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Abstract—In this paper, we study a discrimination for the
fuzzy sets based on the averaging operators. The discrimina-
tion generalizes the known NTV metric by a free parameter
γ ∈ [ 0, 1]. We give the metric properties of the discrimination
with respect to the parameter γ, and obtain the sufficient
and necessary condition when the discrimination is a metric.
Furthermore, we show that the discrimination is always a
metric, called RNTV metric, on the positive parts of spheres
with their centers under l1-norm. Finally, by computing basic
examples of codons, we show some numerical comparison for
the new RNTV metric to original NTV metric.

Index Terms—Discrimination, Fuzzy set, NTV metric, Trian-
gle inequality, RNTV metric.

I. INTRODUCTION

Sequence analysis and sequence comparison have become
two fundamental methods in the modern molecular biology.
In the past time, many pieces of research were made to
obtain more information about the sequences. The structure
comparison algorithms for molecular sequences has been
discussed in [1], [2]. To study the similarities and dissim-
ilarities of genetic sequences, a new metric was introduced
by Nieto, Torres and Vázquez-Trasande ([3]). This metric is
based on the idea of fuzzy Hamming distance and fuzzy
entropy theorem ([4], [5], [6]). It plays a very important
role in mathematical biology, especially in sequence analysis
and sequence comparison ([7], [8]). In [9], Dress and Lokot
called it NTV metric, and presented a simple proof of the
triangle inequality for the new metric.

In section 2, we introduce the relationship between NTV
metric and fuzzy operators. Then by using the concept in
[10], [11], a discrimination related to the NTV metric is
presented. There exists a free parameter γ ∈ [ 0, 1] in the
new discrimination. In section 3, we discuss the new discrim-
ination with its parameter γ and give its metric properties.
Moreover, we obtain the sufficient and necessary condition
when the discrimination is a metric. Finally, we show that
the discrimination is always a metric, called RNTV metric,
on the positive parts of spheres with their centers under l1-
norm. In section 4, we numerically compare the new RNTV
metric to the NTV metric by computing some basic examples
of codons.
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II. PRELIMINARIES AND DISCRIMINATION RELATED TO
NTV METRIC

Let X = {x1, x2, · · · , xn} be a fixed set, a fuzzy set in
X is defined by

A =
{
(x, µA(x))|x ∈ X

}
where

µA : X → I = [ 0, 1], x 7→ µA(x).

The number µA(x) denotes the membership degree of
the element x in the fuzzy set A. We can also use the
unit hypercube In = [ 0, 1]n to describe all the fuzzy
sets in X , because a fuzzy set A determines a point
P = (µA(x1), µA(x2), · · · , µA(xn)). Reciprocally, any
point P = (a1, a2, · · · , an) ∈ In generates a fuzzy set A
defined by µA(xi) = ai, i = 1, 2, · · · , n.

Given two fuzzy sets P = (p1, p2, · · · , pn), Q =
(q1, q2, · · · , qn) ∈ In, it is defined Zadeh operators ∧ and ∨
as

pi ∧ qi = min{pi, qi}, pi ∨ qi = max{pi, qi}. (1)

Consider the Zadeh operators ∧ and ∨ for intersection and
union of fuzzy sets P and Q. If P,Q are not both equal to
zero point 0 := (0, 0, · · · , 0), we can defined the similarity
of P and Q as [6], [12]

Similar(P,Q) =
P
∩

Q

P
∪

Q
=

n∑
i=1

(pi ∧ qi)

n∑
i=1

(pi ∨ qi)
. (2)

Of course, if P = Q = 0, then we define Similar(P,Q) = 1.
It is easy to see 0 ≤ Similar(P,Q) ≤ 1. So we defined

the difference of P and Q as [6]

Differ(P,Q) = 1− Similar(P,Q). (3)

Take (1) and (2) into (3),

Differ(P,Q) =

n∑
i=1

max{pi, qi} −
n∑

i=1

min{pi, qi}
n∑

i=1

max{pi, qi}
. (4)

Using the relation
n∑

i=1

|pi − qi| =
n∑

i=1

(max{pi, qi} −min{pi, qi}) (5)

we have
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Differ(P,Q) =

n∑
i=1

|pi − qi|
n∑

i=1

max{pi, qi}
. (6)

In [3], the NTV metric is defined by

dNTV(P,Q) =

n∑
i=1

|pi − qi|
n∑

i=1

max{pi, qi}
. (7)

This shows that the formula (6) is just the definition of the
NTV metric. So the NTV metric is the difference of fuzzy
sets by intersection and union.

