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Abstract—Fluid models are appropriate in the field
of telecommunication for modelling the network traffic
where individual units of arrival have less impact on the
performance of the network. Such models characterize the
traffic as a continuous stream with a parameterized flow
rate. For practical design and performance evaluation,
it is essential to obtain information about the buffer
occupancy distribution. In this paper, we analyze a fluid
queue modulated by a single server queueing model subject
to catastrophes under steady state conditions. Explicit
analytical expression for the joint distribution of the state
of the background queueing model and the content of the
buffer is presented. A closed form expression for the buffer
occupancy distribution is obtained using continued fraction
methodology in the transformed domain.
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I. INTRODUCTION

The development of telecommunication networks is
an exciting and challenging area which requires models
and methods for performance studies. One of the major
issues of concern is in the traffic regulation mechanism
of telecommunication networks. In recent years, fluid
queues have been widely accepted as appropriate models
for modern telecommunication [1] and manufacturing
systems [4]. This modelling approach ignores the dis-
crete nature of the real information flow and treats it as
a continuous stream. In particular, in the ATM environ-
ment where the fixed cell size is small and the interarrival
time between cells at the time of generation is constant
for several contiguous cells, this modelling approach
has proved to be quite effective. Fluid models play a
significant role in ATM networks since the variations on
the cell level are almost negligible compared to those on
the most important burst level.

The rate at which the information arrives to a switch or
multiplexer often fluctuates randomly with a high degree
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of correlation in time. The information is buffered for
service and the service rates may vary randomly. Such
behaviour is often described by a single server queueing
model in which the rate of information arriving and leav-
ing the switching component is modulated according to a
Markov process evolving in the background. Combining
this modelling approach with the fluid approximation
for information flows lead to Markov Modulated Fluid
Queues.

Steady state behaviour of Markov driven fluid queues
have been extensively studied in the literature. For a
fluid queue driven by an M/M/1 queueing model,
Parthasarathy etal. [5] presents an explicit expression
for the buffer content distribution in terms of modified
Bessel function of first kind using Laplace transforms
and continued fractions. In recent years, Silver Soares
and Latouche [7] expressed the stationary distribution of
a fluid queue with finite buffer as a linear combination of
matrix exponential terms using matrix analytic methods.
Besides, fluid queues also have successful applications
in the field of congestion control [8] and risk processes
[6]. Fluid models driven by an M/M/1/N queue with
single and multiple exponential vacations were recently
studied by Mao etal. ([2], [3]) using spectral method.

In this paper, we analyse fluid queues driven by an
M/M/1 queue subject to catastrophe and subsequent
repair. The modulating process is the single server
queueing model where customers arrive according to
a Poisson process and their service times follow an
exponential distribution. With the arrival of a negative
customer into the system (referred to as catastrophe), the
system goes to the state of repair, wherein the repair time
also follows exponential distribution. When a negative
customer arrives, it induces the positive customers, if
any, to immediately leave the system. Further, the arrival
of negative customers removes all the unfinished work
and leads to server breakdown.

Such queueing models finds the wide range of ap-
plications in computer and communication systems. For
example, the arrival of virus in the computer networks
can be viewed as a negative customer and the per-
formance of all other usual operations through various
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Fig. 1. State Transition Diagram

processors represent positive customers. When the virus
affects the system, one or more files may be infected and
the system manager may have to go through a number of
backups to recover the infected files. The recover time
of the infected files can be regarded as the repair time
of the server due to an arrival of negative customer. The
term queues with negative customers, queues subject to
disaster and catastrophe processes are interchangeably
used in literature, both in discrete and in continuous
time. To the best of our knowledge, the present paper
is the first of its kind to analyze fluid models driven
by queues subject to disasters, although earlier several
authors have studied fluid queues modulated by vacation
queueing models.

II. MODEL DESCRIPTION

Let us denote the background single server queueing
model by {X(t), t ≥ 0} where X(t) denotes the number
of customer in the system at time t. Customers arrive
according to a Poisson process at an average rate, λ
and the service times are exponentially distributed with
parameter µ. Further, the catastrophes are assumed to
occur according to a Poisson process with rate η. When
the system is met with a catastrophe, all the customers
including the one in service is lost and the system transits
to a repair state. The repair time of failed server follows
exponential distribution with parameter γ. Customers
who arrive during the failed state are not allowed to join
the queue.

