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   Abstract—In this paper, the direct three-point block one-step 

methods are considered for solving linear boundary value 

problems (BVPs) with two different types of boundary conditions 

which is the Dirichlet and Neumann boundary conditions. This 

method will solve the second order linear BVPs directly without 

reducing it to the system of first order equations. The direct 

solution of these two types of BVPs will be calculated at three 

points simultaneously using constant step size. This method will 

be used together with the linear shooting technique to construct 

the numerical solution. The implementation is based on the 

predictor and corrector formulas in the PE(CE)r mode. 

Numerical results are given to show the performance of this 

method compared to the existing methods. 

Index Terms—dirichlet boundary value problems, neumann 

boundary value problems, block method 

I. INTRODUCTION 

ANY problems in science and technology are 

formulated in boundary value problems as in diffusion, 

heat transfer, deflection in cables and the modeling of 

chemical reaction. There are several types of boundary value 

problems (BVPs) and some of them depend on the boundary 

condition itself. In this paper, we consider the second order 

linear two-point BVPs which as follows: 

  

     ,''' xryxqyxpy    ,0xq  ba,  
(1) 

 

with the Dirichlet boundary conditions: 

 

  ay  and )(by  (2) 

 

and with the Neumann boundary conditions: 

 

   ay and   . by  (3) 
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Theorem: 

Suppose the function f in the BVPs in (1) is continuous on the 

set 

 






  '' ,,,, yybxayyxD , 

and the partial derivatives yf and 'yf are also continuous on 

D. If 

(i)   0,, ' yyxf y for all   Dyyx ',, , and 

(ii) A constant M exists, with 

  ,,, '
' Myyxf y  for all   Dyyx ',,  

 

Then, the BVPs has a unique solution. 

 

Corollary: 

In linear BVPs in (1) satisfies 

(i) p(x),q(x), and r(x) are continuous on  ba, , 

(ii) q(x) > 0 on  ba, , 

then, the problem has unique solution. 

 

   In literature, there are several researcher that has been 

conducted the research for solving the BVPs such as Wang et 

al. [14], Emad et al. [9] and Bongsoo [13]. 

   Adomian Decomposition Method (ADM) has been widely 

used by many researchers for solving differential and integral 

problems. However, this method has dealt with some 

difficulties for solving the problem involving with the 

boundary conditions. Thus, Bongsoo [13] in 2008 have 

proposed a method called the Extended Adomian 

Decomposition Method (EADM) for solving the two-point 

linear and nonlinear second order boundary value problems. 

Bongsoo [13] managed to overcome the problems inhibit in 

the ADM by creating a new canonical form containing all 

boundary conditions make it suitable for solving the BVPs. 

   Finite Difference (FDM), Finite Element (FEM) and Finite 

Volume (FVM) methods have been proposed by Fang et al. 

[2] in 2002 to solve the two-point BVPs. The comparison in 

terms of the accuracy has been made between these three 

methods and the results shown that they are comparable to 

each other with no remarkable differences. Later in 2006, 

Caglar et al. [1] have proposed a new method called the B-

spline Interpolation (CBIM) to compare the accuracy of the 

results obtained with the methods proposed by Fang et al. [2] 

in 2002. Clearly, the CBIM managed to give better results. A 

few years later, Hamid et al. [3] have proposed a new method 

called the Extended Cubic B-Spline method (ECBIM) for 

solving the linear two-point BVPs by applying the same 

procedure in CBIM in [1] but using the extended version cubic 

M 
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B-spline. Hamid et al. [3] have compared the results obtained 

by ECBIM with the CBIM in [1], FDM in [2], FEM in [2] and 

FVM in [2]. The results have shown that this method which is 

the ECBIM was better in terms of their accuracy.   

   Many works has been done to solve the BVPs with the 

Dirichlet boundary condition but there is not much attention 

pay to the BVPs with the Neumann boundary condition. 

