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Abstract—In this paper, we investigate the approximation
properties of the matrix means of trigonometric Fourier series
of f belonging to weighted Lipschitz class Lip(α, p, w) with
Muckenhoupt weights generated by T ≡ (an,k) under relaxed
conditions. Our theorem extends some of the previous results
pertaining to the degree of approximation of functions in
weighted Lipschitz class Lip(α, p, w) and the ordinary Lipschitz
class Lip(α, p).

Index Terms—Fourier series, Matrix means, Muckenhoupt
class, Class Lip(α, p, w).

I. INTRODUCTION

AMEASURABLE 2π-periodic function w : [0, 2π] →
[0,∞] is said to be a weight function if the set

w−1({0,∞}) has the Lebesgue measure zero. We say that
f ∈ Lpw[0, 2π](= Lpw), the weighted Lebesgue space of all
measurable 2π-periodic functions if

‖f‖p,w =

(∫ 2π

0

|f(x)|p w(x)dx

)1/p

<∞, 1 ≤ p <∞.

Let 1 < p < ∞. A weight function w belongs to the
Muckenhoupt class Ap if

sup
I

 1

|I|

∫
I

w(x)dx

 1

|I|

∫
I

[w(x)]−1/(p−1)dx

p−1

<∞,

where the supremum is taken over all intervals I with length
|I| ≤ 2π. The weight functions belonging to Ap class,
introduced by Hunt et al. [1], play an important role in
different fields of mathematical analysis.
Let w ∈ Ap and f ∈ Lpw. The modulus of continuity of the
function f is defined by

Ω(f, δ)p,w = sup
|h |≤δ

‖∆h(f)‖p,w , δ > 0,

where (∆hf)(x) = 1
h

∫ h
0
|f(x+ t)− f(x)| dt.

The existence of the modulus of continuity of f ∈ Lpw
follows from the boundedness of the Hardy-Littlewood
maximal function in the space Lpw [2]. The modulus of
continuity Ω(f, ·)p,w defined by Ky [3] is non-decreasing,
non-negative, continuous function such that

lim
δ→0

Ω(f, δ)p,w = 0
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and Ω(f1 + f2, ·)p,w ≤ Ω(f1, ·)p,w + Ω(f2, ·)p,w.

The modulus of continuity Ω(f, ·)p,w is defined in this
way, since the space Lpw is non-invariant, in general, under
the usual shift f(x)→ f(x+h). We note that in the case w ≡
1, the modulus of continuity Ω(f, ·)p,w and the classical
integral modulus of continuity wp(f, ·) are equivalent [3].
The weighted Lipschitz class Lip(α, p, w) for 0 < α ≤ 1 is
defined by

Lip(α, p, w) = {f ∈ Lpw : Ω(f, δ)p,w = O(δα), δ > 0}.

For w(x) = 1∀x ∈ [0, 2π] the weighted Lip (α, p, w) class
reduces to well known Lipschitz class Lip (α, p).
Let f ∈ Lp[0, 2π] (p ≥ 1) be a 2π-periodic function. Then,
for n ∈ N ∪ {0} we write

sn(f ;x) = a0/2 +
∑n

k=1
(ak cos kx+ bk sin kx)

=
∑n

k=0
uk(f ;x), u0(f ;x) = s0(f ;x) = a0/2,

the (n + 1)th partial sum of Fourier series of f at point x,
which is a trigonometric polynomial of order (or degree) n.
The matrix means of the Fourier series of f are defined by
the sequence to sequence transformation

τn(f ;x) = τn(x) =
∑n

k=0
an,ksk(f ;x), n ∈ N ∪ {0},

(1)
where T ≡ (an,k) is a lower triangular matrix with non-
negative entries such that an,−1 = 0, An,k =

