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Abstract—A linear partial integro-differential equation is
solved both numerically and analytically using variational
iteration method. This equation typically arises in viscoelasticity
and other areas. The analytic solution is represented by an
infinite series.
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I. I NTRODUCTION

T HE increasing attempts in applied mathematics to
model real world phenomena often lead to integral and

integro-differential equations [1], [3], [4], [7], [9], [10]. This
explains a growing interest in the applied mathematics com-
munity to integro-differential equations, and in particular, to
partial integro-differential equations. They frequently arise
and play an important role in many areas of mathematics,
physics, engineering, biology, and other sciences. Main chal-
lenges in solving these kinds of problems, both numerically
and analytically, are due to different factors, such as large
range of variables, nonlinearity and non-local phenomena,
multi-dimensionality, etc.

This paper deals with the following linear partial integro-
differential equation

ut = µuxx +
∫ t

0

K(t− s)uxx(x, s) ds, (1)

whereµ > 0, K(t−s) := (t−s)−1/2 is the kernel function,
and the unknown real functionu(x, t) is sought for0 ≤ t ≤
T, 0 ≤ x ≤ 1, with the initial condition

u(x, 0) = sin(πx), 0 ≤ x ≤ 1, (2)

(see [2], [13]) and the boundary conditions

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T. (3)

Equations of this nature appear in many applications such
as heat conduction in materials with memory, population
dynamics, viscoelasticity, etc. [1], [7], [10]. In viscoelastic
problems, the memory integral in (1) can be thought of as
representing viscoelastic forces, whereasµuxx term repre-
sents Newtonian contribution to viscosity [10].

The significance and novelty of the paper is as follows.
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(i) The most significant result of this paper is that
an analytic solution has been found to the prob-
lem (1)-(3) where the Newtonian contribution to
viscosityµ 6= 0. There have been many numerical
approaches to solve this problem [2], [8], [11], [13],
[14], [16] but an exact solution obtained in some
of those papers was only for the non-Newtonian
problem (that is, whenµ = 0). To our knowledge
this is the first paper that gives an exact solution to
the Newtonian problem (i.e., whenµ 6= 0).
(ii) An analytic solution to (1) whenµ = 0 was de-
rived using the variational iteration method (VIM)
in [15]. This paper derives an analytic solution to
the case whenµ 6= 0. It is a significant extension of
the result from [15]. To our knowledge, this is the
first successful attempt using VIM to solve partial
integro-differential equation (1) withµ 6= 0 that
models the Newtonian problem.
(iii) A popular numerical method that has been used
so far to solve these types of problems is Crank
- Nicolson method. Compared with the Crank -
Nicolson, the method used in this paper can achieve
any desirable accuracy at a much faster speed since
the solution that we found is exact in the form of
an infinite series.

In this paper we develop a numerical algorithm based
on the variational iteration method and then we derive
an analytic solution to (1)-(3). The paper is organized as
follows. In section II we derive the main results of the paper.
Conclusions are in section III.

II. M AIN RESULTS

A. Numerical solution

To solve (1), we employ the VIM. The VIM, [5], [6], was
proposed by J. H. He to solve differential equations using an
iterative scheme. To illustrate the main idea of VIM, consider
the following, in general, nonlinear equation

Lu(t) + Ru(t) = g(t),

whereL is a linear operator,R is a nonlinear operator, and
g is a given function. One constructs a correction functional
as follows

un+1(t) = un(t) +
∫ t

t0

λ(Lun(s) + Rũn(s)− g(s)) ds,

where λ is a Lagrange multiplier, and̃un is considered
a restricted variation (see [5], [6]). This gives the desired
iterative scheme.

Applying this method to (1), we findλ = −1 (see [12]),
and as a result we obtain the following iteration formula
(with u0 = sin(πx)).
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un+1(x, t) = un(x, t)−
∫ t

0

[
∂un(x, τ)

∂τ

−µ
∂2un(x, τ)

∂x2
−

∫ τ

0

∂2un(x, s)/∂x2

√
τ − s

ds

]
dτ

= un(x, 0) +
∫ t

0

µ
∂2un(x, τ)

∂x2
dτ

+
∫ t

0

∫ τ

0

(τ − s)−1/2 ∂2un(x, s)
∂x2

dsdτ.

