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Abstract—George and Pareth( 2012), presented a quartically
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I. I NTRODUCTION

This paper deals with approximating a stable solution of
ill-posed Hammerstein type operator equations. An equation
of the form

KF (x) = f (1)

whereF : D(F ) ⊆ X → X is nonlinear andK : X → Y

is a bounded linear operator is called a (nonlinear) Hammer-
stein equation ([5], [8]). HereX and Y are Hilbert spaces
with inner product〈., .〉 and norm‖.‖ respectively.

Equation (1) is ill-posed in the sense that its solution
does not depend continuously on given data. It is assumed
throughout thatf δ ∈ Y are the available noisy data with

‖f − f δ‖ ≤ δ

andF possesses a uniformly bounded Fréchet derivative for
eachx ∈ D(F ), i.e.,

‖F ′(x)‖ ≤M, x ∈ D(F )

for some M (Here and belowF ′(.) denotes the Fŕechet
derivative ofF ). The method of approximately solving an ill-
posed equation is called regularization method. For various
regularization techniques one can see [2], [3], [12] and [17],
[6]. Observe that the solutionx of (1) with f δ in place off
can be obtained by first solving

Kz = f δ (2)

for z and then solving the non-linear problem

F (x) = z. (3)

The above formulation has been considered by authors in
[5], [7] and [8]. The main purpose of the above formulation
is that:
(a) We solve (2) and (3) separately, to obtain an approxi-

mate solution for (1). Here one can use any regulariza-
tion method for linear ill-posed equation for solving (2)
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and any regularization method for solving (3). In fact
in this paper we consider Tikhonov regularization for
approximately solving (2) and we consider a modified
two step Newton method for solving (3).

(b) The regularization parameterα is chosen according
to the adaptive method considered by Pereverzev and
Schock in [16] for the linear ill-posed operator equation
(2) and the same parameterα is used for solving the
non-linear operator equation (3), so the choice of the
regularization parameter is not depending on the non-
linear operatorF.

In [5], George studied an iterative Newton-Tikhonov reg-
ularization (NTR) method for approximating (1), wherez in
(2) is approximated withzδα;

zδα = (K∗K + αI)−1K∗f δ, α > 0, δ > 0,

and then solve (3) using the Newton type iteration

xδn+1,α = xδn,α − F ′(x0)
−1(F (xδn,α)− zδα)

where xδ0,α := x0. Here and in the followingx0 is the
initial approximation to the solution̂x of (1). Local linear
convergence was obtained in [5].

In [7], George and Kunhanandan used the iteration

xδn+1,α = xδn,α − F ′(xδn,α)
−1(F (xδn,α)− zδα)

wherexδ0,α := x0 and

zδα = (K∗K + αI)−1K∗(f δ −KF (x0)) + F (x0) (4)

for approximately solving (1). Local quadratic convergence
was established in [7].

Motivated by Two Step Directional Newton Method of
Argyros and Hilout (see [1], [9]) we propose, a Two Step
Newton-Tikhonov Method (TSNTM) in this paper for solv-
ing (1). We consider two regularity classes of the operator
F. In the first case it is assumed thatF ′(u)−1 exists and is a
bounded operator for allu ∈ Br(x0) (Br(x0) stands for the
ball of radiusr with centerx0); and in the second case it is
assumed thatF is a monotone operator andF ′(u)−1 does
not exist.

Recall [15], [21], that an operatorF is said to be monotone
operator if〈F (x) − F (y), x− y〉 ≥ 0 ∀ x, y ∈ D(F ).

In this paper we provide a semilocal convergence analysis
of TSNTM for ill-posed Hammerstein operator equations
with the advantage of quartic convergence over the work in
[5] and [7].

As in [7] and [8], a solutionx̂ of (1) is called anx0-
minimum norm solution if it satisfies

‖F (x̂)− F (x0)‖ := min{‖F (x)− F (x0)‖ :

KF (x) = f, x ∈ D(F )}. (5)
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We assume throughout that the solutionx̂ of (1) satisfies (5).
The paper is organized as follows: In Section II, we

give the preliminaries and adaptive scheme for choosing the
regularization parameterα for Tikhonov regularization of
(2). The proposed method and the error estimates are given
in Section III. Section IV deals with the algorithm and a
numerical example is given in Section V to confirm the
efficiency of our approach. Finally we conclude the paper
in Section VI.

II. PRELIMINARIES

This section deals with Tikhonov regularized solutionzδα
of (2) and (an a priori and an a posteriori) error estimate for
‖F (x̂) − zδα‖. The following assumption is used to obtain
the error estimate.