As the authors consider the degree of similarity related to
the canonical midpoint between P and Q ([7]), we use the
averaging operators △ and ▽ extended from the concepts
of ∧ and ∨ ([10], [11]). A parameter γ is added in their
definitions as

pi △ qi = γmin{pi, qi}+ (1− γ)
pi + qi

2
, (8)

pi ▽ qi = γmax{pi, qi}+ (1− γ)
pi + qi

2
, (9)

where γ ∈ [0, 1]. These averaging operators actually combine
the ∧ and ∨ operators, respectively, with the arithmetic mean.
Take (5), (8) and (9) into (2) and (3),

sim(P,Q) :=Similar(P,Q)

=

2γ
n∑

i=1

min{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)

2γ
n∑

i=1

max{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)
,

(10)

dis(P,Q) :=Differ(P,Q)

=

2γ

(
n∑

i=1

|pi − qi|
)

2γ
n∑

i=1

max{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)
.

(11)

The parameter γ essentially determines the uncertainty
degree of △ and ▽ operators [11], [13]. If γ = 1, then the
operators are completely crisp. If γ = 0, then the operators
are completely uncertain because we cannot differentiate the
binary relation Min from Max. Therefore, the similarity value
of any two fuzzy sets is 1 (100% similarity). When γ = 1,
the discrimination of fuzzy sets is the NTV metric. Naturally,
there exist two problems to explain: Is the discrimination
(11) with all values of parameter γ a metric? What is the
geometric meaning of parameter γ? In section 3, the answers
are presented.

III. MAIN RESULTS

THEOREM 1. If n = 1, then dis(P,Q) is a metric for
arbitrary γ ∈ [0, 1].

PROOF. Let P = p,Q = q,R = r ∈ I . It is obvious that
the properties of nonnegativity and symmetry holds. So we
only consider the triangle inequality.

In order to omit the absolute value in (11), we consider
the order of p, q, r. Without loss of generality, we assume
p ≤ q ≤ r. Then

dis(P,Q) =
2γ(q − p)

2γq + (1− γ)(p+ q)
,

dis(Q,R) =
2γ(r − q)

2γr + (1− γ)(q + r)
,

dis(P,R) =
2γ(r − p)

2γr + (1− γ)(p+ r)
.

As r − q ≤ r − p, p+ r ≤ q + r, we have

dis(Q,R) ≤ dis(P,R).

So
dis(P,R) + dis(P,Q) ≥ dis(Q,R).

Let
f(x) =

2γ(x− p)

2γx+ (1− γ)(p+ x)
.

By differentiation,

f ′(x) =
4γp

[2γx+ (1− γ)(p+ x)]2
≥ 0,

hence f is nondecreasing. Thus, dis(P,R) = f(r) ≥ f(q) =
dis(P,Q). So

dis(P,R) + dis(Q,R) ≥ dis(P,Q).

For γ ∈ [0, 1], 0 ≤ p ≤ q ≤ r ≤ 1,

1 + γ

2γq + (1− γ)(p+ q)
≥ 1− γ

2γr + (1− γ)(q + r)

⇒ (q − p)(r − q)(1 + γ)

[2γq + (1− γ)(p+ q)][2γr + (1− γ)(p+ r)]
≥

(q − p)(r − q)(1− γ)

[2γr + (1− γ)(q + r)][2γr + (1− γ)(p+ r)]

⇒(q − p)

[
1

2γq + (1− γ)(p+ q)
− 1

2γr + (1− γ)(p+ r)

]
≥

(r − q)

[
1

2γr + (1− γ)(p+ r)
− 1

2γr + (1− γ)(q + r)

]
⇒ 2γ(q − p)

2γq + (1− γ)(p+ q)
+

2γ(r − q)

2γr + (1− γ)(q + r)
≥

2γ(q − p)

2γr + (1− γ)(p+ r)
+

2γ(r − q)

2γr + (1− γ)(p+ r)

⇒ 2γ(q − p)

2γq + (1− γ)(p+ q)
+

2γ(r − p)

2γr + (1− γ)(q + r)
≥

2γ(r − p)

2γr + (1− γ)(p+ r)
.

That is dis(P,Q) + dis(Q,R) ≥ dis(P,R). Thereby, the
triangle inequality holds. �
THEOREM 2. If n ≥ 2, then dis(P,Q) is a metric if and
only if γ ∈ {0, 1}.

PROOF. If γ = 0, then dis(P,Q) = 0; If γ = 1, then
dis(P,Q) = dNTV(P,Q). So they are both metrics.

