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Abstract—In combinatorial games, few results are known
about the overall structure of multi-player games. In particular,
multi-player games born by day d form a completely distribu-
tive lattices with respect to every partial order relation under
an arbitrary coalition of players. In this paper, we introduce
the canonical form of a multi-player game and we redefine the
upper and lower bounds of the lattices of multi-player games
born by day d.

Index Terms—canonical form, combinatorial game, multi-
player game.

I. INTRODUCTION

COMBINATORIAL game theory [2][7] is a branch of
mathematics devoted to studying the optimal strategy

in two-player perfect information games under normal play
which declares as loser the first player unable to make a
legal move. Such a theory is based on a straightforward and
intuitive recursive definition of games, which yields a quite
rich algebraic structure. Games can be added and subtracted
in a natural way, forming a commutative group with a partial
order.

The ordered structure of the set of combinatorial games
lasting at most n moves, also known as the games born by
day n was investigated in [3], where it was proved that:

Theorem 1 (Calistrate et al.): The set of games born by
day n is a distributive lattice.
Subsequently, [8], [16] and [1] extended and refined this
result.

When combinatorial game theory is generalized to n-
player games, the problem of coalition arises. A coalition
makes it hard to have a simple game value in any additive
algebraic structure. To circumvent the coalition problem in
n-player games, different approaches have been proposed
[10][14][11][9] with various restrictive assumptions about the
rationality of one’s opponents and the formation and behavior
of coalitions. Alternatively, Propp [12] and Cincotti [4] adopt
in their work an agnostic attitude toward such issues, and
seek only to understand in what circumstances one player
has a winning strategy against the combined forces of the
others.

In general, the algebraic structure of n-player games
strongly depends on the rules of the games and, in particular,
the winning condition. In this paper, we will consider the
following scenario. Players take turns making legal moves
in a cyclic fashion:

(i, (i+ 1) mod n, . . . , (i+ n− 1) mod n, i, (i+ 1) mod n,
. . .)

where player i, i ∈ {1, . . . , n} makes the first move. A
group of players C will form the first coalition, the other
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players will form the second coalition. The coalition of the
first player that is unable to make a legal move, loses.

In two previous works [5][6], it was proved that multi-
player games born by day d form a completely distributive
lattice with respect to every partial order relation ≤C , where
C is an arbitrary coalition of players. In this work, we
introduce the canonical form of a multi-player game and we
redefine the upper and lower bound of Gn[d].

The article is organized as follows. In Section 2, we
recall the basic definitions concerning multi-player games. In
Section 3, we recall the main results about the mathematical
structure of multi-player games born by day d. Section 4
shows how to simplify a multi-player game removing the
dominated options, i.e., the moves that are not necessary to
take into account during the analysis of the game. Moreover,
the canonical form of a multi-player game is introduced.
Section 5 redefines the upper and lower bound of Gn[d].

II. MULTI-PLAYER GAMES

For the sake of self-containment, we recall in this section
the main definitions concerning multi-player games.

Definition 1: We define n-player games born by day d,
which we will denote by Gn[d], recursively as

Gn[0] = {0}
Gn[d] = {{G1| . . . |Gn} : G1, . . . , Gn ⊆ Gn[d− 1]}

The sets G1, . . ., Gn are called respectively the sets of
options of the 1st, 2nd, . . ., nth player.

Definition 2: Let

x = {X1| . . . |Xn}

and
y = {Y1| . . . |Yn}

be two games. We define the sum of two games as follows

x+ y = {X1 + y, x+ Y1| . . . |Xn + y, x+ Yn}

The previous definition introduces a couple of abuses of
notation requiring explanation. x and y are games but X1,
Y1, . . ., Xn, and Yn are sets of games. We define the addition
of a single game x, to a set of games, G, as the set of games
obtained by adding x to each element of G:

x+G = {x+ g}g∈G

The other abuse of notation is the use of the comma between
two sets of games to indicate set union.