∑n
r=k an,r

and An,0 = 1 ∀n ≥ 0. The Fourier series of f is said to be
T -summable to s(x), if τn(f ;x) → s(x) as n → ∞. If for
every convergent sequence {sn}, limn→∞ sn = s implies
limn→∞ τn = s, then matrix T is said to be regular. In
particular, if

an,k =

{
pn−k/Pn, 0 ≤ k ≤ n,
0, k > n,

and an,k =

{
pk/Pn, 0 ≤ k ≤ n,
0, k > n,

(2)

where Pn(=
∑n
k=0 pk 6= 0) → ∞ as n → ∞ and

P−1 = 0 = p−1, then the summability matrix T reduces to
Nörlund and Riesz matrices, respectively, and τn(f ;x) in
(1) defines corresponding means Nn(f ;x) and Rn(f ;x). In
case of an,k = 1/(n + 1) for 0 ≤ k ≤ n and an,k = 0 for
k > n, the τn(f ;x) reduces to Cesàro means of order one,
denoted by σn(f ;x).

A positive sequence a = {an,k} is called almost
monotonically decreasing with respect to k, if there exists
a constant K = K(a), depending on the sequence a only,
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such that an,p ≤ Kan,m for all p ≥ m and we write
that a ∈ AMDS. Similarly a = {an,k} is called almost
monotonically increasing with respect to k, if an,p ≤ Kan,m
for all p ≤ m and we write that a ∈ AMIS [4, 5]. We
note that every monotone sequence is an almost monotone
sequence.
We also write ∆kan,k = an,k − an,k+1 and [x], the greatest
integer contained in x.

The Fourier series and trigonometric polynomials play an
important role in various scientific and engineering fields,
e.g., Lo and Hui [6] use the Fourier series expansion in a
very nice way. Based upon the Fourier series expansion, they
propose a simple and easy-to-use approach for computing
accurate estimates of Black-Scholes double barrier option
prices with time-dependent parameters.

Chandra [7] has studied the approximation properties of
the means Nn(f ;x) and Rn(f ;x) in Lip(α, p), 1 ≤ p <∞,
0 < α ≤ 1 with monotonicity conditions on the means gen-
erating sequence {pn} and proved ‖Nn(f ;x)− f(x)‖p =
O(n−α) = ‖Rn(f ;x)− f(x)‖p , n = 1, 2, 3.... Mittal
et al. [8] generalized the paper of Chandra [7] partially,
and extended its Theorem 1 and Theorem 2 (ii) to matrix
means with |

∑n
k=0 an,k − 1 | = O(n−α). On the other hand,

Leindler [4] has relaxed the condition of monotonicity on
{pn} and proved some of the results of Chandra [7] for
almost monotone weights {pn}. Mittal et al. [5] extended the
results of Leindler [4] to matrix means with almost monotone
sequence {an,k} and row sums 1. Following [9], [10] and
[11], recently Guven [12] has extended some of the results of
Chandra [7] in another direction. He has extended Lipschitz
class Lip(α, p) to Lip(α, p, w), and proved the weighted
version of the Theorem 1 and Theorem 2 of Chandra [7]
for 1 < p < ∞, 0 < α ≤ 1 i.e., for f ∈ Lip(α, p, w) and
monotone {pn} he proved

‖Nn(f ;x)− f(x)‖p,w
= O(n−α) = ‖Rn(f ;x)− f(x)‖p,w , n = 1, 2, 3, ... .

Following Mittal et al. [5], very recently, Singh and
Sonker [13] have studied the degree of approximation
of periodic functions in generalized Hölder metric space
through matrix means of Fourier series, where matrix
T ≡ (an,k) has almost monotone rows. On the other
hand, Guven [14, Theorem 1 and Theorem 2] has given
the weighted version of [4] and some of the results
of [8] by assuming T ≡ (an,k) almost monotone with
|
∑n
k=0 an,k − 1 | = O(n−α). We note that condition

|
∑n
k=0 an,k − 1 | = O(n−α) was not used by Leindler [4]

as
∑n
k=0 an,k = 1 for Nörlund matrix. It also appears

that the author in [14] have followed many conditions and
calculations as given in [5] and [13] without citing them.