However, there are several researcher that have shown their 

interest for solving the BVPs with the Neumann boundary 

conditions such as Li-Bin et al. [11], Ramadan et al. [10], 

Emad et al. [9] and Siraj-ul-Islam et al. [12]. 

   Ramadan et al. [10] in 2007, have proposed the polynomial 

and nonpolynomial spline approaches to the numerical 

solution of second order BVPs subjected to Neumann 

boundary conditions. The numerical results have shown that 

the accuracy of the nonpolynomial spline method was better 

than the two polynomial spline methods which are the 

quadratic and cubic splines. Recently in 2011, Li-Bin et al. 

[11] managed to come out with a new numerical based on the 

interpolation by quartic spline functions to solve the second 

order BVPs with Neumann conditions. Li-Bin et al. [11] have 

compared their numerical result with Ramadan et al. [10]. The 

results have shown that the method proposed by Li-Bin et al. 

[11] was better. 

   Several researchers such as Fatunla [4], Majid et al. [5], 

Rosser [7] and Shampine et al. [8] have proposed a block 

method which computes simultaneously the solution values at 

different points along the interval. One-step block method 

being referred as one previous point to obtain the solution.  

   Recently in 2011, Mukhtar et al. [15] have derived the three-

point block one-step method in their paper for solving general 

second order ordinary differential equations (ODEs) directly 

without reducing it into the system of first order equations. 

The results showed that it is better in terms of the accuracy 

and the computed times. Thus, we are motivated to implement 

this method for solving the two types of linear BVPs subjected 

to the Dirichlet and Neumann boundary conditions 

respectively. 

   In this research, we will extend the idea in [15] for solving 

(1) with both condition (2) and (3) respectively without 

reducing it into the system of first-order ODEs by using the 

direct three-point block one-step methods with the linear 

shooting techniques for solving second order linear Dirichlet 

and Neumann BVPs. 

II. FORMULATION 

The formulation of the direct three-point block one-step 

method for solving second order linear BVPs will be based in 

Mukhtar et al. [15]. This method will compute three 

approximation values which is 1ny at 1nx  , 2ny  at 2nx and 

3ny  at 3nx simultaneously.  

In Fig. 1, the interval of  ba,  need to be divided into a 

series of block with each block containing three points with 

the step size 3h. Then, the solution obtained in the last point 

within the k th block will be restored as the initial value for the 

next block. The same procedure will be repeated to compute 

the solutions until the end of the interval. This method 

possesses the desirable feature of one-step method in which 

being referred to only one previous point to obtain the 

solutions. 

 

 

 

 

 

 

 

 

 nx

 

1nx

 

2nx

 

3nx

 

4nx

 

5nx

 

6nx

 

 

Fig. 1.  Three-Point Block One-Step Method 

 

By letting the second order differential equation as follows: 

 

 yyxfy  ,, . (4) 

 

The approximating values for 1ny , 2ny  and 3ny  was 

obtained by integrating once and twice over (4) with respect to 

x. The evaluation of the first point will be approximated by 

integrating (4) once and twice at both sides over the interval  

 1, nn xx as follows: 
 

 

    
 



1 1

''' ,,,

nx

nx

nx

nx

dxyyxfdxxy
 

 

(5) 

 

    




x

nx

x

nx

nx

nx

nx

nx

dxdxyyxfdxdxxy .,, '

1

''

1

 

 

(6) 

Therefore, 

     


 

1

''
1

' ,,,

nx

nx

nn dxyyxfxyxy
 

 

(7) 

         


 

1

'
1

'
1 ,,

nx

nx

nnnn dxyyxfxxxhyxyxy
 

 

(8) 

Thus, Lagrange interpolating polynomial will 

replace the  ',, yyxf in (7) and (8). The 

interpolation points involved are 

 ,, nn fx  11,  nn fx ,  22 ,  nn fx and  33 ,  nn fx  

within the block. By doing that, we will obtain the 

Lagrange interpolating polynomial which as 

follows: 

   
   
   

   
   

   
   