Definition 3: Let

x = {X1| . . . |Xn}

and
y = {Y1| . . . |Yn}

IAENG International Journal of Applied Mathematics, 43:2, IJAM_43_2_05

(Advance online publication: 21 May 2013)

 
______________________________________________________________________________________ 



be two games. We say that x ≤C y if and only if the
following two conditions are satisfied

(∀i ∈ C)(∀xi ∈ Xi)(∃yi ∈ Yi)(xi ≤C yi) (1)
(∀i 6∈ C)(∀yi ∈ Yi)(∃xi ∈ Xi)(xi ≤C yi) (2)

where C ⊂ {1, . . . , n}, C 6= ∅. Moreover, we say that x =C

y if and only if (x ≤C y) and (y ≤C x).
The previous definition formalizes the preference between
two games for the coalition C. In term of games, the coalition
C will never receive any disadvantage substituting the game
x with the game y as shown in the following theorem.

Theorem 2: If x ≤C y then for any game g, the coalition
C has a winning strategy in y+ g when player i moves first
whenever the coalition C has a winning strategy in x + g
when player i moves first.
Games are partially ordered with respect to ≤C , but every
coalition produces a different order.

Theorem 3: The set of multi-player games born by day d
forms a distributive lattice with respect to every partial order
relation ≤C , where C is an arbitrary coalition of players.
For further details, please refer to [5].

III. THE LATTICE STRUCTURE OF Gn[d]

In this section, we recall the main definitions and results
concerning the mathematical structure of Gn[d]. First, we
briefly recall the definition of complete lattice.

Definition 4: A complete lattice(
L,
∨

,
∧)

is a partially ordered set (L,≤) with the additional property
that every subset A ⊆ L has a least upper bound or join
denoted by ∨

A

and a greatest lower bound or meet denoted by∧
A

Formally, (
∀x ∈ A

)(
x ≤

∨
A

)
and if there exists y ∈ L such that(

∀x ∈ A

)(
x ≤ y

)
then (∨

A ≤ y

)
Symmetrically, (

∀x ∈ A

)(∧
A ≤ x

)
and if there exists y ∈ L such that(

∀x ∈ A

)(
y ≤ x

)
then (

y ≤
∧

A

)

Definition 5: Let G ⊆ Gn[d] be a set of games. We define
floor and ceiling functions relative to Gn[d] as follows:

dGe = {h ∈ Gn[d] : g ≤C h, for some g ∈ G}
bGc = {h ∈ Gn[d] : h ≤C g, for some g ∈ G}

Definition 6: Let

G = {g1, . . . , gm} ⊆ Gn[d]

be a set of games where

g1 = {G1
1| . . . |G1

n}
...

gm = {Gm
1 | . . . |Gm

n }

We define the join and meet operations over Gn[d] for a given
coalition C by

C∨
G = {J1| . . . |Jn}

C∧
G = {M1| . . . |Mn}

where

Ji =

{
G1

i ∪ . . . ∪Gm
i if i ∈ C

dG1
i e ∩ . . . ∩ dGm

i e if i 6∈ C

and

Mi =

{
bG1

i c ∩ . . . ∩ bGm
i c if i ∈ C

G1
i ∪ . . . ∪Gm

i if i 6∈ C

Theorem 4: (
Gn[d],

C∨
,
C∧)

is a complete lattice.
Definition 7: A lattice, L, is completely distributive [13]

if: ∧
j∈J

∨
k∈Kj

xj,k =
∨
f∈F

∧
j∈J

xj,f(j)

for all doubly indexed families {xj,k : j ∈ J, k ∈ Kj} ⊆ L,
where F is the set of all choice functions from J to ∪j∈JKj .
As in the case for ordinary distributivity, it turns out that
this condition is self-dual, that is, that it implies the alterna-
tive with

∧
and

∨
interchanged. Another, more obviously

symmetric, form of the definition can be found in [15].
Theorem 5: The lattice(

Gn[d],
C∨
,
C∧)

is completely distributive.
For further details, please refer to [6].