Apart from this Nigam and Sharma [15] applied the
concept of (C, 1)(E, q) summability method and establish
a new theorem on degree of approximation of a function
f ∈ Lip(ξ(t), r) class. Very recently, the authors in [16]
obtained the degree of approximation of functions conju-
gate to the function belonging to weighted Lipschitz class
W (Lp, ξ(t)) and find the error of approximation free from p
and sharper that the earlier obtained results in this direction.

II. MAIN RESULT

In the present paper, we continue the work of [5] and
[13] and prove weighted version of the theorem of [5] for
p > 1 which extend the result of Leindler [4] to weighted
version as well as matrix version for p > 1. Our theorem also
extends theorems of Guven [12] to matrix means τn(f ;x)
under the relaxed conditions of monotonicity and replaces
the two theorems of Guven [14] by a single theorem for∑n
k=0 an,k = 1. More precisely, we prove:

Theorem 1. Let f ∈ Lip(α, p, w), p > 1, w ∈ Ap and let
T ≡ (an,k) be an infinite lower triangular regular matrix
and satisfies one of the following conditions:

(i) 0 < α < 1, {an,k} ∈ AMIS in k,
(ii) 0 < α < 1, {an,k} ∈ AMDS in k and (n+ 1)an,0 =

O(1),
(iii) α = 1 and

∑n−1
k=0 (n− k) |∆kan,k| = O(1),

(iv) α = 1,
∑n
k=0 |∆kan,k| = O(an,0) with (n+ 1)an,0 =

O(1),
(v) 0 < α ≤ 1,

∑n−1
k=0

∣∣∣∆k

(
An,0−An,k+1

k+1

)∣∣∣ = O
(

1
n+1

)
.

Then

‖f(x)− τn(f ;x)‖p,w = O((n+ 1)
−α

), n = 0, 1, 2... (3)

III. LEMMAS

To prove our theorem, we need the following lemmas.

Lemma 1 ([12]). Let 1 < p <∞, w ∈ Ap and 0 < α ≤ 1.
Then the estimate

‖f(x)− sn(f ;x)‖p,w = O((n+ 1)
−α

), n = 0, 1, 2, ..., (4)

holds for every f ∈ Lip(α, p, w).

Lemma 2 ([12]). Let 1 < p < ∞ and w ∈ Ap. Then, for
f ∈ Lip(1, p, w) the estimate

‖sn(f ;x)− σn(f ;x)‖p,w = O((n+ 1)−1), n = 0, 1, 2, ... ,
(5)

holds.

Lemma 3 ([5]). Let either {an,k} ∈ AMIS or {an,k} ∈
AMDS with (n+ 1)an,0=O(1). Then, for 0 < α < 1,∑n

k=0
(k + 1)

−α
an,k = O((n+ 1)

−α
).

Proof. Let r = [n/2] and {an,k} ∈ AMIS, then∑n
k=0(k + 1)−αan,k

≤Kan,r
∑r

k=0
(k + 1)−α + (r + 1)−α

∑n

k=r+1
an,k

≤ Kan,r(r + 1)1−α + (r + 1)−α
∑n

k=0
an,k

≤ K(r + 1)−α(r + 1)an,r + (r + 1)−αAn,0

= O(r + 1)−α = O((n+ 1)−α),

in view of (r+1)an,r ≤ (n−r+1)an,r ≤ K(an,r+an,r+1+
...+ an,n) ≤ An,0 and (r + 1)−α = O((n+ 1)−α).
If {an,k} ∈ AMDS and (n+ 1)an,0 = O(1), then∑n

k=0
(k + 1)−αan,k ≤ Kan,0

∑n

k=0
(k + 1)−α

= O((n+ 1)−α).