If γ ∈ (0, 1), we consider the three points:

P = (0.1, 0.2, 0, · · · , 0),

Q = (0.2, 0.2, 0, · · · , 0),

R = (0.2, 0.1, 0, · · · , 0).
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Then

dis(P,R) =
2γ

3 + γ
, dis(P,Q) =

2γ

7 + γ
, dis(Q,R) =

2γ

7 + γ
,

dis(P,Q) + dis(Q,R) =
4γ

7 + γ
<

4γ

6 + 2γ
= dis(P,R).

That shows the triangle inequality does not hold. �
THEOREM 3. Let n ≥ 2, C ∈ [ 0, n], and

SC =
{
(x1, x2, · · · , xn) ∈ In :

n∑
i=1

xi = C
}
.

Then dis(P,Q) is a metric on SC ∪ {0}.

PROOF. Let P,Q,R ∈ SC ∪ {0},

P = (p1, p2, · · · , pn),

Q = (q1, q2, · · · , qn),

R = (r1, r2, · · · , rn).

It is obvious that dis(P,Q) = dis(Q,P ) ≥ 0 for arbitrary

P,Q ∈ In. If dis(P,Q) = 0, then
n∑

i=1

|pi − qi| = 0, thus

pi = qi, i = 1, 2, · · · , n and P = Q.
Next, to prove the triangle inequality

dis(P,R) + dis(R,Q) ≥ dis(P,Q),

we have to consider four cases.
1. The first case is when P,Q,R ∈ SC . Formula (11) can

be simplified as

dis(P,Q) =

2γ
n∑

i=1

|pi − qi|

2γ
n∑

i=1

max{pi, qi}+ 2(1− γ)C

=

n∑
i=1

|pi − qi|
n∑

i=1

max{pi, qi}+ 1−γ
γ C

Apply the method in [9], putting

A =

n∑
i=1

|pi − qi|, B =

n∑
i=1

max{pi, qi},

A′ =

n∑
i=1

(|pi − ri|+ |ri − qi|), B′ =

n∑
i=1

max{pi, qi, ri}.

As A ≤ A′, 1−γ
γ C > 0, and the result AB′ ≤ B′A holds in

[9], we have

AB′ +
A(1− γ)C

γ
≤ B′A+

A′(1− γ)C

γ
.

Both sides divided by
(
B + 1−γ

γ C
)(

B′ + 1−γ
γ C

)
, we find

A

B + 1−γ
γ C

≤ A′

B′ + 1−γ
γ C

.

The above shows

dis(P,Q) ≤

n∑
i=1

(|pi − ri|+ |ri − qi|)
n∑

i=1

max{pi, qi, ri}+ 1−γ
γ C

.

With
n∑

i=1

(|pi − ri|+ |ri − qi|)
n∑

i=1

max{pi, qi, ri}+ 1−γ
γ C

=

n∑
i=1

|pi − ri|
n∑

i=1

max{pi, qi, ri}+ 1−γ
γ C

+

n∑
i=1

|ri − qi|
n∑

i=1

max{pi, qi, ri}+ 1−γ
γ C

≤

n∑
i=1

|pi − ri|
n∑

i=1

max{pi, ri}+ 1−γ
γ C

+

n∑
i=1

|ri − qi|
n∑

i=1

max{qi, ri}+ 1−γ
γ C

,

the triangle inequality dis(P,R) + dis(R,Q) ≥ dis(P,Q)
holds.

2. The second case is when P,R ∈ SC , Q = 0. Then

dis(P,Q) =
2γC

2γC + (1− γ)C
=

2γ

1 + γ
= dis(R,Q), (12)

Formula (12) and dis(P,R) ≥ 0 lead

dis(P,R) + dis(R,Q) ≥ dis(P,Q).

3. The third case is there exists only one zero point in
P,R. In this case, we have

dis(P,R) =
2γC

2γC + (1− γ)C
=

2γ

1 + γ
.

If P = 0, R ∈ SC , Q ∈ SC , then we have

dis(P,Q) =
2γC

2γC + (1− γ)C
=

2γ

1 + γ
= dis(P,R).

If P = 0, R ∈ SC , Q = 0, then

dis(P,Q) = 0.

If P ∈ SC , R = 0, Q ∈ SC ,

dis(P,Q) =

∑
pi≥qi

(pi − qi) +
∑

pi<qi

(qi − pi)∑
pi≥qi

pi +
∑

pi<qi

qi +
1−γ
γ C

≤

∑
pi≥qi

pi +
∑

pi<qi

qi∑
pi≥qi

pi +
∑

pi<qi

qi +
1−γ
γ C

.