(4)

Then forn = 1, 2, · · · , we have

u1(x, t) = sin(πx)− µπ2t sin(πx)− 4
3
π2t3/2 sin(πx),

u2(x, t) = sin(πx)− µπ2t sin(πx)− 4
3
π2t3/2 sin(πx)

+
1
2
µ2π4t2 sin(πx) +

16
15

µπ4t5/2 sin(πx)

+
1
6
π5t3 sin(πx), etc.

From this iteration process (4), it can be observed that
the numerical solution of VIM shows a reasonably rapid
convergence of iterates after around forty iterations. It can
be shown by induction that theM th iteration of (4) is given
by

uM (x, t) =
M∑

n=0

n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 tn+ k
2

Γ
(
1 + n + k

2

) sin(πx),

(5)
whereΓ(·) denotes the gamma function.

The following table shows the comparison between the
40th iterationu40 of variational iteration method atT = 1.0
and the numerical solutions of Crank-Nicolson method with
∆x = 0.1 and∆t = 0.005.

TABLE I
COMPARISON BETWEENVIM AND CRANK - NICOLSON FOR

T = 1.0, µ = 1

x VIM Crank- Nicolson | uVIM − uCN |
0.1 −0.00395205 −0.00388268 6.9× 10−5

0.2 −0.00751725 −0.00738531 1.3× 10−4

0.3 −0.01034661 −0.01016501 1.8× 10−4

0.4 −0.01216317 −0.01194968 2.1× 10−4

0.5 −0.01278912 −0.01256464 2.2× 10−4

0.6 −0.01216317 −0.01194968 2.1× 10−4

0.7 −0.01034661 −0.01016501 1.8× 10−4

0.8 −0.00751725 −0.00738531 1.3× 10−4

0.9 −0.00395205 −0.00388268 6.9× 10−5

It is important to point out that our numerical algorithm is
designed in such a way that the iterations can be computed
rapidly in Maple with only a few seconds to complete
the 40 iterations. In comparison, the computing time in
Maple for the Crank - Nicolson method is over one minute,
much slower than the VIM algorithm. Furthermore, based on
the theorem in the next subsection, the numerical solution
(5) becomes more and more accurate than Crank-Nicolson
solution as the number of iterations increases. The graph of
u(x, t) computed by using VIM withn = 100 is shown on
Figure 1.

Fig. 1. u(x, t) for 0 ≤ x ≤ 1, 0 ≤ t ≤ 1, µ = 1

B. Analytic solution

In this subsection we derive the analytic solution to (1)-(3).
The results are summarized in the following

Theorem II.1. The series solution for the problem (1)-(3) is
given by

u(x, t) =
∞∑

n=0

n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 tn+ k
2

Γ
(
1 + n + k

2

) sin(πx).

(6)

Proof: First, we show that the series solution (6) con-
verges uniformly on[0, 1]× [0, T ] and forµ > 0. We prove
it using the Weierstrass Comparison Test and the Ratio Test.
Let

an =
n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 tn+ k
2

Γ
(
1 + n + k

2

) sin(πx),

and letT∗ = max(1, T) andµ∗ = max(1, µ) for µ > 0 and
T > 0. Taking into account that

∣∣∣ (−1)nµn−kπ2n+ k
2 tn+ k

2

Γ(1 + n + k
2 )

sin(πx)
∣∣∣ ≤ (µ∗π3T 2

∗ )n

Γ(1 + n)

and
∑n

k=0

(
n
k

)
= 2n, we obtain

|an| =
∣∣∣

n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 tn+ k
2

Γ(1 + n + k
2 )

sin(πx)
∣∣∣

≤ (µ∗π3T 2
∗ )n

Γ(1 + n)

n∑

k=0

(
n

k

)
=

(2µ∗π3T 2
∗ )n

Γ(1 + n)
.

Now, let Qn = Γ (1 + n)−1 (2µ∗π3T 2
∗ )n. Then, by the ratio

test, we can easily show the convergence of
∑∞

n=0 Qn.
Namely,

lim
n→∞

Qn+1

Qn
= lim

n→∞
2π3µ∗T 2

∗
n + 1

= 0.

Therefore, we conclude that the series
∑∞

n=0 an converges
uniformly by the Weierstrass Comparison Theorem.
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Next, we show that the series (6) satisfies (1)-(3). Substi-
tuting (6) into the left hand side of (1), we obtain

ut(x, t)

= sin(πx)
∞∑

n=1

n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 (n + k
2 )tn+ k

2−1

Γ
(
1 + n + k

2

)

= sin(πx)
∞∑

n=1

n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 tn+ k
2−1

Γ
(
n + k

2

) .