This completes the proof of Lemma 3.
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IV. PROOF OF THEOREM 1
We prove the cases (i) and (ii) together by using Lemma

1 and Lemma 3. Since

τn(f ;x)− f(x) =
∑n

k=0
an,k{sk(f ;x)− f(x)},

‖τn(f ;x)− f(x)‖p,w ≤
∑n

k=0
an,k ‖sk(f ;x)− f(x)‖p,w

=
∑n

k=0
an,kO(k + 1)−α

= O((n+ 1)−α).

Next, we consider the case (iv). By Abel’s transformation
and an,n+1 = 0,

τn(f ;x) =
∑n

k=0
an,ksk(f ;x)

=
∑n

k=0
an,k

(∑k

i=0
ui(f ;x)

)
=

∑n

k=0
An,kuk(f ;x),

and thus

sn(f ;x)− τn(f ;x) =
∑n

k=0
(1−An,k)uk(f ;x)

=
∑n

k=1
k−1 (An,0 −An,k) kuk(f ;x).

Hence, again by Abel’s transformation and An,n+1 = 0, we
get

sn(f ;x)− τn(f ;x) =
∑n

k=1
(∆kk

−1(An,0 −An,k))×∑k

i=1
iui(f ;x) + (n+ 1)−1

∑n

k=1
kuk(f ;x).

Therefore,

‖ sn(f ;x)− τn(f ;x)‖p,w

≤
∑n

k=1

∣∣∆kk
−1(An,0 −An,k)

∣∣ ∥∥∥∥∑k

i=1
iui(f ;x)

∥∥∥∥
p,w

+ (n+ 1)−1
∥∥∥∑n

k=1
kuk(f ;x)

∥∥∥
p,w

. (6)

Also

sn (f ;x)− σn(f ;x)

= (n+ 1)−1
∑n

k=0
((n+ 1)uk(f ;x)− sk(f ;x))

= (n+ 1)−1
∑n

k=1
kuk(f ;x),

which implies∥∥∥∑n

k=1
kuk(f ;x)

∥∥∥
p,w

= (n+ 1) ‖σn(f ;x)− sn(f ;x)‖p,w
= O(1), (7)

in view of Lemma 2.
Using (7) in (6), we get

‖sn(f ;x)− τn(f ;x)‖p,w≤
∑n

k=1

∣∣∆kk
−1(An,0 −An,k)

∣∣
+(n+ 1)−1. (8)

Now,

∆kk
−1 ( An,0 −An,k)

=
An,0 −An,k

k
− An,0 −An,k+1

k + 1
= k−1(k + 1)−1(An,0 −An,k − kan,k)

= k−1(k + 1)−1(
∑k−1

i=0
an,i − kan,k). (9)

Next, we shall verify by induction that,∣∣∣∣∑k−1

i=0
an,i − kan,k

∣∣∣∣ ≤∑k

i=1
i | an,i−1 − an,i|. (10)

For k = 1, we have∣∣∣∣∑k−1

i=0
an,i − kan,k

∣∣∣∣ = |an,0 − an,1| = 1. |an,0 − an,1| ,

i.e., (10) is true for k = 1. Let us assume that (10) is true
for k = m, then for k = m+ 1,

|
∑m

i=0
an,i − (m+ 1)an,m+1|

=

∣∣∣∣∑m−1

i=0
an,i + an,m +man,m

−man,m − (m+ 1)an,m+1|

≤
∣∣∣∣∑m−1

i=0
an,i −man,m

∣∣∣∣+ (m+ 1) |an,m − an,m+1|

=
∑m

i=1
i |an,i−1 − an,i|+ (m+ 1) |an,m − an,m+1|

=
∑m+1

i=1
i |an,i−1 − an,i|.