Noting ∑
pi≥qi

pi +
∑
pi<qi

qi ≤ 2C,

we have

0 ≤ dis(P,Q) ≤ 2C

2C + 1−γ
γ C

=
2γ

1 + γ
. (13)

then from (13) we have

dis(P,R) ≥ dis(P,Q).

If P ∈ SC , R = 0, Q = 0, then we have

dis(P,Q) =
2γC

2γC + (1− γ)C
=

2γ

1 + γ
= dis(P,R).

All above lead dis(P,R) + dis(R,Q) ≥ dis(P,Q).
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4. The fourth case is when P = R = 0. We
have dis(P,R) = 0, dis(P,Q) = dis(R,Q). That leads
dis(P,R) + dis(R,Q) ≥ dis(P,Q).

To sum up the four cases, we have proved the validity of
the triangle inequality on SC ∪ {0}. �

We define the new metric in theorem 3 as dRNTV:

dRNTV(P,Q) =

2γ

(
n∑

i=1

|pi − qi|
)

2γ
n∑

i=1

max{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)

(14)
where P,Q ∈ SC ∪ {0}.

COROLLARY 1. dRNTV(P,Q) is a metric on the proba-
bility space.

COROLLARY 2. If γ = 0, then dRNTV(P,Q) = 0 .

COROLLARY 3. If P ̸= 0, then

dRNTV(P,0) =
2γ

1 + γ
.

COROLLARY 4. If P ̸= 0, then

γ =
dRNTV(P,0)

2− dRNTV(P,0)
.

COROLLARY 5. If γ ≥ 0 and P,Q ∈ SC , then
dRNTV(P,Q) ≤ γ. The equality holds if and only if piqi = 0
for all i = 1, 2, · · · , n.

PROOF. When P,Q ∈ SC ,

dRNTV(P,Q) =

γ

(
n∑

i=1

|pi − qi|
)

γ
n∑

i=1

max{pi, qi}+ (1− γ)C
.

Noting
n∑

i=1

|pi − qi| ≤ C ≤
n∑

i=1

max{pi, qi}, (15)

we obtain the inequality dRNTV(P,Q) ≤ γ.
dRNTV(P,Q) = γ holds if and only if both equalities hold

in (15). �
Those corollaries above show the geometric meaning of

the parameter γ.

THEOREM 4.

dRNTV(λP, λQ) = dRNTV(P,Q).

PROOF.

dRNTV(λP, λQ)

=

2γ(
n∑

i=1

|λpi − λqi|)

2γ
n∑

i=1

max{λpi, λqi}+ (1− γ)
n∑

i=1

(λpi + λqi)

=

2γ(
n∑

i=1

|pi − qi|)

2γ
n∑

i=1

max{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)

=dRNTV(P,Q)

�

THEOREM 5. If P,Q ∈ SC ∪ {0} are determined and
P ̸= Q, then dRNTV is increasing function for γ.

PROOF. let

g(γ) =

2γ(
n∑

i=1

|pi − qi|)

2γ
n∑

i=1

max{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)
,

then

g′(γ) =

2(
n∑

i=1

|pi − qi|)[
n∑

i=1

(pi + qi)][
2γ

n∑
i=1

max{pi, qi}+ (1− γ)
n∑

i=1

(pi + qi)

]2 > 0.

�

THEOREM 6. If P,Q ∈ SC , then

dRNTV(P,Q) ≤ γ

C
∥P −Q∥1

with ∥X∥1 :=
n∑

i=1

|xi| for all X ∈ SC as usual.

PROOF.

dRNTV(P,Q) =

2γ(
n∑

i=1

|pi − qi|)

2γ
n∑

i=1

max{pi, qi}+ 2(1− γ)C

≤
2γ(

n∑
i=1

|pi − qi|)

2γ

(
max{

n∑
i=1

pi,
n∑

i=1

qi}
)
+ 2(1− γ)C

=

2γ(
n∑

i=1

|pi − qi|)

2γC + 2(1− γ)C

=
γ

C
∥P −Q∥1

�

From the theorem above we can find the value depends
on the parameters γ and C under l1-norm.

IV. COMPARISON BETWEEN dRNTV AND dNTV

As [3] mentioned, we consider the RNA alphabet
{U, C, A, G }. Code U as (1, 0, 0, 0): 1 shows the first letter
U is present, 0 shows the second letter C does not appear,
0 shows the third letter A does not appear, 0 shows the
fourth letter G does not appear. Thereby, C is represented as
(0, 1, 0, 0), A is represented as (0, 0, 1, 0), G is represented as
(0, 0, 0, 1). As a result, any codon can correspond to a fuzzy
set as a point in the 12-dimensional fuzzy polynucleotide
space I12. For example, the codon CGU would be written
as

(0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0) ∈ I12.