Let J(t) denote the state of the server at time t.
Assume that J(t) = 1 represents the server is in
functional state and J(t) = 0 represent that the server
is in the state of repair. Then, the state space of
the two dimensional process (J(t), X(t)) is given by
S = {(0, 0)U(1, k), k = 0, 1, 2, · · · }. The state tran-
sition diagram of the modulating process is shown in
Fig 1.

Consider a fluid queue modulated by the above queue-
ing model. Let {C(t), t ≥ 0} represent the buffer
content process, where C(t) denotes the content of the
fluid buffer at time t. When the server is in functional
state (busy or idle), the fluid accumulates in an infinite
capacity buffer at a constant rate r > 0. The buffer
depletes the fluid during the repair periods of the server
at a constant rate r0 < 0 as long as the buffer is
nonempty. Hence, the dynamics of the buffer content

process is given by

dC(t)

dt
=


0, if C(t) = 0, J(t) = 0

r0, if C(t) > 0, J(t) = 0

r, if C(t) ≥ 0, J(t) = 1, X(t) = i, i ≥ 0.

Clearly, the 3-dimensional process
{(J(t), X(t), C(t)), t ≥ 0} constitutes a Markov
process and it possesses a unique stationary distribution
under a suitable stability condition. To ensure the
stability of the process {(J(t), X(t), C(t)), t ≥ 0}, we
assume the mean aggregate input rate to be negative,
that is,

r0π00 + r
∞∑
j=0

π1j < 0.

The terms π00 and π1j , for j = 0, 1, 2, · · · denote the
stationary probability distribution for the states of the
background queueing model given by

π00 =
η

γ + η
and

π1j =

(
η

γ + η

)(
γ

λzj+1
2 (1− z1)

)
, j = 0, 1, 2, · · · ,

where

z1, z2 =
λ+ µ+ η ∓

√
(λ+ µ+ η)2 − 4λµ

2λ
.

Letting

Q(t, x) = Pr{J(t) = 0, X(t) = 0, C(t) ≤ x}, t, x ≥ 0,

and

Fk(t, x) = Pr{J(t) = 1, X(t) = k,C(t) ≤ x}, t, x ≥ 0,

k = 0, 1, 2, · · · ,

the Kolmogorov forward equations for the Markov pro-
cess {J(t), X(t), C(t)} are given by

∂Q(t, x)

∂t
+ r0

∂Q(t, x)

∂x
= −γQ(t, x) + η

∞∑
k=0

Fk(t, x),

∂F0(t, x)

∂t
+ r

∂F0(t, x)

∂x
= γQ(t, x)− (λ+ η)F0(t, x)

+µF1(t, x),

and for k = 1, 2, 3, · · ·
∂Fk(t, x)

∂t
+ r

∂Fk(t, x)

∂x
= λFk−1(t, x)

− (λ+ µ+ η)Fk(t, x) + µFk+1(t, x).

When the process is in equilibrium, the above system
then reduces to

r0
dQ(x)

dx
= −γQ(x) + η

∞∑
k=0

Fk(x), (II.1)

r
dF0(x)

dx
= γQ(x)− (λ+ η)F0(x) + µF1(x), (II.2)
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and

r
dFk(x)

dx
= λFk−1(x)− (λ+ µ+ η)Fk(x)

+µFk+1(x) k = 1, 2, 3 · · ·, (II.3)

subject to the boundary conditions,

Fk(0) = 0, k = 0, 1, 2, · · · and
Q(0) = a, for some constant 0 < a < 1.

Ťhe condition Q(0) = a suggest that with some positive
probability, say a, the buffer content remains empty
when the server in the background queuing model is
under repair.

Now, taking Laplace transform of equations (II.1) to
(II.3) leads to,

r0[sQ̂(s)−Q(0)] = −γQ̂(s) + η
∞∑
k=0

F̂k(s),

(rs+ λ+ η)F̂0(s)− µF̂1(s) = γQ̂(s) and

(rs+ λ+ µ+ η)F̂k(s)− µF̂k+1(s) = λF̂k−1(s),

k = 1, 2, 3, · · · ,

which upon simplification yields

Q̂(s) =
ar0

r0s+ γ
+
η
∑∞
k=0 F̂k(s)

r0s+ γ
, (II.4)

F̂0(s) =
γQ̂(s)

rs+ λ+ η − µF̂1(s)

F̂0(s)

and (II.5)