Thus (10) is true for k = m + 1, hence (10) is true for
1 ≤ k ≤ n.
Using (9) and (10), we get∑n

k=1

∣∣∆kk
−1(An,0 −An,k)

∣∣
≤

∑n

k=1
k−1(k + 1)−1

∑k

i=1
i |an,i−1 − an,i|

≤
∑n

i=1
i |an,i−1 − an,i|

∑∞

k=i
k−1(k + 1)−1

=
∑n

i=1
|an,i−1 − an,i| =

∑n−1

k=0
|∆kan,n−k|

= O(an,0) = O((n+ 1)−1). (11)

Combining (8) and (11), we get

‖sn(f ;x)− τn(f ;x)‖p,w = O((n+ 1)−1). (12)

Using Lemma 1 and (12), we have for α = 1

‖f(x)− τn(f ;x)‖p,w ≤ ‖f(x)− sn(f ;x)‖p,w
+ ‖sn(f ;x)− τn(f ;x)‖p,w = O((n+ 1)−1).

Herewith the case (iv) is proved.
For the proof of case (iii), we first verify that the condition∑n−1
k=0 (n− k) |∆kan,k| = O(1), implies that∑n

k=1

∣∣∆kk
−1(An,0 −An,k)

∣∣ = O((n+ 1)−1). (13)

From (9), we can write∑n

k=1
| ∆kk

−1(An,0 −An,k)|

≤
∑n

k=1
k−1(k + 1)−1

∑k

i=1
i |an,i−1 − an,i|

=
∑n

k=1
∆(k−1)

∑k

i=1
i |an,i−1 − an,i|.
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By Abel’s transformation, we have∑n

k=1
|∆kk

−1(An,0 −An,k)|

≤
∑n+1

k=1
k−1.k |an,k−1 − an,k|

− 1

n+ 1

∑n+1

k=1
k |an,k−1 − an,k|

=
∑n+1

k=1

(
1

k
− 1

n+ 1

)
k |an,k−1 − an,k|

=
∑n+1

k=1

(
n− k + 1

n+ 1

)
|an,k−1 − an,k|

=
∑n

k=0

(
n− k
n+ 1

)
|an,k+1 − an,k|

≤ 1

n+ 1

∑n−1

k=0
(n− k) |∆kan,k| = O((n+ 1)−1),

which verifies (13). Combining (8), (13) and Lemma 2, we
get (3) for α = 1.
Finally, we prove the case (v). Using Lemma 1 and Abel’s
transform

‖ τn(f ;x)− f(x)‖p,w≤
∑n

k=0
an,k‖sk(f ;x)− f(x)‖p,w

= O{
∑n

k=0
(k + 1)−αan,k}

= O{
∑n−1

k=0
∆k(k + 1)−α(

∑k

i=0
an,i)

+(n+ 1)−α
∑n

i=0
an,i}

= O{
∑n−1

k=0
(An,0 −An,k+1){(k + 1)−α − (k + 2)−α}

+(n+ 1)−αAn,0}
= O{

∑n

k=0
(k + 1)−α(An,0 −An,k+1)/(k + 1)}

+O(n+ 1)−α, (14)

where by Abel’s transformation∑n
k=0 (k + 1)−α

An,0 −An,k+1

k + 1

=
∑n−1

k=0
∆k

{
An,0 −An,k+1

k + 1

}∑k

i=0
(i+ 1)−α

+
An,0 −An,n+1

n+ 1

∑n

i=0
(i+ 1)−α

≤
∑n−1

k=0
∆k

{
An,0 −An,k+1

k + 1

}
(k + 1)1−α

+
(n+ 1)1−α

n+ 1

≤ (n+ 1)1−α
∑n−1

k=0
∆k

{
An,0 −An,k+1

k + 1

}
+(n+ 1)−α = O((n+ 1)−α), (15)

in view of An,n+1 = 0 and condition (v) of Theorem 1.
Collecting (14) and (15), we get (3). Thus proof of Theorem
1 is complete.

V. COROLLARIES

In order to justify the significance of our result, we prove
that the following results are the particular cases of Theorem
1 for p > 1. We also drive an analogous result of Theorem
1 for monotone {an,k}.

