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A Comparative Study of Preconditioning
Techniques for Large Sparse Systems Arising in
Finite Element Limit Analysis

Omid Kardani, Andrei V. Lyamin, and Kristian Krabbenhgft

Abstract— The efficiency of several preconditioned
Conjugate Gradient (PCG) schemes for solving of large sparse
linear systems arising from application of interior point methods
to nonlinear Finite Element Limit Analysis (FELA) is studied.
Direct solvers fail to solve these linear systems in large sizes, such
as large 2D and 3D problems, due to their high storage and
computational cost. This motivates using iterative methods.
However, iterative solvers are not efficient for difficult problems
without preconditioning techniques. In this paper, the effect of
various preconditioning techniques on the convergence behavior
of the preconditioned Conjugate Gradient (PCG) is investigated
through a detailed comparative study. Furthermore, numerical
results of applying PCG to several sample systems are presented
and discussed thoroughly in a parametric study. Our results
suggest that while incomplete Cholesky preconditioners are by
far the most efficient techniques for sequential computations,
significant gains may result from use of sparse approximate
inverse methods in parallel environment in this field.

Index Terms— incomplete Cholesky factorization,
approximate inverse preconditioner, limit analysis,
preconditioned conjugate gradient method, cone programming

|. INTRODUCTION

The application of second order cone programming (SOCP)
to solving optimization problems arising in Geomechanics has
recently been of growing interest and significant advances
have been made in this field. Some of the most important
applications include traditionally difficult problems in
plasticity [24], finite element limit analysis [26] and most
recently granular contact dynamics [25]. In this paper, we
focus on the case of finite element limit analysis (FELA).
Upon formulating the original problem as SOCP, it can be
solved by primal-dual interior point method (IPM). An
efficient IPM algorithm for conic quadratic optimization was
proposed by Anderson et al [2]. However, in each step of this
method, a symmetric positive definite (SPD) linear system of
equation needs to be solved. Due to their robustness and
accuracy, the direct solvers have been traditionally used for
this task [2], [38].
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However, for large 3D problems direct solvers require
prohibitively high storage and computational efforts.
Therefore, the use of iterative solvers becomes imperative. But
highly ill-conditioning of the linear systems arising in IPM
iterations for our application leads to extremely slow
convergence and lack of accuracy for iterative solvers. This
motivates using appropriate preconditioners to enhance the
efficiency of the iterative solution schemes.

In this study, we use preconditioned Conjugate Gradient
method (PCG) with various preconditioning techniques and
make a comparison of their effects on the robustness of PCG
method. A comparison with another similar preconditioned
iterative approach is given in [27]. The preconditioning
methods we studied fall into two major groups of
preconditioners.

The first group consists of the incomplete factorization
schemes. These are actually different variants of the
incomplete LU factorization which have been extensively
studied and proved to be efficient for ill-conditioned systems.
A recent study of such preconditioners with some
modifications can be found in [32]. Since the systems we are
addressing in our application involve symmetric positive
definite (SPD) coefficient matrices, we employed incomplete
Cholesky (IC) factorization techniques which are particularly
designed for SPD systems [4], [15] and [34]. For a fairly
recent survey see [4] and references therein.

The other class of preconditioning techniques we studied is
sparse approximate inverse preconditioners. These techniques
have been vigorously studied and developed during the last
decade [4], [7]. They are of particular interest when parallel
implementation of the solution schemes is considered [12].

The remaining structure of the paper is as follows: in
section 2, the SOCP as well as its application to finite element
limit analysis is briefly introduced and the linear systems
arising in this context are reviewed. In section 3, PCG method
with various preconditioners from two mentioned classes of
preconditioning techniques is briefly discussed. Then,
numerical results of applying the PCG method to some
samples systems arising in our specific application are
presented and discussed in section 4. Finally, conclusions and
future work are given in section5.

II.FINITE ELEMENT LIMIT ANALYSIS AS SOCP PROBLEM

Conic programming in the field of plasticity is concerned
with the following standard form of problems:
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minimize «o
subjectto B'e=ap+p,’ @

6K

in which constant and variable loads are given by p, and p,

respectively. oz denotes the load multiplier and B'is the
discrete equilibrium operator. Also, ¢ is the vector of the
stresses and & denotes an admissible stress space.

Krabbenhoft et al. [26] proposed a practical form of SOCP
for limit analysis by casting the Mohr-Coulomb criterion
under- plane strain conditions as quadratic cone. The resulting
optimization problem then reads:

minimize «
subjectto B'e =ap +p, 2
p=Do+d

pEK,

where K, is the following quadratic cone

’<q={peDm”lp12\/ Pt P )

and
sing sing 0 2c cos ¢
D=| 1 -1 0|, d= 0 ;
0 0 2 0

with @ and c denoting the friction angle and cohesion,

respectively.

The problems of the form (2) can be efficiently solved using
primal-dual interior point method for conic quadratic
optimization proposed by Anderson et al [2]. In each step of
this method, after some computationally cheap calculations, in
order to update the current solution approximate, a Newton
search direction vector is calculated by a system of linear
equations of the general form

Au=b, (4)

in which A is a large sparse and symmetric positive definite
(SPD) matrix, needs to be solved in order to find the search
direction. These systems have been traditionally solved by
performing a Cholesky factorization [2]. However, for 3D and
large 2D problems the time and space complexity to build and
store Cholesky factors are quite expensive. As a potential
solution to this problem, use of iterative solver methods is
considered.