   
.3

23133

21

2
32122

31

1
31211

32

321

321








































n
nnnnnn

nnn

n
nnnnnn

nnn

n
nnnnnn

nnn

n
nnnnnn

nnn

f
xxxxxx

xxxxxx

f
xxxxxx

xxxxxx

f
xxxxxx

xxxxxx

f
xxxxxx

xxxxxx
P

 

 

 

 

 

 

 

 

 

 

 

 

 

(9) 

h h h 

3h 

IAENG International Journal of Applied Mathematics, 43:2, IJAM_43_2_04

(Advance online publication: 21 May 2013)

 
______________________________________________________________________________________ 



 

Now, by taking shxx n  3 , hdsdx   and replace it into (7) 

and (8). Then, taking -3 to -2 as the limit of integration in (7) 

and (8) and the corrector formulae for the first point will be 

obtained as follows: 

 3211 5199
24

  nnnnnn ffff
h

yy  
 






















32

1
2

1
839

11497

360 nn

nn
nnn

ff

ffh
yhyy  

(10) 

 

Next, the same process will be repeated similar as the 

corrector formulae for the first point but the integration point 

is within the interval  21,  nn xx and the limit of integration is 

from -2 to -1 in order for us to obtain the corrector formula for 

the second point. Thus, the corrector formulae which is the 

approximate value of 2ny  and 2ny obtained would be as 

follows: 

 32112 1313
24

  nnnnnn ffff
h

yy  
 






















32

1
2

112
766

1298

360 nn

nn
nnn

ff

ffh
yhyy  

(11) 

The corrector formulae for the third point would be obtained 

by using the same process to obtain the corrector formulae for 

the first and second point except their integration points. The 

integration points would be within the interval  32 ,  nn xx . By 

taking the limit of integration from -1 to 0, the corrector 

formulae obtained would be as follows: 

 32123 9195
24

  nnnnnn ffff
h

yy  
 






















32

1
2

223
38171

367

360 nn

nn
nnn

ff

ffh
yhyy  

(12) 

III. IMPLEMENTATION 

The evaluation of the approximation points 1ny , 2ny  and 

3ny  will be based on the 
rCEPE )( mode where P, E and C 

stands for predictor, evaluation and corrector respectively. For 

each step, r functions evaluation will be used until the 

convergence is satisfied. The Modified Euler method will be 

used as the predictor in this algorithm. This method will act as 

the initial starting point before the corrector formulae take 

place to compute the approximation values for 1ny , 2ny  

and 3ny . The same process will be used for each block along 

the interval until the end of it. 

There are two types of BVPs that we need to solve in this 

research which is the BVPs with the Dirichlet boundary 

conditions and BVPs with the Neumann boundary conditions. 

The implementation for solving these two types of BVPs was 

basically the same but there are slightly differences which can 

be seen as shown below: 

To solve the BVPs, the linear shooting technique will be 

used together with the direct three-point block one-step 

method. The BVPs (1) with the Dirichlet boundary conditions 

will be replaced into two initial value problems (IVP) which 

as follows: 

     ,1
'
1

''
1 xryxqyxpy    ,1 ay   0'

1 ay , 

    2
'
2

''
2 yxqyxpy    ,02 ay   1'

2 ay . 

 

(13) 

Then, by solving the two IVP which is the nonhomogeneous 

and homogeneous equation in (13), the linear shooting 

methodwas obtained which as follows: 

     xwyxyxy 21  ,  where .
)(

)(

2

1

by

by
w





 

 

(14) 

The same procedure will be used for solving the BVPs with 

the Neumann boundary conditions with a slightly 

modifications in terms of the initial conditions and the linear 

shooting method. First, the BVPs (1) with the Neumann 

boundary conditions will be replaced into two IVP with their 

initial conditions which as follows: 

     ,1
'
1

''
1 xryxqyxpy    ,01 ay   ay '

1 , 

    2
'
2

''
2 yxqyxpy    ,02 ay   1'

2 ay . 

