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On Improving the Semilocal Convergence of
Newton-Type Iterative Method for lll-posed
Hammerstein Type Operator Equations

Monnanda Erappa Shobha and Santhosh George

Abstract—George and Pareth( 2012), presented a quartically and any regularization method for solving (3). In fact
convergent Two Step Newton type method for approximately in this paper we consider Tikhonov regularization for

solvjng an il!-posed operator eq'uation in the finite dimensional approximately solving (2) and we consider a modified
setting of Hilbert spaces. In this paper we use the analogous ¢ tep Newt thod f Vi 3

Two Step Newton type method to approximate a solution of WO Step e\_N on method for SO_V'ng (3)- .
ill-posed Hammerstein type operator equation. (b) The regularization parameter is chosen according

. . to the adaptive method considered by Pereverzev and
Index Terms—Hammerstein operators, Quartic convergence,

Newton Tikhonov method, monotone operator, ill-posed prob- Schock in [16] for the linear ill-posed operator equation
lems, adaptive method. (2) and the same parameteris used for solving the

non-linear operator equation (3), so the choice of the
|. INTRODUCTION regularization parameter is not depending on the non-
linear operatorF..
In [5], George studied an iterative Newton-Tikhonov reg-
E’;lrization (NTR) method for approximating (1), wherén

KF(z) = f (1) (2) is approximated with:;

) * —1 7% £6
. . = (K"K I K >0 6>0
whereF : D(F) C X — X is nonlinear andX : X — Y Za = ta ) £ a0, _ >. ’
is a bounded linear operator is called a (nonlinear) Hamménd then solve (3) using the Newton type iteration

This paper deals with approximating a stable solution of
ill-posed Hammerstein type operator equations. An equatig
of the form

stgin_equation ([5], [8])- HereX andY are Hilbert spaces $Z+1,a =20 - F'(wo)_l(F(wi,a) — 20
with inner product(.,.) and norm||.|| respectively. s . ) .
Equation (1) is ill-posed in the sense that its solutioheré zo . = wo. Here and in the followingr, is the

does not depend continuously on given data. It is assuri8#ial approximation to the solutios of (1). Local linear

throughout thatf® € Y are the available noisy data with ~Convergence was obtained in [S]. . _
| i In [7], George and Kunhanandan used the iteration
f=rl<é

. . . foJrl,a = Ifz,a - F/(xfz,a)il(F(xfl,a) - Zi)
and F' possesses a uniformly boundeddéhet derivative for
eachz € D(F), i.e.,

|F@)]l <M, «eD(F)

wherez , := zo and
23 = (KK +al) ' K*(f° - KF(zy)) + F(zo)  (4)

for approximately solving (1). Local quadratic convergence

for some M(Here and belowF”(.) denotes the Fchet | - oiopiished in [7].

derivative of F'). The method of approximately solving anill-

ing (1). We consider two regularity classes of the operator
F. In the first case it is assumed th&t(u)~! exists and is a
Kz=f° (2) bounded operator for all € B,.(zo) (B;(zo) stands for the
ball of radiusr with centerz); and in the second case it is
assumed thaf” is a monotone operator anfd’(u)~! does
F(z) =z (3) not exist.

, ) _ Recall [15], [21], that an operatdf is said to be monotone
The above formulation has been considered by authors;dﬁ(_:‘rmOr if(F(z) — F(y),a —y) >0 YV 2,y € D(F).

[5], [7] and [8]. The main purpose of the above formulation” |, this paper we provide a semilocal convergence analysis

is that: _ of TSNTM for ill-posed Hammerstein operator equations
(@) We solve (2) and (3) separately, to obtain an approXiith the advantage of quartic convergence over the work in
mate solution for (1). Here one can use any regularizgs] and [7].
tion method for linear ill-posed equation for solving (2) As in [7] and [8], a solutioni of (1) is called anz,-

Monnanda Erappa Shobha and Santhosh George, Department of Ma%'-r"m“m norm solution if it satisfies

can be obtained by first solving

for z and then solving the non-linear problem

el g Copatrl s Kol s vt 1) o) o= minfF(e) - PGl
, : , : .me@gmail.com, sge
orge@nitk.ac.in KF(z)= f,x € D(F)}. (5)
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We assume throughout that the solutibof (1) satisfies (5). where D}, = {a; € Dy : |2 || <
The paper is organized as follows: In Section Il, we 1,2, .....i—1}.

give the preliminaries and adaptive scheme for choosing thewe will be using the following theorem from [7] for our

regularization parameter for Tikhonov regularization of error analysis.