I1l. PRECONDITIONED CONJUGATE GRADIENT
METHOD

As mentioned earlier, system (4) is problematic to solve by
direct solvers for three dimensional and large two dimensional

problems with millions of equation and unknowns involved.
This necessitates exploiting efficient iterative schemes. Since
the system is SPD, one of the most efficient iterative solvers is
the famous Conjugate Gradient (CG) method [34]. In terms of
convergence, it is well known that the number of iterations of
the CG method to satisfy a certain stopping criterion is

proportional to \/E in which K is called the condition

. . A
number of the coefficient matrix and x =-—""% where
min
Aand A are the largest and smallest eigenvalues in

magnitude of the coefficient matrix, respectively [34]. As a
result, CG shows poor convergence behaviour for solving ill-
conditioned linear systems. This is the case with the linear
systems encountered in our application. Therefore, it seems
logical to develop methods in order to enhance the efficiency
of iterative solution schemes by improving the condition of the
linear system. These improving methods are called
preconditioning techniques. We are exploring two major
classes of preconditioning techniques and their effect on the
convergence behaviour of preconditioned CG (PCG) solver.
Before discussing these techniques, let us present the PCG
algorithm here for ease of reference.

Algorithm 1 — PCG Linear Solver

Initialize:
1. Let x, be an arbitrary initial guess
2. r,=Ax,-b
3.z,=MTr,
4.p, =12,
5. For j=0,1,2,..., Maxlter
T
r. .

6. o =i—Z’

P; Ap;

l.X, =X, +ap,
8. r., =T, —a,Ap;
9. If the stopping criterion is met, exit the loop.
-1
10.z,, =M,
T
| U A
_ i j+1
W fy=—"~—
Z. T
] 7]
12 pj+1 = Zj+1+ﬂjpj
13. End For

The calculation involved once in step 3 and then in every
CG iteration in step 10 of the above algorithm is known as
preconditioning operation. Matrix M is called the
preconditioner and is actually an sparse approximate of the
coefficient matrix A. In the remaining of this section we
focus on different methods of forming the preconditioner M.
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A. INCOMPLETE CHOLESKY FACTORIZATION

Since system (4) is SPD, one of the most efficient iterative
solvers is PCG method preconditioned with incomplete
Cholesky (IC) factorization techniques [4], [15] and [34]. IC
factorization is done by the same procedure as the complete
form. The only difference is that some of the fill-ins in the
course of the factorization process are discarded. This leads to
sparse factors which approximate exact Cholesky factors.
Discarding new fill-ins is controlled by employing a dropping
rule. In this way, a number of incomplete Cholesky
factorization preconditioners can be constructed such as drop
tolerance-based IC, IC with fixed fill-in and double threshold
IC.

Drop tolerance-based incomplete Cholesky factorization

One way to control the amount of fill-in allowed in the
factorization process is to accept or discard new entries with
regards to their absolute values. For this purpose, a drop
tolerance 7 >0, which is a positive real number, is used and

fill-ins in step k™ can be controlled in the following manner:

‘ai,-(k)‘ >7 ,di(k)dj(k)
)

otherwise

*)
a; ' Is kept

a,“is dropped

in which d“ and d “are the i"and j" diagonal elements

of the matrix in step k", respectively. This class of
incomplete factorization methods are studied widely and
shown to be very reliable preconditioners provided the
suitable drop tolerance is chosen [4], [10], [31], [34].

Incomplete Cholesky factorization with fixed fill-in

Incomplete factorization with fixed fill-in was first
introduced by Jones and Plassmann [19]. In their proposed
algorithm, the fill-in is controlled by keeping a limited number
of elements which have the largest absolute values in each row
of the Cholesky factor. They set this fixed number of fill-ins
for each row to be the number of nonzero elements in the
same row of the triangular part of the original matrix. A
similar strategy was used by Lin and More [28]. However, in
their method, they let a fixed number of additional elements to
be accepted in each row of the Cholesky factor. Again, the
acceptance of fill-ins is based on their absolute value. By
denoting this fixed number by o, this preconditioner is known

as FFIC( o) . Note that in the special case p= 0, the Jones
and Plassmann’s preconditioner [19] is obtained.

Double threshold incomplete Cholesky factorization

The idea of using two different levels of dropping in the
process of incomplete factorization is first proposed by Saad
[33]. He designed a so called ILUT(7,p) preconditioner

with two thresholds 7, which is a drop tolerance and p,

which is in fact the maximum number of nonzero elements
allowed in each row of the incomplete factors. This
preconditioner was shown to be quite powerful for difficult

problems [4], [33]. The same strategy can be employed for
incomplete Cholesky factorization of SPD matrices to produce
so-called ICT( 7, p) preconditioner.

Robust Incomplete Cholesky Factorization

IC has been proved to exist for M-matrices [31] and also H-
matrices with positive diagonals [30]. However, it can fail for
general SPD matrices due to pivot breakdowns; that is,
occurring a zero or negative pivot during the factorization
process. There are several remedies for this problem.

One way is to apply a global shift to the diagonal of the
matrix before starting the factorization. In this method which
was proposed by Manteuffel [30], the original matrix A is
replaced by

A+aD, (6)

where D is the diagonal of A and « is known as diagonal
shifting parameter. Applying this diagonal shifting strategy
with an appropriate shift parameter_¢ to the diagonally scaled

form the coefficient matrix which isD™?AD ™ can be quite

efficient and leads to very powerful preconditioners [28], [35],
and [36]. However, the process of choosing « is based on trial
and error.

Another strategy to achieve a stable factorization without
any pivot breakdowns for general SPD matrices is to design a
modified incomplete factorization without modifying the
original matrix. The most famous and widely used strategy in
this category is the robust incomplete factorization presented
by Ajiz and Jennings [1]. Their method, which is abbreviated
as AJRIC(7), is in fact a modified form of drop tolerance-
based IC factorization. It proceeds by adding the absolute
value of each dropped element (or a factor of it [17]) to both
corresponding diagonal elements of the matrix. This strategy
leads to a breakdown-free IC factorization. Similar strategies
can be found in [37].