Assumption 2.1: There exists a continuous, strictly mono-
tonically increasing functionϕ : (0, a] → (0,∞) with
a ≥ ‖K‖2 satisfying;

• limλ→0 ϕ(λ) = 0,
•

sup
λ>0

αϕ(λ)

λ+ α
≤ ϕ(α) ∀λ ∈ (0, a],

and
• there existsv ∈ X, ‖v‖ ≤ 1 such that

F (x̂)− F (x0) = ϕ(K∗K)v.

THEOREM 2.2: (cf.[7], section 4) Letzδα be as in (4) and
Assumption 2.1 holds. Then

‖F (x̂)− zδα‖ ≤ ϕ(α) +
δ√
α
. (6)

A. A priori choice of the parameter

Note that the estimateϕ(α) + δ√
α in (6) is of optimal

order for the choiceα := αδ which satisfiesϕ(αδ) =
δ√
αδ

.

Let ψ(λ) := λ
√

ϕ−1(λ), 0 < λ ≤ a. Then we haveδ =√
αδϕ(αδ) = ψ(ϕ(αδ)) and

αδ = ϕ−1(ψ−1(δ))

(Here ϕ−1 denotes the inverse of the functionϕ). So the
relation (6) leads to‖F (x̂)− zδα‖ ≤ 2ψ−1(δ).

B. An adaptive choice of the parameter

The above apriori choice of the parameter cannot be used
in practice as the smoothness condition of the unknown
solution x̂ reflected inϕ is generally not known. So, in
practice we propose to choose the parameterα according to
the balancing principle established by Pereverzev and Shock
[16] for solving ill-posed problems. Let

DN = {αi : 0 < α0 < α1 < α2 < · · · < αN}
be the set of possible values of the parameterα.

The selection of numerical valuek for the parameterα
according to the balancing principle is performed using the
following rule:

l := max{i : ϕ(αi) ≤
δ√
αi

} < N. (7)

Let
k = max{i : αi ∈ D+

N} (8)

where D+
N = {αi ∈ DN : ‖zδαi

− zδαj
‖ ≤ 4δ√

αj
, j =

0, 1, 2, ...., i− 1}.
We will be using the following theorem from [7] for our

error analysis.
THEOREM 2.3: (cf. [7], Theorem 4.3) Letl be as in (7),

k be as in (8) andzδαk
be as in (4) withα = αk. Thenl ≤ k

and
‖F (x̂)− zδαk

‖ ≤ (2 +
4µ

µ− 1
)µψ−1(δ).

I II. SEMILOCAL CONVERGENCE OFTSNTM

In this paper we simply present the results without proofs.
We refer though the reader to [9], [10] and [11] for the
analogous proofs.

A. Case 1: F ′(.) is boundedly invertible in Br(x0)

Let ‖F ′(u)−1‖ ≤ β, ∀u ∈ Br(x0) and for someβ > 0.
In this case the ill-posedness of (1) is essentially due to the
nonclosedness of the range of the linear operatorK (see [17],
page 26). LetBr(x) denote the ball of radiusr centered at
x ∈ X.

For an initial guessx0 ∈ X the TSNTM is defined as;

yδn,αk
= xδn,αk

− F ′(xδn,αk
)−1(F (xδn,αk

)− zδαk
), (9)

xδn+1,αk
= yδn,αk

− F ′(yδn,αk
)−1(F (yδn,αk

)− zδαk
). (10)

In order to establish the convergence of TSNTM and to
obtain the error estimate‖xδαk

− x̂‖, we use the following
Assumption 3.1: (cf.[20], Assumption 3 (A3)) There ex-

ist a constantk0 ≥ 0 such that for everyx, u ∈
Br(x0) ∪ Br(x̂) ⊆ D(F ) and v ∈ X there exists an
elementΦ(x, u, v) ∈ X such that [F ′(x) − F ′(u)]v =
F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤ k0‖v‖‖x− u‖.
Let

eδn,αk
:= ‖yδn,αk

− xδn,αk
‖, ∀n ≥ 0 (11)

and for 0 < k0 ≤ 1, let g : (0, 1) → (0, 1) be the function
defined by

g(t) =
27k30
8

t3 ∀t ∈ (0, 1). (12)

For convenience we will use the notationxn, yn anden for
xδn,αk

, yδn,αk
andeδn,αk

respectively.