(2). The proposed method and the error estimates are giveTHEOREM 2.3: (cf. [7], Theorem 4.3) Let be as in (7),

in Section Il Section IV deals with the algorithm and & pe as in (8) and?, be as in (4) withw = ;. Thenl < k

numerical example is given in Section V to confirm thg@nd

J_

A dp _
_eff|C|en_cy of our approach. Finally we conclude the paper |F(&) — H (2 + Y1 (5).
in Section VI. -1
Il. PRELIMINARIES [1l. SEMILOCAL CONVERGENCE OFTSNTM
This section deals with Tikhonov regularized solutigh I this paper we simply present the results without proofs.

of (2) and (an a priori and an a posteriori) error estimate f§¥e refer though the reader to [9], [10] and [11] for the
|F(#) — z°||. The following assumption is used to obtairBnalogous proofs.
the error estimate.

Assumption 2.1: There exists a continuous, strictly monoA, Case 1: F'(.) is boundedly invertible in B,.(z)
tomcally;ncr(_eas!ng. functionp : (0,a] — (0,00) with Let ||F'(u)~!|| < B, Vu € By (z0) and for some3 > 0.
a > [|K|* satisfying; In this case the ill-posedness of (1) is essentially due to the

o limy 0 p(N\) =0, nonclosedness of the range of the linear operhtgsee [17],
* ap(\) page 26). LetB,(x) denote the ball of radius centered at
sup N+ S@(O‘) V)‘G(Oaa]a r e X.
A>0 o For an initial guess:;y € X the TSNTM is defined as;
and
« there existw € X, ||v|| < 1 such that Ynar = Tap — F'(@0 0, ) H(F (@) 0,) = 20,),  (9)
F(2) ~ F(xo) = (K" K)v. Toitar = Ynar = F Wno) " (FWna,) = 2a,)- (10)
THEOREM 2.2: (cf.[7], section 4) Let be asin (4) and In order to establish the convergence of TSNTM and to
Assumption 2.1 holds. Then obtain the error estimatgrd, — 2|, we use the following
s 5 Assumption 3.1: (cf.[20], Assumption 3 (A3)) There ex-
[F(2) = zall < w(a) + Ja (6) ist a constantky, > 0 such that for everyz,u ¢

B,(z9) U B.(%) € D(F) andv € X there exists an
element®(x,u,v) € X such that[F'(z) — F'(u)jv =

A. A priori choice of the parameter
Fl(u)®(z,u,v), [|[®(z, u,0)|| < kollv][l|z — ul|.

Note that the estimate(«) + % in (6) is of optimal Let
order for the choicev := a5 which satisfiesp(as) = \/a e =y, =2l Vn >0 (11)
L Ve tH(A),0 < A < a. Then we havey = i e o e 3
t = A . = .
\/ea_d)((a A )) a{nd = and for0 < ko < 1, let g : (0,1) — (0,1) be the function
sl pLas defined by
as = 9071(1/}71(5)) 27k’3 5
(Here ¢~ ! denotes the inverse of the functiar). So the 9(t) = 8 5! vt € (0,1). (12)
relation (6) leads td|F'(z) — 23| < 2¢~1(9). For convenience we will use the notatien, v, ande,, for
20 s Yoo, @nded . respectively.
B. An adaptive choice of the parameter Hereafter we assume thate (0,8, wheredy, < ‘/g_“
The above apriori choice of the parameter cannot be udeet ||z — zo|| < p,
in practice as the smoothness condition of the unknown 11 5o
solution & reflected iny is generally not known. So, in < M(ﬁ — —a)
practice we propose to choose the parametaccording to vEo
the balancing principle established by Pereverzev and Sh@tkl 5
[16] for solving ill-posed problems. Let Y, = B[Mp + _30]
Dy={a;:0<ap<a1 <ag<---< ; ;
v={a @0 s ars e on’ THEOREM 3.2: Let e, andg(e,) be as in equation (11)
be the set of possible values of the parameter and (12) respectivelyz,, and y, be as in (10) and (9)