B. SPARSE APPROXIMATE INVERSE

Sparse approximate inverse preconditioners have been
widely developed and investigated during the recent years. In
contrast to incomplete factorization approach, these
preconditioners, in fact, approximate the inverse of the
coefficient matrix. Hence, their main advantage is that the
implementation of the preconditioner within the iterative
solution scheme requires only matrix-vector products and as a
result the preconditioning operation can be effectively
parallelized. In addition, they have been shown to be robust
since they never suffer from pivot breakdowns such as those
happen in the process of incomplete factorization [4].

Generally, the inverse of a sparse matrix is usually a dense
matrix. However, in most cases, it has been shown that a lot of
elements in the inverse matrix are very small in absolute
value. As a result, it is possible to approximate the inverse
matrix with a sparse matrix. Sparse approximate inverses are
classified into two groups based on whether the preconditioner
is presented in the form of a single matrix or a product of two
or more matrices [4].

(Advance online publication: 29 November 2013)



TAENG International Journal of Applied Mathematics, 43:4, IJAM 43 4 05

Minimizing the Frobenius norm of the error matrix

These preconditioners which are first proposed by Benson
[3] try to find sparse matrix M as the solution of the
following problem

min|I-AM|_ . )
Mex
in which 2 is a set of sparse matrices and || . ||F denotes the

Frobenius norm of a matrix. With the knowledge that
=AMl =3 fe, - Am,]," @
=1

in which e, shows the k™ column of the identity matrix and

m, is the k™ column of M . Finding M for the problem

(9) can be fulfilled by solving n independent linear least-
square problems. Note that these problems need to be solved
with respect to sparsity conditions imposed by . Letting
2 be a fixed sparsity pattern leads to some popular sparse
approximate inverses such as so called SPAI preconditioner
proposed by Grote and Huckle [16]. As matrix M obtained
from (9) is not necessarily SPD even for SPD matrix A,
SPAI preconditioner cannot be used for preconditioned
Conjugate Gradient solver.

Kolotilina and Yeremin [22] proposed a factored
approximate inverse preconditioner known as FSALI. Similar to
SPAI, FSAI is also based on the minimization of the
Frobenius norm. However, in order to obtain a SPD
preconditioner, FSAIl computes a sparse lower triangular
matrix F which is in fact an approximation of the inverse of

the Cholesky Factor of A, ie. F=L". Then, the

preconditioner is set to be M = F'F . The only issue is again
choosing an appropriate sparsity pattern in advance. There
have been several studies devoted to this matter in references
[11], [18]. The FSAI preconditioner is robust for general SPD
matrices and have shown to be efficient for ill-conditioned
problems [5], [14], [21] and [22].

Incomplete biconjugation process

Another approach which is originally proposed for
nonsymmetric matrices by Benzi and Tuma [8] is to factorize
the inverse of a matrix incompletely using a two way Gram-
Schmidt process applied to A and AT at the same time. This
process is known as A -biorthogonalization. The
preconditioner obtained in this way is called AINV and is of
the form

M =SD'RT 10 A, 9)

where D = diag(d,,...,d,) is a diagonal matrix where
dj=(s;s;), @<j<n) and s=f[s,...s,] and
R =[R,,..,R, ] are unit diagonal upper triangular

matrices. In addition, a dropping rule is applied after each
update the columns of S and R. Note that in the SPD case,
S =R and as the pivots are nonzero, the preconditioner
does not encounter any breakdowns for general SPD

matrices, hence its name SAINV for stabilized AINV [5],

[20].

In the next section, we present the numerical results of
applying the preconditioners discussed in this section to PCG
method in an attempt to solve sample systems of the form (4)
arising from solving problem (2) by primal-dual interior point
method.

IV. NUMERICAL RESULTS

In this section numerical results of applying PCG method
preconditioned with different preconditioners are presented
and discussed. As discussed earlier, we have implemented
several preconditioners from two main classes of
preconditioning techniques. Among the incomplete Cholesky
(IC) factorization variants, our experiments involve IC with
fixed fill-in (FFIC), Ajiz-Jennings’ Robust IC (AJRIC) and IC
with double threshold (ICDT). In addition, factorized
approximate inverse (FSAI) and stabilized approximate
inverse (SAINV) have been implemented from the variants of
approximate inverse preconditioners.

The algorithms are coded and compiled using Intel Fortran
Compiler XE 12.1 in the Visual Studio 2010 environment.
Finally, the computations are all carried out on a desktop
computer with 2.8 GHz quad-core processor and 4.0 GB of
RAM operating under 64-bit Windows 7.

Sample Systems

The set of eight sample systems use in this study are all
arising in the course of IPM method applied to finite element
limit analysis for Geotechnical problems. A summary of the
features of the sample coefficient matrices, including the
dimension of the matrix (size), the number of nonzero
elements of the matrix (NNZ), the minimum and maximum
eigenvalues in magnitude (Min Eig and Max Eig ) and the
condition number of the matrix (CN) (calculated by dividing
the maximum eigenvalue by the minimum one) are presented
in Table I.

TABLE |
PROPERTIES OF SAMPLE MATRICES

Sample Size NNz Min Max CN
Matrix Eig Eig

C_Small 45,473 3,161,485 2.8E-3 9.1E5 3.2E8
C_Mid 231,170 3,290,336 3.4E-4 3.2E6 9.4E9
C_Large 452,402 6,109,998 2.6E-5 6.4E6 2.5E11
C_Xlarge 1,530,902 21,786,298 1.8E-5 1.6E7 8.9E11
T_Small 26,365 1,794,413 1.3E-4 4.3E5 3.3E9
T_Mid 207,153 14,461,305 2.8E-6 9.7E7 3.5E13
T_Large 402,958 28,281,869 1.8E-6 4.5E6 2.5E12
T_Xlarge 893,239 79,549,743  1.5E-6 7.2E7 4.8E13

As seen from the Table I, all three sample matrices are very
ill-conditioned due to very poor scaling of the entries of the
matrices. This suggests a weak performance of the iterative
solvers without any preconditioning.

