 52 

(2001),  pp. 810-820. 
[23] A.B. Koehler, N.B. Marks and R. T. Connell, “EWMA control  

charts for autoregressive processes,” Journal of the Operational 
Research Society, 52 (2001), pp. 699-707. 

[24] M. Rosolowski and W. Schmid, “EWMA charts for monitoring  
the mean and the autocovariances of stationary processes,” 

Statistical Papers, 47 (2006), pp. 595-630. 
[25] H. Weib Christian, “EWMA Monitoring of Correlated Processes of 

Poisson Counts,” Quality Technology & Quantitative Management, 
6 (2009), pp. 137-153. 

[26] C. Bilen and X. Chen, “Comparison of control charts for 
autocorrelated process control,” Int. J. Quality Engineering and 
Technology, 1 (2009), pp. 136-157.  

[27] C. Yung-Ming and W. Tung-Lung, “On Average Run Lengths of 
Control Charts for Autocorrelated Processes,” Methodol Comput 
Appl Probab, 13 (2011), pp. 419-431. 

[28] W. Suriyakat, Y. Areepong, S. Sukparungsee and G. Mititelu, “On 
EWMA procedure for AR(1) observations with exponential white 
noise,” International Journal of Pure and Applied Mathematics, 77 
(2012),  pp. 73-83.  

[29] W. Suriyakat, Y. Areepong, S. Sukparungsee and G. Mititelu, An 
Analytical Approach to EWMA Control Chart for Trend Stationary 
Exponential AR(1) Processes, Lecture Notes in Engineering and 
Computer Science: Proceedings of The World Congress on 
Engineering 2012, WCE 2012, 4-6 July, 2012, London, U.K., 
pp.281-284. 

[30]  J. Busaba, Y. Areepong and S. Sukparungsee, Analytical of ARL   
for Trend Stationary First Order of Autoregressive Observations on   
CUSUM Procedure, Lecture Notes in Engineering and Computer   
Science: Proceedings of The World Congress on Engineering    
2012, WCE 2012, 4-6 July, 2012, London, U.K., pp.103-108.

 
 

 
 

 
  
 

IAENG International Journal of Applied Mathematics, 42:4, IJAM_42_4_08

(Advance online publication: 21 November 2012)

 
______________________________________________________________________________________ 