 

 

(15) 

Then, by performing the linear combination between this 

two IVP in (15), the linear shooting method will be obtained 

which as follows: 

     xwyxyxy 21  ,  where
 

 by

by
w

'
2

'
1




.     
 

(16) 

This method will be implemented with the constant step size 

h. The convergence test will be used during the calculation of 

the approximated solution in the corrector formulae to obtain 

better accuracy. 

The convergence test: 

TOLyy rr  1.0,31,3  (17) 

where r is the number of iterations and TOL is the tolerance. 

All problems were tested using the absolute error test. The 

iterations in the corrector formulae will be repeated until the 

convergence test was satisfied.  

IV. NUMERICAL RESULTS 

In this section, six numerical examples are presented. From 

the six numerical examples that has been tested, there are three 
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of them come from the BVPs with the Dirichlet boundary 

condition and another three from the BVPs with the Neumann 

boundary conditions. The problems will be tested using direct 

three-point block one-step method (3BVP).  

 

A. Dirichlet Boundary Conditions 

Problem 1 

  ),cos()('' xxyxy   1,0    

  ,00 y   ,11 y   

Exact Solution 

 

.
2

)cos(

)1sinh(4

2)1cos()1sinh(3)1cosh(3

)1sinh(4

2)1cos()1sinh(3)1cosh(3

x
e

exy

x

x











  

Source: Bongsoo [13] 

 

Problem 2 

  ,1)1exp()('''  xxyxy  1,0   

  ,00 y   ,11 y   

Exact Solution 

  )).1exp(1(  xxxy   

Source: Hamid et al. [3] 

NOTATIONS 

MAXE  : Maximum Error of the Computed Solution. 

 

ECBIM(N)        : Extended Cubic B-Spline Method 

Minimizing Using Newton’s Method in 

Hamid et al. [3]. 

ECBIM(B)  : Extended Cubic B-Spline Method 

Minimizing Using Built-In Function in 

Hamid et  al. [3]. 

EAD  : Extended Adomian Decomposition Method 

in Bongsoo [13]. 

3BVP                : Implementation of the Direct Three-Point 

Block One-Step Method For Solving The                                  

Linear Dirichlet and Neumann BVPs. 

  : Maximum Error of the Computed Solution. 

COLHW            : Collocation method with the Haar Wavelets 

in Siraj et al. [12]. 

SPLINE               : Polynomial spline method in Li-Bin et al. 

[11]. 

h : Step size. 

TS                        : Total steps. 

 

TABLE I 

NUMERICAL RESULTS FOR SOLVING PROBLEM 1 WHEN 125.0h  

x MAXE 
EAD [13] 

TS 
EAD [13] 

MAXE 
3BVP 

TS 
3BVP 

8

1
 

71037.4   
 

 

 

 

 
8 

71014.1   
 

 

 

 

 
3 

8

2
 

71007.8   
71022.2   

8

3
 

61005.1   
7* 1020.3   

8

4
 

6* 1014.1   
71012.3   

8

5
 

61005.1   
71090.2   

8

6
 

71007.8   
71056.2   

8

7
 

71037.4   
71030.1   

 
TABLE II 

NUMERICAL RESULTS FOR SOLVING PROBLEM 2 WHEN 1.0h  

Existing 

Method 

h = 0.1 

MAXE TS 

 
x 3BVP 

1.0h  

TS 

3BVP 

 
ECBIM(N) 

[3] 

 
 
 
 
 
 
 
 
ECBIM(B) 

[3] 

 

 
61091.7 

 
 
 
 
 

 
 
 
 

61073.5 

 
 

 

 

 

 

 

 

10 

0.1 71013.1   
 

 

 

 

 

 

4 

 

0.2 71019.2   
0.3 71029.3   
0.4 71074.3   
0.5 71017.4   
0.6 7* 1068.4   
0.7 71028.4   
0.8 71062.3   
0.9 71062.2   

 

 
TABLE III 

NUMERICAL RESULTS FOR SOLVING PROBLEM 2 WHEN 01.0h  

Existing 

Method 

h = 0.01 

MAXE TS 

EAD 

[13] 

x 3BVP 

h = 0.01 

TS 

3BVP 

 
EAD [13] 