The selection of numerical value for the parameterr respectively withé € (0, 5o]. Then by Assumption 3.1 and
according to the balancing principle is performed using thEheorem 2.3, the following hold:

following rule: @  lzn — yn_1| < WT";);Hynfl — Zp;
- b)) fzn —2pall < 1+ =53 yn—1 — zn-1;
I :=max{i: o(a;) < 7 ( 2 )
1 pled) < D@ llgn— 2ol < glen-1)lm1 = nsll
Let (d) g(en) < g(’()if) 1;/2 Vn > 0;
k = max{i : a; € DL} @ ©& en=gn) T vn = 0.

(Advance online publication: 21 May 2013)
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THEOREM 3.3 Let r = (1= 1( + 3ho g(v yz)7, ad  B. Case 2. F is a monotone operator and F”(.) is non-
let the hypothesis of Theorem 3 2 holds. Thep,y, € invertible.
By (o), for all n > 0. _ _ o Let X be a real Hilbert space. In this situation, the ill-
The main result of subsection A of this Section is thgosedness of (1) is due to the ill-posedness’cds well as
following the nonclosedness of the range of the linear oper&tor

THEOREM 3.4: Let y,, and x,, be as in (9) and (10) For an initial guess:, € X, 0 < ¢ < o, and forR(x) :=
respectively, Assumptions of Theorem 3.3 hold and Iqt/(x) + 2], the TSNTM in this case is defined as:
0 < g(v,) < 1. Then(z,) is a Cauchy sequence B, (z)
and converges te%, € B, (x). FurtherF(z?, ) = 25 and

-5 ~§ ~5 - ~5 5 | Yk =5
yn,ak = xn,ak _R(‘rn,ak) 1[F($n,ak)_zak+?($n,ak —Jlo)]
20 — 23, || < Ce* (13)
i and
whereC = (—1—+ 5% 1 9(10)*" )y, andy = 6 s 5 \— =5 5 | Y s
1-g(7,)* 2 1—(g9(7p)?)* e P n+1 g yn,akiR(yn,ak) 1[F(yn,ak)i’zak+7(ynaak7$0)]'

—log g(7,).
REMARK 3.5: Note that0 < g(v,) < 1 and hencey > 0.
Hence the sequende,,) converges quartically t@ik.

(14)
wherez ., := zo. Note that with the above notation

REMARK 3.6: Recall that a sequencgr,) in X with |R(z)"'F'(z)|| < 1.
limz, = x* is said to be convergent of order > 1, if 5 . . .
there exist positive reals, ¢,, such that for alln € N First we considegy, ,, defined in (14) to approximate the
zero:cc o, Of Fi(x) + 4(:5 —x0) = 25 and then we show
llzn —z*| < cre~eP" . that % o, IS @n approximation to the solutlorl of (1).
Let