Hereafter we assume thatδ ∈ (0, δ0] where δ0 <
√
α0

β .

Let ‖x̂− x0‖ ≤ ρ,

ρ <
1

M
(
1

β
− δ0√

α0
)

and

γρ := β[Mρ+
δ0√
α0

].

THEOREM 3.2: Let en andg(en) be as in equation (11)
and (12) respectively,xn and yn be as in (10) and (9)
respectively withδ ∈ (0, δ0]. Then by Assumption 3.1 and
Theorem 2.3, the following hold:

(a) ‖xn − yn−1‖ ≤ 3k0en−1

2 ‖yn−1 − xn−1‖;
(b) ‖xn − xn−1‖ ≤ (1 + 3k0en−1

2 )‖yn−1 − xn−1‖;
(c) ‖yn − xn‖ ≤ g(en−1)‖yn−1 − xn−1‖;
(d) g(en) ≤ g(γρ)

4n , ∀n ≥ 0;
(e) en ≤ g(γρ)

(4n−1)/2γρ ∀n ≥ 0.
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THEOREM 3.3: Let r = ( 1
1−g(γρ)

+ 3k0

2
γρ

1−g(γρ)2
)γρ and

let the hypothesis of Theorem 3.2 holds. Thenxn, yn ∈
Br(x0), for all n ≥ 0.
The main result of subsection A of this Section is the
following

THEOREM 3.4: Let yn and xn be as in (9) and (10)
respectively, Assumptions of Theorem 3.3 hold and let
0 < g(γρ) < 1. Then(xn) is a Cauchy sequence inBr(x0)
and converges toxδαk

∈ Br(x0). FurtherF (xδαk
) = zδαk

and

‖xn − xδαk
‖ ≤ Ce−γ4n

whereC = ( 1
1−g(γρ)4

+
3k0γρ

2
1

1−(g(γρ)2)4
g(γρ)

4n)γρ and γ =

− log g(γρ).

REMARK 3.5: Note that0 < g(γρ) < 1 and henceγ > 0.
Hence the sequence(xn) converges quartically toxδαk

.

REMARK 3.6: Recall that a sequence(xn) in X with
limxn = x∗ is said to be convergent of orderp > 1, if
there exist positive realsc1, c2, such that for alln ∈ N

‖xn − x∗‖ ≤ c1e
−c2p

n

.

If the sequence(xn) has the property that‖xn−x∗‖ ≤ c1q
n,

0 < q < 1, then (xn) is said to be linearly convergent. For
an extensive discussion of convergence rate see Kelley [13].
Hereafter we assume that

ρ ≤ r <
1

k0

REMARK 3.7: Note that the above assumption is satisfied
if

k0 ≤ min{1, 1− g(γρ)
2

3γρ
[

−1

1− g(γρ)

+

√

1

(1− g(γρ))2
+

6

1− g(γρ)2
]}.

THEOREM 3.8: Suppose that Assumption 2.1 and 3.1
hold. If in additionk0r < 1, then

‖x̂− xδαk
‖ ≤ β

1− k0r
‖F (x̂)− zδαk

‖.

THEOREM 3.9: Let xn be as in (10), assumptions in
Theorem 3.4 and Theorem 3.8 hold. Then

‖x̂− xn‖ ≤ Ce−γ4n +
β

1− k0r
‖F (x̂)− zδαk

‖

whereC andγ are as in Theorem 3.4.
Now sincel ≤ k andαδ ≤ αl+1 ≤ µαl we have

δ√
αk

≤ δ√
αl

≤ µ
δ√
αδ

= µϕ(αδ) = µψ−1(δ).

This leads to the following theorem,
THEOREM 3.10: Let xn be as in (10) and the assump-

tions of Theorems 2.3 and 3.9 hold. Let

nk := min{n : e−γ4n ≤ δ√
αk

}.

Then

‖x̂− xnk
‖ = O(ψ−1(δ)).

B. Case 2: F is a monotone operator and F ′(.) is non-
invertible.

Let X be a real Hilbert space. In this situation, the ill-
posedness of (1) is due to the ill-posedness ofF as well as
the nonclosedness of the range of the linear operatorK.

For an initial guessx0 ∈ X, 0 < c < αk and forR(x) :=
F ′(x) + αk

c I, the TSNTM in this case is defined as:

ỹδn,αk
= x̃δn,αk

−R(x̃δn,αk
)−1[F (x̃δn,αk

)−zδαk
+
αk

c
(x̃δn,αk

−x0)]
(13)

and

x̃δn+1,αk
= ỹδn,αk

−R(ỹδn,αk
)−1[F (ỹδn,αk

)−zδαk
+
αk

c
(ỹδn,αk

−x0)].
(14)

wherex̃0,αk
:= x0. Note that with the above notation

‖R(x)−1F ′(x)‖ ≤ 1.