However, there exists some cases in which no sufficient
knowledge about the chemical structure of a particular se-
quence. One therefore may deal with base sequences not
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necessarily at a corner of the hypercube and some compo-
nents of the fuzzy set are not either 0 or 1. For example,

(0.3, 0.4, 0.1, 0.2, 0, 1, 0, 0, 0, 0, 0, 1) ∈ I12

expresses a codon XCG. In the case, the first letter X is
unknown and corresponds to U to extent 0.3, C to the extent
0.4, A to extent 0.1, G to extent 0.2. Generally, we understand
the value as the probability of X belonging to the specific
RNA letter. In this opinion, the sum of the components in
the point equals to 3.

(1) For the metric dNTV (this case corresponds to γ = 1)

dNTV(histidine, proline) = dNTV(CAU, CCG) = 0.8

dNTV(histidine, serine) = dNTV(CAU, UCG) = 1

dNTV(histidine, arginine) = dNTV(CAU, CGU) = 0.5

(2) For the metric dRNTV with γ = 0.5

dRNTV(histidine, proline) = dRNTV(CAU, CCG) = 0.5

dRNTV(histidine, serine) = dRNTV(CAU, UCG) = 0.6667

dRNTV(histidine, arginine) = dRNTV(CAU, CGU) = 0.2857

(3) For the metric dRNTV with γ = 0.3

dRNTV(histidine, proline) = dRNTV(CAU, CCG) = 0.3333

dRNTV(histidine, serine) = dRNTV(CAU, UCG) = 0.4615

dRNTV(histidine, arginine) = dRNTV(CAU, CGU) = 0.1818

From the above, the dRNTV is decreasing when the
parameter γ is decreasing. And the decreasing trend is not
linear. But the value of γ does not change the relationship of
the distances between different codons. Next, the distances
between codon XCG mentioned and proline and serine are

(1) For the metric dNTV (this case corresponds to γ = 1)

dNTV(XCG, proline) = dNTV(XCG, CCG) = 0.3333

dNTV(XCG, serine) = dNTV(XCG, UCG) = 0.3784

(2) For the metric dRNTV with γ = 0.5

dRNTV(XCG, proline) = dNTV(XCG, CCG) = 0.1818

dRNTV(XCG, serine) = dNTV(XCG, UCG) = 0.2090

(3) For the metric dRNTV with γ = 0.3

dRNTV(XCG, proline) = dNTV(XCG, CCG) = 0.1132

dRNTV(XCG, serine) = dNTV(XCG, UCG) = 0.1308

We apply the comparison to complete genomes. In[14],
Torres and Nieto computed the frequencies of the nucleotides
A, C, G and T at the three base sites of a codon in two
bacteria M. tuberculosis and E. coli, and obtain two points
corresponding to either:

(0.1632, 0.3089, 0.1724, 0.3556, 0.2036, 0.3145, 0.1763,

0.3056, 0.1645, 0.3461, 0.1593, 0.3302) ∈ I12

(0.1605, 0.2420, 0.2600, 0.3374, 0.3116, 0.2286, 0.2846,

0.1752, 0.2619, 0.2568, 0.1831, 0.2981) ∈ I12

For the metric dNTV (this case corresponds to γ = 1)

dNTV(M. tuberculosis, E. coli) =
1.7012

6.8506
= 0.2483

For the metric dRNTV with γ = 0.5

dRNTV(M. tuberculosis, E. coli) =
0.8506

6.4253
= 0.1324

For the metric dRNTV with γ = 0.3

dRNTV(M. tuberculosis, E. coli) =
0.5104

6.2552
= 0.08159

As a result, the various value of γ may adjust the differ-
ence degree between two codons or complete genomes to
meet our demand.

V. CONCLUDING REMARKS

In our work, we obtain the discrimination of fuzzy sets
related to the NTV metric. We mainly discuss the metric
properties of the discrimination by the parameter γ and thus
a question in section 2 are settled. Thereby, we introduce a
new metric dRNTV. In the future, the geometric properties
of dRNTV such as fixed point theory([15]),the isometric
property and the isomorphism property are worthy to be
studied. Applications of the discrimination in mathematical
biology, especially in sequence analysis are also meaningful
as the value of parameter γ maybe corresponds to some
biological significance.
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