Pre-processing of Sample Systems

In order to improve our preconditioning techniques some
changes have been made to the coefficient matrix in all or
some of the samples before performing the preconditioning
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process. These modifications are a result of extensive
numerical experiments performed on similar systems [23].
First of all, for all preconditioners and systems, the coefficient
matrices were diagonally scaled as in (8). According to large
amount of literature this scaling can improve the
preconditioning procedure, mostly in terms of speed of the
preconditioner construction and also the efficiency of the
resulting preconditioner (see [4] and references therein).

Secondly, some reordering has been applied to the
coefficient matrices before building the preconditioning
matrix. For IC preconditioners, the coefficient matrices were
pre-ordered using reverse Cuthill-McKee (RCM) [13]. This is
because RCM has shown the best effect among all ordering
schemes with regards to both computational cost and
robustness of the incomplete Cholesky factorization
preconditioners [4], [6]. For Sparse approximate inverse
methods, on the other hand, we used Multiple Minimum
Degree (MMD) [29]. This ordering scheme has proven to have
promising effects on improving the computational cost of
constructing approximate inverse preconditioners as well as
the degree of parallelism of the resulting preconditioner [4, 5,
9].

Finally, in some of the samples when applying
preconditioners FFIC and ICDT, the factorization process
encountered a pivot breakdown. This is because these
preconditioners are not essentially robust, i.e. breakdown-free,
for general SPD matrices. In such cases, the preconditioner
construction phase was re-performed on the diagonally shifted
version of the coefficient matrix as in (7). Note that in these
cases a fixed and probably not optimal value of 0.2 was used,
which prevented the factorization from breakdown in all such
cases.

PCG Convergence Results

The implemented preconditioners are all implemented in the
PCG method as in Algorithm 1. Moreover, the following
stopping criterion is utilized for all PCG method runs:

Il < &> (o], +[x. [alL) (15)

in which [[b]_. [[r, . and |x,]|, are the infinity norm of the

right hand side vector, the current residual and solution
vectors, respectively. Also, ||A|| denotes the infinity norm of

the coefficient matrix, which is in fact the maximum of the
row sums of the matrix. In the following reported results the

value of stop tolerances is set to 10™. The maximum
number of CG iterations allowed is also set to be equal to the
dimension of the corresponding coefficient matrix in each
case.

Before proceeding with our numerical experiments, some
pre-processing procedures were performed on some or all of
our sample systems in order to improve the efficiency of the
preconditioning techniques. These procedures which will be
discussed next include ordering, scaling and diagonal shifting.

In this sub-section, the results from applying the previously
mentioned iterative solvers are presented. In each case,
different parameters for the preconditioners have been tested

and results are given and compared. In addition, in all
following tables, some common notations are used as follows:
PCN: condition number of the preconditioned matrix;

P-Time: CPU time (in seconds) spent on building the
preconditioner;

CG-Time: CPU time (in seconds) spent on CG process until a
stopping criterion is met;

CG-lIter: the number of iterations performed by CG algorithm
until convergence;

Total time: Total time of the algorithm including P-Time and
CG-Time.

Incomplete Cholesky factorization with fixed fill-in
(FFIC(p))

Table 11 shows the convergence behavior of the PCG method
preconditioned with FFIC( p ) for different values of p. In all

cases, the algorithm failed due to pivot breakdown. A global
diagonal shifting strategy, therefore, has been employed.

TABLE I
CONVERGENCE RESULTS OF PCG WITH FFIC PRECONDITIONER
. P-Time CG CG Total
Matrix » PCN Time Iter Time
C_Small 0 7.6E3 4.12 10.08 560 14.20
10 7.7E3 475 12.41 564 17.16
50 7.4E3 551 14.93 553 20.44
100 7.0E3 6.98 17.22 538 24.20
C_Mid 0 3.4E4 16.32 22.22 1186 38.54
10 3.3E4 16.78 26.74 1168 43.52
50 3.3E4 17.68 32.82 1168 50.50
100 2.8E4 19.35 35.84 1076 55.19
C_Large 0 5.8E4 45.69 53.89 1549 99.58
10 5.9E4 46.12 66.46 1563 112.58
50 5.6E4 47.85 79.42 1522 127.27
100 5.2E4 49.27 90.73 1467 140.00
C_Xlarge 0 8.3E4 83.42 229.85 1853 313.27
10 8.5E4 85.68 284.41 1876 370.09
50 8.4E4 92.48 347.00 1865 439.48
100 7.9E4 101.62 398.69 1808 500.31
T_Small 0 8.2E3 5.29 5.95 582 11.24
10 8.4E3 6.01 7.35 589 13.36
50 7.6E3 4.12 10.08 560 14.20
100 7.7E3 4.75 12.41 564 17.16
T_Mid 0 7.4E3 5.51 14.93 553 20.44
10 7.0E3 6.98 17.22 538 24.20
50 3.4E4 16.32 22.22 1186 38.54
100 3.3E4 16.78 26.74 1168 43.52
T_Large 0 3.3E4 17.68 32.82 1168 50.50
10 2.8E4 19.35 35.84 1076 55.19
50 5.8E4 45.69 53.89 1549 99.58
100 5.9E4 46.12 66.46 1563 112.58
T Xlarge 0 5.6E4 47.85 79.42 1522 127.27
10 5.2E4 49.27 90.73 1467 140.00
50 8.3E4 83.42 229.85 1853 313.27
100 8.5E4 85.68 284.41 1876 370.09

According to Table Il, in some samples additional fill-ins
lead to fewer number of CG iterations. This can be interpreted
as the result of improvement in the condition number of the
coefficient matrix. On the other hand, by allowing more fill-
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ins, the preconditioner becomes less sparse and consequently
the time of even fewer number of CG iterations grows. With
regards to total time taken for both preconditioning and
solving process, allowing no fill-ins seems to be the best
option in most cases.