First we consider̃xδn,αk
defined in (14) to approximate the

zeroxδc,αk
of F (x) + αk

c (x− x0) = zδαk
and then we show

that xδc,αk
is an approximation to the solution̂x of (1).

Let

ẽδn,αk
:= ‖ỹδn,αk

− x̃δn,αk
‖, ∀n ≥ 0. (15)

Here also for convenience we use the notationx̃n, ỹn and
ẽn for x̃δn,αk

, ỹδn,αk
and ẽδn,αk

respectively. Let Assumption
3.1 holds withr̃ in place ofr andρ ≤ r̃ < 1

k0
. Let

ρ ≤ 1

M
(1− δ0√

α0
)

with δ0 <
√
α0 and

γ̃ρ :=Mρ+
δ0√
α0
.

THEOREM 3.11: Let ẽn and g be as in equation (15)
and (12) respectively,̃xn and ỹn be as in (14) and (13)
respectively withδ ∈ (0, δ0] and α ∈ DN . If Assumption
3.1 and Theorem 2.3 are fulfilled, then the following hold:

(a) ‖x̃n − ỹn−1‖ ≤ 3k0 ẽn−1

2 ‖ỹn−1 − x̃n−1‖;
(b) ‖x̃n − x̃n−1‖ ≤ (1 + 3k0 ẽn−1

2 )‖ỹn−1 − x̃n−1‖;
(c) ‖ỹn − x̃n‖ ≤ g(ẽn−1)‖ỹn−1 − x̃n−1‖;
(d) g(ẽn) ≤ g(γ̃ρ)

4n , ∀n ≥ 0;
(e) ẽn ≤ g(γ̃ρ)

(4n−1)/2γ̃ρ ∀n ≥ 0.

THEOREM 3.12: Let r̃ = ( 1
1−g(γ̃ρ)

+ 3k0

2
γ̃ρ

1−g(γ̃ρ)2
)γ̃ρ

and the assumptions of Theorem 3.11 hold. Thenx̃n, ỹn ∈
Br̃(x0), for all n ≥ 0.

THEOREM 3.13: Let ỹn and x̃n be as in (13) and (14)
respectively and assumptions of Theorem 3.12 hold. Then
(x̃n) is a Cauchy sequence inBr̃(x0) and converges to
xδc,αk

∈ Br̃(x0). FurtherF (xδc,αk
) + αk

c (xδc,αk
− x0) = zδαk

and
‖x̃n − xδc,αk

‖ ≤ C̃e−γ14
n

where C̃ = ( 1
1−g(γ̃ρ)4

+
3k0γ̃ρ

2
1

1−(g(γ̃ρ)2)4
g(γ̃ρ)

4n)γ̃ρ and
γ1 = − log g(γ̃ρ).

In order to obtain the error estimate‖x̂ − xδc,αk
‖, we

require the following assumption in addition to the previous
assumptions of Section II and subsection A of Section III.

Assumption 3.14: There exists a continuous, strictly
monotonically increasing functionϕ1 : (0, b] → (0,∞) with
b ≥ ‖F ′(x0)‖ satisfying;
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• limλ→0 ϕ1(λ) = 0,
•

sup
λ>0

αϕ1(λ)

λ+ α
≤ ϕ1(α) ∀λ ∈ (0, b],

and
• there existsv ∈ X with ‖v‖ ≤ 1 (cf.[14]) such that

x0 − x̂ = ϕ1(F
′(x0))v.

• for each x ∈ Br̃(x0) there exists a bounded linear
operatorG(x, x0) (cf.[18]) such that

F ′(x) = F ′(x0))G(x, x0)

with ‖G(x, x0)‖ ≤ k1.

Assume thatk1 < 1−k0r̃
1−c and for the sake of simplicity

assume thatϕ1(α) ≤ ϕ(α) for α > 0.
THEOREM 3.15: (cf. [11], Theorem 3.14) Supposexδc,αk

is the solution of

F (x) +
αk

c
(x− x0) = zδαk

and Assumptions 3.1 and 3.14 holds. Then

‖x̂− xδc,αk
‖ ≤

ϕ1(αk) + (2 + 4µ
µ−1 )µψ

−1(δ)

1− (1− c)k1 − k0r̃
.