 
 
 
 

 
101005.1 

 
 
 
 
 

 
100 

0.1 111018.1   
 

34 
0.2 111015.2   
0.3 111093.2   

0.4 111049.3   
0.5 111084.3   
0.6 11* 1096.3   
0.7 111076.3   
0.8 111016.3   
0.9 111000.2   

 

In Table I, the comparison has been made between two 

types of methods which is EAD and 3BVP. The numerical 

results have been listed and the maximum error for both 
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methods has been noted by the asterisk sign. It can be seen 

that the maximum error for 3BVP was 71020.3  and it was 

better than the EAD which is only 61014.1   . Moreover, the 

total steps for 3BVP was lesser compared to the EAD. 

Table II and Table III show the numerical results for 

problem 2 based on the step size h = 0.1 and h = 0.01 

respectively. In table II, the comparison has been made 

between the ECBIM(N) and ECBIM(B) and the results 

obtained show that the maximum error for 3BVP was better 

with lesser total steps. The same thing goes in table III when 

the step size was 0.01. In this table, 3BVP gave better results 

compared to the EAD with a lesser total steps. 

 
B. Neumann Boundary Conditions 

Problem 3 

    ,42 2'' yxxy   1,0   

  ,00' y   ,21'

e
y    

Exact Solution 

  .
2xexy    

Source: Siraj et al. [12] 

 

Problem 4 

     ,cos4sin3)( 32'' xxxxxxxyxy   1,0    

  ,10' y    ,1sin21' y   

Exact Solution 

     .sin12 xxxy    

Source: Liu et al. [11] 

 
 

TABLE IV 

NUMERICAL RESULTS FOR PROBLEM 3  

j h MAXE  

COLHW 

TS 

COLHW 

MAXE  

3BVP 

TS  

3BVP 

3 

16

1
 

41090.2   16 
71052.6   6 

4 

32

1
 

51048.7   32 
91012.7   11 

5 

64

1
 

51089.1   64 
91069.1   11 

6 

128

1
 

61076.4   128 
111056.5   43 

7 

256

1
 

61019.1   256 
121044.5   86 

8 

512

1
 

71099.2   512 
131088.2   171 

 

From Table IV, the local error was computed at their 
thj  

collocation point jx  where Nj ,...,2,1 where N is the last 

number on the interval. The comparison has been made 

between the two methods which is COLHW and 3BVP. 

It’s clear to see that for each different step size, the 3BVP 

could provide a better result in terms of accuracy at their 
thj  

point respectively. For the step size 
16

1
h  , the local error 

was taken at the point number 3 thus giving us the local error 

for both methods which is the COLHW and 3BVP was 
41090.2  and 71052.6  respectively. Furthermore, the total 

steps taken by the 3BVP also were nearly half compared to the 

COLHW.  

From this result, it has been shown that the 3BVP could 

provide a better result for each different step size with lesser 

total steps. 

 
TABLE V 

NUMERICAL RESULTS FOR PROBLEM 4  

h MAXE  

SPLINE 

TS  

SPLINE 

MAXE  

3BVP 

TS  

3BVP 

8

1
 

41022.2   8  51059.3   3  

16

1
 

61004.5   16  61049.3   6  

32

1
 

71062.1   32  71087.1   11  

64

1
 

91057.5   64  81028.1   22  

128

1
 

101089.1   128  101076.7   43  

 

In Table V, the comparison has been made for each different 

step size tested at problem 5. The maximum error for both 

methods which is SPLINE and 3BVP were comparable to 

each other. In addition to that, the total steps for the 3BVP 

were lesser as compared to the total steps taken for the 

SPLINE.  

V. CONCLUSIONS 

In this research, we have implemented the direct three-

point block one-step method together with the linear shooting 

technique with constant step size which is efficient and 

suitable for solving the linear Dirichlet and Neumann BVPs 

directly.  
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