F̂k(s)

F̂k−1(s)
=

λ

rs+ λ+ µ+ η − µF̂k+1(s)

F̂k(s)

. (II.6)

The last equation yields a continued fraction representa-
tion given by

F̂k(s)

F̂k−1(s)
=

λ

rs+ λ+ µ+ η−
λµ

rs+ λ+ µ+ η−
λµ

rs+ λ+ µ+ η−
· · ·(II.7)

Assume

f(s) =
λµ

rs+ λ+ µ+ η−
λµ

rs+ λ+ µ+ η−
· · · ,

=
λµ

rs+ λ+ µ+ η − f(s)

=
λµ
r

s+ λ+µ+η
r − f(s)

r

,

which leads to the quadratic equations

f(s)2

r
−
(
s+

λ+ µ+ η

r

)
f(s) +

λµ

r
= 0.

Upon solving the above equation, we get

f(s) =
p−

√
p2 − α2

2
r

(II.8)

where p = s + λ+µ+η
r and α = 2

√
λµ
r . Using the

continued fraction representation of equation (II.7) in
equation (II.5), leads to

F̂0(s) =
γQ̂(s)

rs+ λ+ η − f(s)
. (II.9)

Similarly,

F̂k(s)

F̂k−1(s)
=

1

µ
f(s)

and hence

F̂k(s) =
f(s)

µ
F̂k−1(s) =

(
f(s)

µ

)k
F̂0(s). (II.10)

Now, substituting for F̂k(s) in Q̂(s) given by equation
(II.4) yields

Q̂(s) =
ar0

r0s+ γ
+

µηF̂0(s)

(r0s+ γ)(µ− f(s))
.

Substituting for F̂0(s) from equation (II.9) and upon
simplification leads to,

Q̂(s) =
a

s
− aγ/r0
s(s+ η

r +
γ
r0
)
, (II.11)

which on inversion yields,

Q(x) = a− aγ

r0

∫ x

0

e
−
(
η
r+

γ
r0

)
y
dy. (II.12)

Substituting for Q̂(s) from equation (II.11) in equation
(II.9), after simplification yields

F̂0(s) =
aγ

rµ

(µ− f(s))
s(s+ η

r +
γ
r0
)
,

=
aγr0
µ

(µ− f(s))
(ηr0 + γr)

[
1

s
− 1

s+ η
r +

γ
r0

]
,

which on inversion yields,

F0(x) =
aγr0

µ(γr + ηr0)

[
µ− µe−

(
η
r+

γ
r0

)
x

−
∫ x

0

e−(
λ+µ+η

r )x I1(αx)α

x
dx

+

∫ x

0

e
−
(
η
r+

γ
r0

)
u
e−(

λ+µ+η
r )(x−u)

I1(α(x− u))α
x− u

du

]
. (II.13)

The other steady state probabilities are computed from
equation (II.10) as follows

F̂k(s) =

(
f(s)

µ

)k
F̂0(s)

=

(
p−

√
p2 − α2

2µ
r

)k
F̂0(s)

=
rk

(2µ)k

[
p−

√
p2 − α2

]k
F̂0(s)
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which on the inversion yields,

Fk(x) =

(
r

2µ

)k
e−(

λ+µ+η
r )x kIk(αx)α

k

x
∗ F0(x) (II.14)

where F0(x) is given by equation (II.13). The constant
a which represents Q(0) is given by

Q(0) = a =
r

r0
+ (1− r

r0
)

η

γ + η
(II.15)

Remark :
The stationary buffer occupancy distribution is given

by

F (x) = lim
t→∞

Pr{C(t) < x} = Q(x) +
∞∑
k=0

F̂k(x)

= a

[
1 +

γ

η
− γr

(ηr0 + γr)
+

γ2r

η(ηr0 + γr)

]
− 2aγ

η
e

−η
r x

+
aγ(r0 + r)

(ηr0 + γr)
e
−
(
η
r+

γ
r0

)
x
.

III. CONCLUSION

We provide explicit analytical expressions for the
joint system size probabilities for the state of the back-
ground queueing model and the content of the buffer,
under steady state, for the fluid queue modulated by
an M/M/1 queueing model subject to catastrophes and
subsequent repair. Such closed form expressions will
greatly aid in an indepth analysis of the physical model
for the practitioners. Further extension to the present
work may include the time dependent analysis of the
model under consideration.
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