Proof. Note thatc(F (xδc,αk
)−zδαk

)+αk(x
δ
c,αk

−x0) = 0, so

‖xδc,αk
− x̂‖ ≤ ‖αk(F

′(x0) + αkI)
−1(x0 − x̂)‖

+‖(F ′(x0) + αkI)
−1c(F (x̂)− zδαk

)‖
+‖(F ′(x0) + αkI)

−1[F ′(x0)(x
δ
c,αk

− x̂)

−c(F (xδc,αk
)− F (x̂))]‖

≤ ‖αk(F
′(x0) + αkI)

−1(x0 − x̂)‖ (16)

+‖F (x̂)− zδαk
‖+ Γ

where Γ := ‖(F ′(x0) + αkI)
−1

∫ 1

0
[F ′(x0) − cF ′(x̂ +

t(xδc,αk
− x̂)](xδc,αk

− x̂)dt‖. So by Assumption 3.14, we
obtain

Γ ≤ ‖(F ′(x0) + αkI)
−1s1‖

+(1− c)‖(F ′(x0) + αkI)
−1s2‖

≤ k0r̃‖xδc,αk
− x̂‖+ (1 − c)k1‖xδc,αk

− x̂‖ (17)

where

s1 :=

∫ 1

0

[F ′(x0)− F ′(x̂+ t(xδc,αk
− x̂))](xδc,αk

− x̂)dt,

s2 := F ′(x0)

∫ 1

0

G(x̂ + t(xδc,αk
− x̂), x0)(x

δ
c,αk

− x̂)dt

and hence by (16) and (17) we have

‖xδc,αk
− x̂‖ ≤ τx

1− (1− c)k1 − k0r̃

≤
ϕ1(αk) + (2 + 4µ

µ−1 )µψ
−1(δ)

1− (1− c)k1 − k0r̃
,

where

τx := ‖αk(F
′(x0) + αkI)

−1(x0 − x̂)‖+ ‖F (x̂)− zδαk
‖.

This completes the proof of the theorem.
The following Theorem is a consequence of Theorem 3.13

and Theorem 3.15.

THEOREM 3.16: Let x̃n be defined as in (14). If assump-
tions of the Theorem 3.13 and 3.15 are fulfilled, then

‖x̂− x̃n‖ ≤ C̃e−γ14
n

+O(ψ−1(δ))

whereC̃ andγ1 are as in Theorem 3.13.
THEOREM 3.17: Let x̃n be defined as in (14) and as-

sumptions of Theorem 2.3 and 3.16 hold. Let

nk := min{n : e−γ14
n ≤ δ√

αk
}.

Then
‖x̂− x̃nk

‖ = O(ψ−1(δ)).

IV. A LGORITHM

Note that fori, j ∈ {0, 1, 2, · · · , N}
zδαi

− zδαj
= (αj − αi)(K

∗K + αjI)
−1

×(K∗K + αiI)
−1[K∗(f δ −KF (x0))].

Therefore the balancing principle algorithm associated with
the choice of the parameter specified in Section II involves
the following steps.

• α0 = µ2δ2, µ > max{1, β} for Case 1 andµ > 1 for
Case 2.

• αi = µ2iα0;
• solve forwi : (K∗K+αiI)wi = K∗(f δ−KF (x0));
• solve for j < i, zij : (K∗K + αjI)zij = (αj −
αi)wi;

• if ‖zij‖ > 4
µj+1 , then takek = i− 1;

• otherwise, repeat withi+ 1 in place ofi.
• choosenk = min{n : e−γ4n ≤ δ√

αk
} for Case 1 and

nk = min{n : e−γ14
n ≤ δ√

αk
} in Case 2,

• solve xnk
using the iteration (10) or̃xnk

using the
iteration (14).

V. NUMERICAL EXAMPLES

In this section we give an example for Case 2 (subsection
B of Section III) for illustrating the algorithm considered
in the above section. We apply the algorithm by choosing a
sequence of finite dimensional subspace(Vn) of X with dim
Vn = n+ 1. Precisely we chooseVn as the space of linear
splines in a uniform grid ofn+ 1 points in [0, 1].

EXAMPLE 5.1: We consider the same example of non-
linear integral operator as in [20], section 4.3. To illustrate
the method for Case 2, we consider the operatorKF :
L2(0, 1) −→ L2(0, 1) whereK : L2(0, 1) −→ L2(0, 1)
defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds

andF : D(F ) ⊆ H1(0, 1) −→ L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds,

where

k(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.