Ajiz-Jennings’ robust incomplete Cholesky factorization
(AJRIC(7))

This is one of the most popular versions of incomplete
Cholesky factorization which is widely used in different
engineering applications [4]. As mentioned in the previous
section, it is a breakdown-free version of the incomplete
Cholesky factorization with drop tolerance for general SPD
matrices. The convergence analysis of the PCG method
preconditioned with AJRIC( 7) for different values of the drop
tolerance 7 applied to our three sample matrices are given in
Tables I1I.

TABLE I
CONVERGENCE RESULTS OF PCG WITH AJRIC PRECONDITIONER
. P-Time CG CG Total
Matrix v PCN Time Iter Time
C_Small 1.0E-2 6.8E3 4.83 9.54 530 14.37
1.0E-3 6.5E3 5.12 11.40 518 16.43
1.0E-4 6.7E3 8.63 14.20 526 22.83
1.0E-5 6.5E3 10.49 16.58 518 27.07
C_Mid 1.0E-2 3.1E4 15.76 21.21 1132 36.97
1.0E-3 209E4 17.48 25.07 1095 4255
1.0E-4 3.2E4 20.22 32.34 1151 5256
1.0E-5 28E4 22.30 35.84 1076 58.14
C_Large 1.0E-2 5.3E4 43.16 51.52 1481  94.68
1.0E-3 5.2E4 47.94 62.37 1467 11031
1.0E-4 5.3E4 48.59 77.28 1481  125.87
1.0E-5 5.1E4 52.13 89.86 1453  141.99
C_Xlarge 1.0E-2 7.9E4 84.64 224.27 1808  308.91
1.0E-3  8.0E4 89.05 275.92 1820 364.97
1.0E-4 8.0E4 97.67 338.63 1820  436.30
1.0E-5 7.8E4 112.19  396.27 1797  508.46
T_Small 1.0E-2 7.8E3 4.01 5.80 568 9.81
1.0E-3 7.8E3 5.12 7.09 568 12.21
1.0E-4 7.9E3 7.86 8.75 571 16.61
1.0E-5 7.9E3 9.24 10.37 571 19.61
T_Mid 1.0E-2 7.1E5 24.61 446.43 5422  471.04
1.0E-3  6.9E5 27.04 537.88 5345  564.92
1.0E-4 7.1E5 32.10 669.64 5422  701.74
1.0E-5 7.0E5 36.19 787.93 5383 824.12
T_Large 1.0E-2 6.3E5 45.17 822.35 5107 867.52
1.0E-3 6.3E5 48.01 1005.09 5107 1053.10
1.0E-4 6.2E5 55.26 1223.62 5066 1278.88
1.0E-5 6.3E5 64.50 1461.95 5107  1526.45
T_Xlarge  1.0E-2 8.9E5 87.26 2749.22 6070 2836.48
1.0E-3  9.1E5 90.11 3397.80 6138  3487.91
1.0E-4 9.2E5 101.64  4193.12 6172  4294.76
1.0E-5 8.9E5 124.15  4887.48 6070 5011.63

Table I11 shows that by choosing a smaller value for the drop
tolerance, the expense of constructing the preconditioner
increases since more fill-ins allowed in the incomplete factor.
However, in most cases the number of iterations of CG
method decreases for smaller drop tolerances, yet the
preconditioner is less sparse and as a result the CG solver is

more time consuming. Looking for a balance between these
two features, one can suggest the values in the interval
[1.0e —2,1.0e —3]to be more appropriate in our application.

Furthermore, a comparison between Tables Il and Il reveals
that the AJRIC preconditioner is generally more efficient than
FFIC for our sample problems.

Incomplete Cholesky factorization with double threshold
(ICDT(7, p))

In Tables IV, the convergence behavior of the PCG method
preconditioned with ICDT(7, p) is given for different values
of 7 and p applied to our sample matrices. Here the test
values for the fill-in parameter p and the drop tolerance 7

have been selected from the most effective ones according to
Tables 111 and IV, respectively. Note that the choice of p=0

the preconditioner will be identical to FFIC(0), hence skipped
in Table IV. Again, the factorization breakdowns were
encountered, so a global diagonal shifting strategy has been
utilized.