(7)
For the first term on the right hand side, we get

µuxx(x, t)

= sin(πx)
∞∑

n=0

n∑

k=0

(
n

k

)
(−1)n+1µn−k+1π2n+ k

2 +2tn+ k
2

Γ
(
1 + n + k

2

)

(8)

= sin(πx)
∞∑

m=1

m−1∑

k=0

(
m− 1

k

)
(−1)mµm−kπ2m+ k

2 tm+ k
2−1

Γ
(
m + k

2

)

= sin(πx)
∞∑

m=1

[
(−1)mµmπ2mtm−1

Γ(m)

+
m−1∑

k=1

(
m− 1

k

)
(−1)mµm−kπ2m+ k

2 tm+ k
2−1

Γ
(
m + k

2

)
]

.

wherewe usedm = n+1 in (8). For the integral on the right
hand side of (1), we notice that with a substitutions = ty,

∫ t

0

(t− s)−1/2sn+ k
2 ds = tn+ k

2 + 1
2 B

(
1 + n +

k

2
,
1
2

)
(9)

= tn+ k
2 + 1

2
Γ

(
1 + n + k

2

)
Γ

(
1
2

)

Γ
(

3
2 + n + k

2

) ,

whereB(a, b) is the beta function, which is related to gamma
function byB(a, b) = Γ(a)Γ(b)

Γ(a+b) . Thenit follows from (9) that

∫ t

0

(t− s)−1/2uxx(x, s) ds (10)

= sin(πx)
∞∑

n=0

n∑

k=0

(
n

k

)
(−1)n+1µn−kπ2n+ k

2 +2

Γ
(
1 + n + k

2

)

×
∫ t

0

(t− s)−1/2sn+ k
2 ds

= sin(πx)
∞∑

n=0

n∑

k=0

(
n

k

)
(−1)n+1µn−kπ2n+2+ k

2 + 1
2 tn+ k

2 + 1
2

Γ
(

3
2 + n + k

2

) .

Changingthe index p = n + 1 andq = k + 1 in (10) gives

∫ t

0

uxx√
t− s

(x, s)ds (11)

= sin(πx)
∞∑

p=1

p∑
q=1

(
p− 1
q − 1

)
(−1)pµp−qπ2p+ q

2 tp−1+ q
2

Γ
(
p + q

2

)

= sin(πx)
∞∑

p=1

[
p−1∑
q=1

(
p− 1
q − 1

)
(−1)pµp−qπ2p+ 1

2 qtp−1+ q
2

Γ
(
p + q

2

)

+
(−1)pπ2p+ p

2 tp−1+ p
2

Γ
(
p + 1

2p
)

]
.

Thus,by adding (8) and (11) we have

µuxx(x, t) +
∫ t

0

(t− s)−
1
2 uxx(x, s)ds

= sin(πx)
∞∑

n=1

{
(−1)nµnπ2ntn−1

Γ (n)

+
n−1∑

k=1

[(
n− 1

k

)
+

(
n− 1
k − 1

)]

× (−1)nµn−kπ2n+ k
2 tn+ k

2−1

Γ
(
n + k

2

) +
(−1)nπ2n+ n

2 tn−1+ n
2

Γ
(
n + n

2

)
}

= sin(πx)
∞∑

n=1

n∑

k=0

(
n

k

)
(−1)nµn−kπ2n+ k

2 tn+ k
2−1

Γ
(
n + k

2

) , (12)

since it is easy to verify that
(
n−1

k

)
+

(
n−1
k−1

)
=

(
n
k

)
. Also

notice that the coefficients of the first and third terms in the
curly bracket{ } both are 1, which can be expressed as

(
n
0

)
and

(
n
n

)
, respectively.

Comparing (12) and (7), we see that the series (6) satisfies
(1). Furthermore, one can also easily check that the series
(6) satisfies the initial and boundary conditions (2) and (3),
respectively. Thus, we conclude that (6) is indeed the analytic
solution to the given problem.

I I I. CONCLUSION

We solved a partial integro-differential equation numer-
ically and analytically using variational iteration method
as an appropriate tool. We also used Maple to calculate
the series solution. The numerical algorithm we developed
shows a rapid convergence after a reasonable number of
iterations. It is much more efficient and accurate than finite
difference methods. Even more significantly, we have found
an analytic solution to the problem represented by an infinite
series, which makes it possible to determine the solution
of the partial integro-differential problem with any desirable
accuracy.
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