Then for allx(t), y(t) : x(t) > y(t) :

〈F (x) − F (y), x− y〉 =

∫ 1

0

[
∫ 1

0

k(t, s)(x3 − y3)(s)ds

]

(x− y)(t)dt ≥ 0.
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Thus the operatorF is monotone. The Fréchet derivative
of F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)(u(s))2w(s)ds.

So for anyu ∈ Br(x0), x0
2(s) ≥ k3 > 0, ∀s ∈ (0, 1), we

have
F ′(u)w = F ′(x0)G(u, x0)w,

whereG(u, x0) = ( u
x0
)2.

Further observe that

[F ′(v)− F ′(u)]w(s) = 3

∫ 1

0

k(t, s)(v2(s)− u2(s))

×w(s)ds
:= F ′(u)Φ(u, v, w),

whereΦ(u, v, w) = [ v
2

u2 − 1]w.
Thus Φ satisfies the Assumption 3.1 (cf. [19], Example

2.7).
In our computation, we take

f(t) = (
1

18π2
)(1 − t)(14t− 7 + cos3(πt)

+6cos(πt))t2 − (
1

18π2
)t(14t− 7 + cos3(πt)

+6cos(πt))(1− t2) + (
1

9π2
)t(1 − t)(14t− 7

+cos3(πt) + 6cos(πt))

andf δ = f + δ. Then the exact solution

x̂(t) = cosπt.

We use

x0(t) = cos(πt) + 3[
−1

4π2
(1− t+ 2πt2cos(πt)

×sin(πt) + π2t3 + tcos2(πt)− 2πtcos(πt)

×sin(πt)− π2t2 − cos2(πt)) +
1

4π2
t

×(−2cos(πt)sin(πt)π − 2π2t+ 2πtcos(πt)

×sin(πt) + π2t2 + cos2(πt) + π2 − cos2(πt))]

as our initial guess, so that the functionx0 − x̂ satisfies the
source condition

x0 − x̂ = ϕ1(F
′(x0))1

whereϕ1(λ) = λ. Thus we expect to have an accuracy of
order at leastO(δ

1
2 ).

We chooseα0 = (1.3)δ2, µ = 1.3, δ = 0.1 = c, ρ =
0.19, γ̃ρ = 0.8173 and g(γ̃ρ) = 0.54 approximately. For
all n the number of iterationnk = 1. The results of the
computation are presented in Table 1. The plots of the exact
and the approximate solution obtained are given in Fig.1 to
Fig.8.

VI. CONCLUSION

A Two Step Newton-Tikhonov Methods (TSNTM) for
obtaining an approximate solution for a nonlinear ill-posed
Hammerstein type operator equationKF (x) = f, with
the available noisy dataf δ in place of the exact dataf
has been considered. Two implementations are considered,
in the first case it is assumed that the Fréchet derivative
F ′(.) of the nonlinear operatorF has a bounded inverse
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Fig. 1. Curves of the exact and approximate solutions for
n=8
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Fig. 2. Curves of the exact and approximate solutions for
n=16
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Fig. 3. Curves of the exact and approximate solutions for
n=32

in a neighbourhood of the initial guessx0 of the actual
solution x̂. And in the second case it is assumed that the
nonlinear operatorF is monotone butF ′(.) is non-invertible.
The derived error estimate using an a priori and adaptive
scheme([16]) in both situations are of optimal order with
respect to a general source condition. Also in both the cases
we obtained local quartic convergence compared to the local
linear convergence obtained by NTR method considered in
[5] and local quadratic convergence obtained in [7].
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Fig. 4. Curves of the exact and approximate solutions for
n=64
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Fig. 5. Curves of the exact(lower curve) and approxi-
mate(upper curve) solutions forn=128

TABLE I
ITERATIONS AND CORRESPONDING ERROR ESTIMATES

n k δ α ‖x̃k − x̂‖
‖x̃k−x̂‖

(δ)1/2

8 4 0.1016 0.1094 0.3652 1.1458

16 4 0.1004 0.1069 0.2664 0.8408

32 4 0.1001 0.1063 0.1994 0.6303

64 4 0.1000 0.1061 0.1554 0.4914

128 4 0.1000 0.1061 0.1278 0.4042

256 4 0.1000 0.1060 0.1115 0.3526

512 4 0.1000 0.1060 0.1024 0.3238

1024 4 0.1000 0.1060 0.0975 0.3083
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