TABLE IV

CONVERGENCE RESULTS OF PCG WITH ICDT PRECONDITIONER
. 1% P- CG CG Total
Matrix T PCN Time Time Iter Time
C_Small 10 1E-2 7.3E3 4.0 9.8 549 14.9
1E-3 7.2E3 4.2 12.0 546 17.3
50 1E-2 7.0E3 6.9 14.5 538 214
1E-3 7.1E3 8.2 17.3 542 26.6
C_Mid 10 1E-2 3.1E4 13.0 21.2 1132 36.7
1E-3 3.0E4 14.8 255 1114 42.3
50 1E-2 3.3E4 15.0 32.8 1168 49.8
1E-3 3.1E4 18.4 37.7 1132 57.2
C_Large 10 1E-2 5.6E4 40.6 52.9 1522 98.6
1E-3 5.5E4 43.2 64.1 1509 111.4
50 1E-2 5.3E4 45.1 77.2 1481 126.4
1E-3 5.3E4 46.8 915 1481 143.4
C_Xlarge 10 1E-2 8.3E4 77.6 229.8 1853 3145
1E-3 8.1E4 83.4 2775 1831 363.0
50 1E-2 8.2E4 85.9 342.7 1842 432.6
1E-3 8.2E4 89.3 406.2 1842 497.5
T_Small 10 1E-2 8.3E3 35 5.9 586 125
1E-3 8.1E3 4.6 7.2 579 13.8
50 1E-2 8.1E3 6.0 8.8 579 16.9
1E-3 8.0E3 7.3 104 575 19.8
T_Mid 10 1E-2 7.1E5 20.1 446.4 5422 4725
1E-3 7.0E5 234 541.7 5383 569.2
50 1E-2 7.2E5 26.6 674.3 5460 704.0
1E-3 7.0E5 27.7 787.9 5383 818.6
T_Large 10 1E-2 6.5E5 41.8 835.3 5188 888.2
1E-3 6.3E5 43.1  1005.0 5107 1058.2
50 1E-2 6.3E5 55.3 12335 5107 1293.8
1E-3 6.0E5 58.1 1426.7 4984  1488.8
T Xlarge 10 1E-2 9.1E5 822 2780.0 6138 2875.2
1E-3 8.9E5 854 3360.1 6070 3457.5
50 1E-2 9.2E5 96.0 41931 6172 4299.1
1E-3 9.0E5 108. 49148 6104 5025.6

It appears that the computation time taken by CG to solve
the preconditioned system is far more dependent on the
number of fixed fill-ins rather than on the drop tolerance since
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the fixed fill-in parameter determines the density of the
preconditioner. The same comment can be given on the
storage requirements of the preconditioner. However, in most
cases, the drop tolerance has an obvious effect on
improvement of the number of iterations of the CG method.
According to these observations, the drop tolerance can be
interpreted as a parameter responsible for the accuracy of the
solution and the fixed fill-in number as a parameter to control
the storage requirement and computational expense of the
solver.

Factorized sparse approximate inverse (FSAI)

The results from applying PCG with FSAI preconditioner on
our samples systems are presented in Table V. To build the
preconditioner, a priori sparsity pattern needs be determined.
In the reported results in Table V, two different sparsity
patterns are considered. One is the same as the sparsity pattern
of the coefficient matrix A and the other one is identical to

that of the squared coefficient matrix A?. Extensive
experiments suggest that considering higher powers of matrix
A for this purpose is of no further improvement in the
efficiency of the preconditioner since the cost of constructing
the preconditioner grows significantly.

TABLE V
CONVERGENCE RESULTS OF PCG WITH FSAI PRECONDITIONER

. A P-Time CG CG Total
Matrix PRIORI PCN Time Iter Time
C_Small A 1.1E+4 5.24 9.76 723 15.00
A2 95E+3 932 13.61 672 22.93
C_Mid A 8.6E+4 1501 28.42 2023 43.43
A? 84E+4  24.72 42.13 1999 66.85
C_Large A 9.9E+4  41.46 56.64 2171 98.10
A% 95E+4 5859 83.20 2126 141.79
C_Xlarge A 16E+5 8243 25676 2760  339.19
A?  12E+5 10215 33351 2390  435.66
T_Small A 25E+4 6.01 8.35 1090 14.36
A2 21E+4  12.89 11.48 999 24.37
T _Mid A 1.0E+6  20.30  426.09 6900  446.39
A’  98E+5 4614 63265 6830  678.79
T Large A 96E+5 51.15 81639 6760  867.54
A? 83.82 1289.2

9.3E+5 12053 6654 0
T Xlarge A 23E+6  92.07 35545 10464 36465
A’ 19E+6 14541 48456 9510  4991.0

The results from Table V suggest that for all of the sample

systems, although use of the sparsity pattern of A? leads to a
better conditioned matrix and reduces the number of CG
iteration, the cost of construction of the preconditioner and the
solution time of the PCG algorithm is much higher than the
case of employing the sparsity patter of A. Moreover,
compared to other preconditioning techniques reported so far,
the efficiency of FSAI preconditioner in terms of total solution
time of the PCG algorithm is quite comparable to ICDT and in
most cases slightly better than FFIC. However, it is still
outperformed by AJRIC with quite a considerable margin.

Stabilized approximate inverse (SAINV(7))

Table VI presents the results of the employment of PCG
method preconditioned with SANIV to solve the sample
systems with two different values of drop tolerance 7. Smaller
values of the drop tolerance make the preconditioner
construction time prohibitively longer. Note that as all sample
systems are SPD, the SANIV preconditioner is computed
without any breakdowns.

TABLE VI
CONVERGENCE RESULTS OF PCG WITH SAINV PRECONDITIONER

. P-Time CG CG Total
Matrix T PCN Time Iter Time
C_Small 0.1 1.0E+4 5.31 9.18 680 14.49
0.01 9.6E+3 10.12 13.49 666 23.61

C_Mid 0.1 8.5E+4 14.30 27.85 1982 42.15
0.01 8.4E+4 20.72 41.52 1970 62.24

C_Large 0.1 9.7E+4 40.17 55.23 2117 95.40
0.01 9.5E+4 56.39 81.99 2095 138.38

C_Xlarge 0.1 1.7E+45 82.19 260.77 2803 342.96
0.01  1.4E+5 96.71 355.00 2544 451.71

T_Small 0.1 2.5E+4 6.49 8.24 1075 14.73
001 2.2E+4 10.75 11.59 1008 22.34

T_Mid 0.1 9.8E+5 21.62 415.65 6731 437.27
0.01 9.7E+5 39.79 620.33 6697 660.12

T_Large 0.1 9.7E+5 50.83 808.78 6697 859.61
0.01 9.3E+5 78.36 1187.8 6557 1266.1

T_Xlarge 0.1 2.1E+6 91.42 3347.3 9854 3438.7
001 18E+6 129.01 4648.4 9123 4777.4

Table VI reveals that while the time of constructing SAINV
preconditioner is comparable to that of FSAI, the total time of
the PCG algorithm is slightly shorter in the former case.
Furthermore, selecting a smaller drop tolerance seems to
increase the preconditioning time even higher with generally
no significant achievement in terms of the CG time.