IV. SIMPLIFYING MULTI-PLAYER GAMES

In this section we show how to simplify a multi-player
game removing the dominated options, i.e., the moves that
are not necessary to take into account during the analysis of
the game.

Theorem 6: Let

x = {X1| . . . |Xn}
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be a game and let

C ⊂ {1, . . . , n}, C 6= ∅

be an arbitrary coalition of players.

1) If a ≤C b with a, b ∈ Xi and i ∈ C, then

x =C {X1| . . . |Xi − {a}| . . . |Xn}.

2) If a ≤C b with a, b ∈ Xi and i 6∈ C, then

x =C {X1| . . . |Xi − {b}| . . . |Xn}.

Proof:

1) It is sufficient to observe that

(∀xi ∈ Xi)(∃xi ∈ Xi − {a})(xi ≤C xi)

(∀xi ∈ Xi − {a})(∃xi ∈ Xi)(xi ≤C xi)

are always satisfied when we choose

xi =

{
x if xi ∈ Xi − {a}
b if xi = a

2) It is sufficient to observe that

(∀xi ∈ Xi − {b})(∃xi ∈ Xi)(xi ≤C xi)

(∀xi ∈ Xi)(∃xi ∈ Xi − {b})(xi ≤C xi)

are always satisfied when we choose

xi =

{
x if xi ∈ Xi − {b}
a if xi = b

Definition 8: We say that two games x and y are identical
(x ∼= y) if their sets are identical, that is, if Xi is identical
to Yi, ∀i ∈ {1, . . . , n}.

We say that x is in canonical form if X and all of X’s
options have no dominated options. The following theorem
justifies the term canonical:

Theorem 7: If x and y are in canonical form and x =C y,
then x ∼= y.

Proof: Let x and y be two games in canonical form. By
hypothesis

(∀i ∈ C)(∀xi ∈ Xi)(∃yi ∈ Yi)(xi ≤C yi)

(∀i ∈ C)(∀yi ∈ Yi)(∃xi ∈ Xi)(yi ≤C xi)

We observe that xi 6<C yi 6<C xi because otherwise
xi should be dominated by xi. By inductive hypothesis,
(∀xi ∈ Xi)(∃yi ∈ Yi)(xi

∼= yi), i.e. Xi ⊆ Yi. By symmetric
arguments, Yi ⊆ Xi, so (∀i ∈ C)(Xi = Yi).

By hypothesis

(∀i 6∈ C)(∀yi ∈ Yi)(∃xi ∈ Xi)(xi ≤C yi)

(∀i 6∈ C)(∀xi ∈ Xi)(∃yi ∈ Yi)(yi ≤C xi)

We observe that yi 6<C xi 6<C yi because otherwise
yi should be dominated by yi. By inductive hypothesis,
(∀yi ∈ Yi)(∃xi ∈ Xi)(yi ∼= xi), i.e. Yi ⊆ Xi. By symmetric
arguments, Xi ⊆ Yi, so (∀i 6∈ C)(Xi = Yi).

Hence, x ∼= y.

V. UPPER AND LOWER BOUND OF Gn[d]

In this section we redefine the upper and lower bound of
Gn[d] in canonical form.

Theorem 8: The lattice(
Gn[d],

C∨
,
C∧)

is bounded.
Proof: We define the upper bound of the lattice as

ud =

{
0 if d = 0
{U1| . . . |Un} if d ≥ 1

where
Ui =

{
{ud−1} if i ∈ C
∅ if i 6∈ C

We observe that ∀x ∈ Gn[d],
C∨
(x ∪ ud) =C ud

and
C∧
(x ∪ ud) =C x.

We define the lower bound of the lattice as

ld =

{
0 if d = 0
{L1| . . . |Ln} if d ≥ 1

where
Li =

{
∅ if i ∈ C
{ld−1} if i 6∈ C

We observe that ∀x ∈ Gn[d],
C∨
(x ∪ ld) =C x

and
C∧
(x ∪ ld) =C ld.
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