1) If we take an,k = pn−k/Pn for k ≤ n and an,k = 0 for
k > n, then conditions (i) to (iv) of Theorem 1 reduce

to conditions (i) to (iv) of Theorem 1 of Leindler [4,
p. 131], respectively, and τn(f ;x) means reduces to
Nn(f ;x) means. Further, we note that Lip(α,p, 1) ≡
Lip(α,p), p > 1. Thus our theorem generalizes Theo-
rem 1 of [4], except for the case p = 1 in two directions.

2) Since Lip(α,p, 1) ≡ Lip(α,p), p > 1 and conditions of
Theorem 1 of Mittal et al. [5, p. 4485] for p > 1 are
included in the conditions (i) to (iv) of Theorem 1, our
theorem includes weighted version of Theorem 1 of [5]
for p > 1.

3) Since every monotone sequence is almost monotone,
the conditions (i) and (ii) of Theorem 1 are satisfied
in case of monotonic {an,k}. Further, every sequence
{an,k} non-decreasing with respect to k always satisfies
condition (iii) of Theorem 1, e. g.,∑n−1

k=0 (n− k) |∆kan,k|

=
∑n−1

k=0
(n− k)(an,k+1 − an,k)

= An,0 − (n+ 1)an,0 = O(1).

If {an,k} is non-increasing with respect to k, then (iv)
of Theorem 1 is also true, e. g.,∑n−1

k=0
|∆kan,k| =

∑n−1

k=0
(an,k − an,k+1)

= an,0 − an,n ≤ an,0.

Thus, we have the following analogous result of Theo-
rem 1 for monotone {an,k}:
Theorem 2. Let f ∈ Lip(α, p, w), p > 1, w ∈ Ap and
let T ≡ (an,k) be an infinite regular triangular matrix
and satisfies one of the following conditions:

(i) {an,k} is non-decreasing in k,
(ii) {an,k} is non-increasing in k and (n + 1)an,0 =

O(1).
Then (3) holds.

4) If we take an,k = pn−k/Pn for k ≤ n and an,k = 0
for k > n, then Theorem 2 reduces to Theorem 1 of
Guven [12, p. 101].

5) Finally, if we take an,k = pk/Pn for k ≤ n and an,k =
0 for k > n, then τn(f ;x) means reduces to Rn(f ;x)
means; and

An,0 −An,k+1 =
∑n

i=0
an,i −

∑n

i=k+1
an,i

=
(∑n

i=0
pi −

∑n

i=k+1
pi

)
/Pn

=
∑k

i=0
pi/Pn = Pk/Pn,

so that

∆k

(
An,0 −An,k+1

k + 1

)
=

An,0 −An,k+2

k + 2

−An,0 −An,k+1

k + 1

=
1

Pn

(
Pk+1

k + 2
− Pk
k + 1

)
,

i. e., condition (v) of Theorem 1 reduces to condition
(3) of Guven [12, Theorem 2]. Thus Theorem 1 under
condition (v) extends Theorem 2 of Guven [12] to
matrix means.

6) If we take an,k = Aβ−1n−k /Aβn for k ≤ n and an,k = 0
for k > n(β > 0), where
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Aβ0 = 1, Aβk =
β(β + 1)...(β + k)

k!
, k ≥ 1,

then matrix means τn(f ;x) reduces to Cesàro means of
order β > 0 denoted by σβn(f ;x) and defined as

σβn(f ;x) =
1

Aβn

∑n

k=0
Aβ−1n−ksk(f ;x).

Hence, Corollary 3 of Guven [12, p. 102] can also be
derived from Theorem 1.

7) In the light of remark of Guven [12, p. 102], we note
that Theorems 1 and 2 also hold in reflexive weighted
Orlicz spaces LMw , which are discussed in [10] in detail.

VI. CONCLUSION

Theorems of this paper are an attempt to formulate the
problem of approximation of f ∈ Lip(α, p, w), p > 1
through trigonometric polynomials generated by the summa-
bility means of the Fourier series of f in a simpler manner.
The case for p = 1 is still an open problem which can be
addressed by making certain modifications in the definition
of Muckenhoupt class Ap.
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