If the sequencéz,,) has the property thafte,, — z*|| < c14™,

0 < ¢ < 1, then (z,) is said to be linearly convergent. For = [Gn,a = Znaell: vn20.  (15)
an extensive discussion of convergence rate see Kelley [13kre also for convenlence we use the notatign ¢, and
Hereafter we assume that én for & . . i ok andé? ,, respectively. Let Assumption
3.1 holds with7 in place ofr andp < 7 < L. Let
1 %o
p<r< —
ko 1 5()
o L p< M(l -—)
REMARK 3.7: Note that the above assumption is satisfied Vv ao
if with &y < \/ag and
. 9(7p) —1 do
ko < min{l [ =Mp+ —
3 —9(7p) P \/040
1 6 THEOREM 3.11: Let ¢, and g be as in equation (15)
(1—g(7,))? + 179(%)2]} and (12) respectivelyz,, and g, be as in (14) and (13)
respectively withd € (0,dp] anda € Dy. If Assumption
THEOREM 3.8: Suppose that Assumption 2.1 and 3.B.1 and Theorem 2.3 are fulfilled, then the following hold:
hold. If in additionkyr < 1, then @  ||En — Gni] < WT";CH}MA — Fnal;
D) @ —Ena] < (14 )]s — Fua;
s 3 s ( 2 g ;
||‘T - xak” S 1— k?o’l"HF(z) - Zak.”' (C) ||yn xn” < g(en 1)||yn 1 — wn—lH;
_ A g(En) <g(3)", Vn > 0;
THEOREM 3.9: Let z,, be as in (10), assumptions in (e) ¢, < g(7,)*"~1/25, Yn > 0.
Theorem 3.4 and Theorem 3.8 hold. Then THEOREM 3.12: Let 7 = (— 1 ; + 3ko _ 7 )2)%
. o Jé] . s and the assumptions of Theorem 3 11 hoId %xéngn €
|2 = znll < Ce™ 4+ 3l (@) = 20, B;(x), for all n > 0.
) THEOREM 3.13: Let 3, and Z,, be as in (13) and (14)
whereC’ andy are as in Theorem 3.4. respectively and assumptions of Theorem 3.12 hold. Then
Now sincel < k andas < ay41 < pey We have (:?:n) is a Cauchy sequence iBz(zo) and converges to
el p(as) = e (6) 2, € Br(oo). FurtherPlat,,) + “—:(xi,ak o) = 25,
= pplas) = p : an
v Va 0 — 220, ]| < Gemn

(/Ock

This leads to the following theorem,

where ¢ = (1t + 285 L rg(3,)")3, and

THEOREM 3.10: Let z,, be as in (10) and the assump- 1-(9(30
tions of Theorems 2.3 and 3.9 hold. Let n = —logg(5,). o
In order to obtain the error estimaigi — 22 ,, ||, we
np := min{n : e < 6 require the following assumption in addition to the previous
NG assumptions of Section Il and subsection A of Section lIl.

Assumption 3.14: There exists a continuous, strictly
R ) monotonically increasing functiop; : (0, 5] — (0, c0) with
& = an, || = O™ (9)). b > || F'(x0)| satisfying;

Then

(Advance online publication: 21 May 2013)