In addition, similar to FSAI, the SAINV preconditioner is
also not as efficient as incomplete Cholesky variants at least in
sequential computations. However, in parallel computations
this comparison may lead to a totally different statement.
Figure 1 compares the CPU time per PCG iteration with two
major classes of preconditioners studied so far, i.e. incomplete
Cholesky (IC-CG) and approximate inverse (Al-CG)
techniques. As the purpose of such a comparison is to reveal
the possible advantage of the approximate inverse
preconditioners over incomplete Cholesky techniques in
parallel environment, only the best performance results of
each class of preconditioners for each problem are included in
Figure I.

Figure I shows that the CG time per iteration is higher for
CG preconditioned with incomplete Cholesky preconditioner.
It is of no surprise as each iteration of an incomplete Cholesky
preconditioned CG (IC-CG) includes one matrix-vector
product and two triangular system solution while each
iteration of an approximate inverse preconditioned CG (Al-
CG) involves three matrix vector products.
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FIGURE I: TIME PER CG ITERATION WITH IC AND Al PRECONDITIONERS

According to Figure I, even in sequential environment, a
matrix-vector product is computationally cheaper than a
triangular system solution.

V.CONCLUSION AND FUTURE RESEARCH

In this paper we make an extensive numerical study of the
preconditioning techniques for large sparse linear systems
arising in the course of the interior point method applied to
optimization problems in finite element limit analysis. We
included in our study to most widely used classes of
preconditioners, the incomplete Cholesky (IC) techniques and
the approximate inverse (Al) methods. The systems arising in
the specified application are usually highly ill-conditioned. As
direct solvers can handle these systems efficiently in smaller
sizes, we focus our attention to large sparse systems where the
use of direct solvers is not practical due to prohibitive
computational and memory costs.

Three variants of 1C preconditioners and two variants of Al
preconditioners which differ in the employed dropping rules
were considered. In each case, a detailed parametric numerical
study was conducted and the results were discussed and
compared with other methods. The parametric study results
can serve as a guide to choose the appropriate preconditioner
with regards to the problem in hand and specific goals of the
application.

Overall, the IC variants seem to be more efficient than the
Al techniques in terms of their effect on the conditioning of
the system and as a result the speed of the convergence of the
method. Among various IC preconditioners, the Ajiz-
Jennings’ robust incomplete Cholesky preconditioner (AJRIC)
showed the best effect on the CG convergence, followed by
the incomplete Cholesky preconditioner with double threshold
(ICDT) and Incomplete Cholesky preconditioner with fixed
fill-in (FFIC). Note that as for ICDT, the exact size of
preconditioner is predictable in advance, in applications where
this is desirable, ICDT could be an efficient choice.

The performances of the two Al preconditioners are closely
comparable with a slight advantage toward the SAINV
preconditioner. Although both Al variants are less effective
compared to IC techniques, they possess a significant
advantage over IC variants. In fact, even in sequential
computations, the each iteration of PCG preconditioned with
Al techniques is computationally cheaper than one obtained
from IC preconditioning. Indeed, in a parallel computational

environment, the much more efficient parallelism
characteristics of a matrix-vector product compared to a
triangular system solution may compensate the more number
of required CG iterations and, in total, outperform the
incomplete Cholesky variants. This is an interesting direction
for our future research.

REFERENCES

[1] M.A. Ajiz and A. Jennings, “A robust incomplete Choleski-conjugate
gradient algorithm,” in International Journal of Numerical Methods in
Engineering, vol. 20, 1984, pp. 949-966.

[2] E.D. Anderson, C. Roos, and T. Terlaky, “On implementing a primal-
dual interior-point method for conic quadratic optimization,” in
Mathematical Programming, vol. 95, 2003, pp. 249-277.

[3] M.W. Benson, Iterative Solution of Large Scale Linear Systems, M.Sc.
thesis, Lakehead University Press, 1973.

[4] M. Benzi, “Preconditioning techniques for large linear systems: A
survey,” in Journal of Computational Physics, vol. 182, 2002, pp.
418-477.

[5] M. Benzi, J. K. Cullum, and M. Tuma, “Robust approximate inverse
preconditioning for the conjugate gradient method,” in SIAM Journal
on Scientific Computing, vol. 22, 2000, pp. 1318-1332.

[6] M. Benzi, D. B. Szyld, and A. van Duin, “Orderings for incomplete
factorization preconditioning of nonsymmetric problems,” in SIAM
Journal on Scientific Computing, vol. 20, 1999, pp. 1652-1670.

[7] M. Benzi and M. Tuma, “A comparative study of sparse approximate
inverse preconditioners,” in Applied Numerical Mathematics, vol. 30,
1999, pp. 305-340.

[8] M. Benzi and M. Tuma, “A sparse approximate inverse preconditioner
for nonsymmetric linear systems,” in SIAM Journal on Scientific
Computing, vol. 19, 1998, pp. 968-994.

[91 M. Benzi and M. Tuma, “Orderings for factorized approximate inverse
preconditioners,” in SIAM Journal of Scientific Computing, vol. 21,
2000, pp. 1851-1868.

[10] K. Chan, Matrix Preconditioning Techniques and Applications.
Cambridge University Press, 2005.

[11] E. Chow, “A priori sparsity patterns for parallel sparse approximate
inverse preconditioners,” in SIAM Journal on Scientific Computing,
vol. 21, 2000, pp. 1804 - 1822.