TAENG International Journal of Applied Mathematics, 43:2, [JAM 43 2 03

e limy_0p1(A) =0, THEOREM 3.16: Let z,, be defined as in (14). If assump-
. o) tions of the Theorem 3.13 and 3.15 are fulfilled, then
Pl ~ - . _
WAt 0@ VA0, [ = Fall < Ce 1" +O(471(6))
and whereC and~; are as in Theorem 3.13.
« there existe € X with ||v] < 1 (cf.[14]) such that THEOREM 3.17: Let iy, be defined as in (14) and as-
) sumptions of Theorem 2.3 and 3.16 hold. Let
2o — & = @1 (F'(20))v. 5
. . ng = min{n : e " < —1.
» for eachz € By(z¢) there exists a bounded linear VLT
operatorG(z, zo) (cf.[18]) such that Then
F'(z) = F'(20))G(x, z0) & = Zn, | = O(71(9)).
with ||G(z, o) < k. V. ALGORITHM
Assume thatk; < 11507 and for the sake of simplicity  Note that fori,j € {0,1,2,---, N}
assume thap; (a) < ¢(a) for a > 0. s s . .
THEOREM 3.15: (cf. [11], Theorem 3.14) Supposd ,  “o: 2oy = (@ — @) (KT K +a;l)
is the solution of X(K*K + o, )7 K (f° = KF(x0))]-
Qg 5 Therefore the balancing principle algorithm associated with
F(z) + 7@ = 20) = 2g, the choice of the parameter specified in Section Il involves
and Assumptions 3.1 and 3.14 holds. Then the following steps.
. o a9 = p26%, u > max{1,3} for Case 1 and: > 1 for
it | pr(aw) + (2 + 15w~ 1(9) Case 2.
okl — 1-— (1 — C)kl koT ' o v = /L%Oéo;
B o solve forw; :  (K*K+a;I)w; = K*(f°—KF(x0));
Proof. Note thate(F (a7, ) — 20, ) + ar(2l o, —20) =0,80 solve forj < i, zi; :  (K*K + a;D)z; = (a;
12 0, — 2l < Hak( I(xO)‘f'OékI)_ (o — @) f:iﬂwi?” i hen takek — i — 1
s\ L6 o IT ||z45]| > —57, then takek =1 — 1;
u I(xo) +oawl)” ({?(x) ;ak)H R . otherwise,“repeat with+ 1 in place ofi.
+[(F' (o) + ard) ' F (wo) (20 0, — &) « choosen; = min{n : e~ 7" < \/La_k} for Case 1 and
—c(F(22,,) — F(#))| ny =min{n : e~ M*" < Lak} in Case 2,
< law(F' (o) + aeD) ™ (o — #)|| (16) « solve z,, using the iteration (10) of,, using the
P () - akH T iteration (14).
where ' = H(F/( o) + arl)” fo [F'(zo) — cF'(z + V. NUMERICAL EXAMPLES
(22, — 2)](22,, — #)dt|. So by Assumption 3.14, we In this section we give an example for Case 2 (subsection
obtain B of Section IlIl) for illustrating the algorithm considered
, = in the above section. We apply the algorithm by choosing a
s (o) + anl) s sequence of finite dimensional subspékg) of X with dim
+(1 = )| (F' (o) + ard) ™ 's2| V, = n+ 1. Precisely we choos#,, as the space of linear
< kOT”z( o — i+ 01— c)k1||z( o — 2| (17) splines in a uniform grid of: + 1 points in [0, 1].

EXAMPLE 5.1: We consider the same example of non-
where linear integral operator as in [20], section 4.3. To illustrate
r o 5 ) 5 R the method for Case 2, we consider the operdtaf :
51 ::/0 [F' (o) = F'(& + t(2e,0, = ED](@e,0, =), 12001 5 [2(0,1) where K : L2(0,1) —» L2(0,1)
defined by

1 1
S9 1= F’(ﬂﬁo)/0 G(& + (2o, — &), 0)(20,q, — E)dt K(x)(t) = / k(t, s)a(s)ds
0
and hence by (16) and (17) we have andF : D(F) C H*(0,1) — L?(0,1) defined by
o, 3l < = 1
o = 1= (1—c)ky — ko F(u):= [ k(t,s)u®(s)ds,
_& 0
. pr(an) +(2+ 25~ (0) where
1_(1_C)k1 ko? v (I=ns0<s<t<1
where (t,5) = (1—s)t,0<t<s<1
7o = |l (F'(20) + axl) " (zg — @) + | F () — zgk”, Then for allz(t), y(t) : z(t) > y(t) :
This completes the proof of the theorem. (F(z) - Fy), o —y) = /1 [/1 k(t, $)(2® — %) (s)ds
The following Theorem is a consequence of Theorem 3.13 ’ o Lo
and Theorem 3.15. (x —y)(t)dt > 0.

(Advance online publication: 21 May 2013)
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Thus the operatoF' is monotone. The Fréchet derivative 1 S —
of F is given by ol T~ - exact soln ||
) o ~ ~——approx.soln
F'(u)w = 3/ k(t, s)(u(s))*w(s)ds. 0al
0
0.2
So for anyu € B,.(xg),z0%(s) > k3 > 0,Vs € (0,1), we o
have -02
F'(uw)w = F'(20)G(u, x9)w, oa
whereG(u, zo) = (). “oer A
Further observe that o8
1 1 02 03 04 05 06 07 08 09
PO - F@let) = 3 [ ko)) - )
0
xw(s)ds
— F'(u)@(u, v, w), Figé 1. Curves of the exact and approximate solutions for
n=
where®(u, v, w) = [Z—z — 1]w.
Thus & satisfies the Assumption 3.1 (cf. [19], Example
2.7). ———
In our computation, we take 1 72%%%0§9S&n
1 TN
= 1—t)(14t — 3 o
f@) (187r2)( t)(14t — 7 4 cos”(mt) )
1 M
+6cos(mt))t? — (@)t(w — 7+ cos®(rt)
1 or
+6cos(mt))(1 — t2) + (W)t(l —t)(14t -7
+cos3(mt) + 6cos(rt)) Bl
and f® = f + 4. Then the exact solution . ‘
0 0.2 0.4 0.6 0.8 1
Z(t) = cosmt.

We use Figi62. Curves of the exact and approximate solutions for
-1 n=
zo(t) = cos(mt) + 3[4—2(1 —t 4 2wt cos(mt)
0
xsin(mt) 4+ 72t 4 tcos? (nt) — 2ntcos(nt) s ‘ ‘ ‘ ‘
1 - exact soln
. 2,2 2
xsin(mt) — 77" — cos™(wt)) + oL | — ——approx. soln
x (—2cos(nt)sin(nt)m — 21%t + 2wtcos(mt) N
xsin(mt) + m2t% 4 cos? (nt) + 7% — cos?(nt))] os} .

as our initial guess, so that the functisp — & satisfies the
source condition

o — T = <p1(F'(J:0))1 -05f
wherep;(\) = A. Thus we expect to have an accuracy of . ‘ ‘ ‘ \ —
order at IeaSO((S%)_ 0 0.2 0.4 06 08 1

We chooseag = (1.3)6%,0 = 1.3, § = 01 = ¢, p =
0.19, 4, = 0.8173 and g(5,) = 0.54 approximately. For
all n the number of iteratiom; = 1. The results of the Fig. 3. Curves of the exact and approximate solutions for
computation are presented in Table 1. The plots of the exact n=32
and the approximate solution obtained are given in Fig.1 to
Fig.8.

in a neighbourhood of the initial guess of the actual
VI. CONCLUSION solution z. And in the second case it is assumed that the
A Two Step Newton-Tikhonov Methods (TSNTM) fornonlinear operatoF’ is monotone buf”(.) is non-invertible.
obtaining an approximate solution for a nonlinear ill-pose@ihe derived error estimate using an a priori and adaptive
Hammerstein type operator equatidiF(x) = f, with scheme([16]) in both situations are of optimal order with
the available noisy datg® in place of the exact datg respect to a general source condition. Also in both the cases
has been considered. Two implementations are considened,obtained local quartic convergence compared to the local
in the first case it is assumed that theéd¢hret derivative linear convergence obtained by NTR method considered in
F'(.) of the nonlinear operatoF’ has a bounded inverse[5] and local quadratic convergence obtained in [7].

(Advance online publication: 21 May 2013)
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15

051

exact soln
~——approx. soln

0.4

0.6 0.8 1

Fig. 4.
n=64

Curves of the exact and approximate solutions for

15

exact soln
——approx. soln

Fig. 5.

Curves of the exact(lower curve) and approxi-

mae(upper curve) solutions for=128

ITERATIONS AND CORRESPONDING ERROR ESTIMATES

TABLE |

n k| o o | e —all | Il
8 4 | 0.1016 | 0.1094 | 0.3652 1.1458
16 | 4 | 0.1004 | 0.1069 | 0.2664 0.8408
32 | 4| 01001 0.1063| 0.1994 0.6303
64 | 4 | 0.1000| 0.1061| 0.1554 0.4914
128 | 4 | 0.1000 | 0.1061| 0.1278 0.4042
256 | 4 | 0.1000| 0.1060 | 0.1115 0.3526
512 | 4 | 0.1000| 0.1060 | 0.1024 0.3238
1024 | 4 | 0.1000| 0.1060 | 0.0975 0.3083
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