[12] E.Chow and Y. Saad, “Parallel Approximate Inverse Preconditioners,”
in Proceedings of the Eight SIAM Conference on Parallel Processing
for Scientific Computing, SIAM , 1997, pp. 14-17.

[13] E. Cuthill, “Several strategies for reducing the bandwidth of matrices,”
in Sparse Matrices and Their Applications, 1972, pp. 157-173.

[14] M. R. Field, “Improving the Performance of Factorised Sparse
Approximate Inverse Preconditioner,” in Hitachi Dublin Laboratory
Technical Report HDL-TR-98-199, Dublin, Ireland, 1998.

[15] G. Gambolati, M. Ferronato, and C. Janna, “Preconditioners in
computational Geomechanics: A survey,” in International Journal of
Numerical and Analytical Methods in Engineering, vol. 35, 2011, pp.
980-996.

[16] M. Grote and T. Huckle, “Parallel preconditioning with sparse
approximate inverses,” in SIAM Journal on Scientific Computing, vol.
18, 1997, pp. 838-853.

[17] 1. Hladik, M. B. Reed, and G. Swoboda, “Robust preconditioners for
linear elasticity FEM analyses,” in  International ~ Journal  of
Numerical Methods in Engineering, vol. 40, 1997, pp. 2109-2127.

[18] T. Huckle, *“Factorized sparse approximate inverses for
preconditioning,” in Journal of Supercomputing, vol. 25, 2003, pp.
109-117.

[19] M. T. Jones and P. E. Plassmann, “An improved incomplete Cholesky
factorization,” in ACM Transactions on Mathematical Software, vol.
21,1995, pp. 5-17.

[20] S. A. Kharchenko, L. Yu. Kolotilina, A. A. Nikishin and A. Yu.
Yeremin, “A robust AINV-type method for constructing sparse
approximate inverse preconditioners in factored form,” in Numerical
Linear Algebra with Applications, vol. 8, 2001, pp. 165-179.

[21] L. Yu. Kolotilina, A. A. Nikishin and A. Yu. Yeremin, “Factorized
sparse approximate inverse preconditionings. IV: Simple approaches to
rising efficiency,” in Numerical Linear Algebra with Applications, vol.
6, 1999, pp. 515- 531.

(Advance online publication: 29 November 2013)



TAENG International Journal of Applied Mathematics, 43:4, IJAM 43 4 05

[22] L. Yu. Kolotilina and A. Yu. Yeremin, “Factorized sparse approximate
inverse preconditioning. I. Theory,” in SIAM Journal on Matrix
Analysis and Application, vol. 14, 1993, pp. 45-58.

[23] O. Kardani, A. V. Lyamin and K. Krabbenhgft, “Preconditioned
Conjugate Gradient for Large Sparse Systems Arising from
Optimization Problems in Geomechanics,” in Proceedings of World
Congress on Engineering, 2013, pp. 216-221.

[24] K. Krabbenhgft and A. V. Lyamin, “Computational Cam clay plasticity
using second-order cone programming,” in Computer Methods in
Applied Mechanics and Engineering, vol. 209-212, 2012, pp. 239 -
249.

[25] K. Krabbenhgft and A. V. Lyamin, and J. Huang, “Granular contact
dynamics using mathematical programming methods,” in  Computes
and Geotechnics, vol. 43, 2012, pp. 165 - 176.

[26] K. Krabbenhgft and A. V. Lyamin, and S. W. Sloan, “Formulation and
solution of some plasticity problems as conic programs,” in
International Journal of Solids and Structures, vol. 44, 2007, pp.
1533-1549.

[27] A. Li, “A new preconditioned AOR iterative method and comparison
theorems for linear systems,” in IAENG International Journal of
Applied Mathematics, vol. 42, 2012, pp. 161-163.

[28] C.-J. Lin and J. J. More, “Incomplete Cholesky factorizations with
limited memory,”  in SIAM Journal on Scientific Computing, vol. 21,
1999, pp. 24-45.

[29] J.W.H. Liu, “Modification of the minimum degree algorithm by
multiple elimination,” in ACM Transactions on Mathematical
Software, vol. 11, 1985, pp. 141-153.

[30] T. A. Manteuffel, “An incomplete factorization technique for positive
definite linear systems,”  in Mathematics of Computation, vol. 34,
1980, pp. 473-497.

[31] J. A. Meijerink and H. A. van der Vorst, “An iterative solution method
for linear systems of which the coefficient matrix is a symmetric M-
matrix,”  in Mathematics of Computation, vol. 31, 1977, pp. 148-
162

[32] M. U. Rehman, C. Vuik and G. Segal, “Preconditioners for steady
Incompressible Navier-Stokes Problem,” in IAENG International
Journal of Applied Mathematics, vol. 38, 2008, pp. 36-43.

[33] Y. Saad, “ILUT: A dual threshold incomplete LU factorization,” in
Numerical Linear Algebra with Applications, vol. 1, 1994, pp. 387—
402.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems. SIAM, 2nd ed.,
2003.

[35] T. Schlick, “Modified Cholesky factorizations for sparse
preconditioners,” in SIAM Journal on Scientific Computing, vol. 14,
1993, pp. 424-445.

[36] R. B. Schnabel and E. Eskow, “A new modified Cholesky
factorization,” in SIAM Journal on Scientific Computing, vol. 11, 1990,
pp. 1136-1158.

[37] M. Tismenetsky, “A new preconditioning technique for solving large
sparse linear systems,” in Linear Algebra with Applications, vol. 154—
156, 1991, pp. 331-353.

[38] S. J. Wright, Primal-Dual Interior-Point Methods. Philadelphia:
SIAM, 1997.

(Advance online publication: 29 November 2013)





