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Abstract—This paper presents the accuracy of binomial 

model for the valuation of standard options with dividend yield 

in the context of Black-Scholes model. It is observed that the 

binomial model gives a better accuracy in pricing the American 

type option than the Black-Scholes model. This is due to fact 

that the binomial model considers the possibilities of early 

exercise and other features like dividend. It is also observed 

that the binomial model is both computationally efficient and 

accurate but not adequate to price path dependent options. 
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I. INTRODUCTION 

Financial derivative is a contract whose value depends on 

one or more securities or assets, called underlying assets. 

An option is a contingent claim that gives the holder the 

right, but not the obligation to buy or sell an underlying asset 

for a predetermined price called the strike or exercise price 

during a certain period of time. Options come in a variety of 

"flavours". A standard option offers the right to buy or sell 

an underlying security by a certain date at a set strike price. 

In comparison to other option structures, standard options 

are not complicated. Such options may be well-known in the 

markets and easy to trade.  Increasingly, however, the term 

standard option is a relative measure of complexity, 

especially when investors are considering various options 

and structures. Examples of standard options are American 

options which allow exercise at any point during the life of 

the option and European options that allow exercise to occur 

only at expiration or maturity date. 

Black and Scholes published their seminar work on option 

pricing [1] in which they described a mathematical frame 

work for finding the fair price of a European option. They 

used a no-arbitrage argument to describe a partial 

differential equation which governs the evolution of the 

option price with respect to the maturity time and the price  
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of the underlying asset. Moreover, in the same year, [9]  

extended the Black-Scholes model in several important 

ways. The subject of numerical methods in the area of option 

pricing and hedging is very broad, putting more demands on 

computational speed and efficiency. A wide range of 

different types of contracts are available and in many cases 

there are several candidate models for the stochastic 

evolution of the underlying state variables [12]. 

We present an overview of binomial model in the context 

of Black-Scholes-Merton [1, 9] for pricing standard options 

based on a risk-neutral valuation which was first suggested 

and derived by [4] and assumes that stock price movements 

are composed of a large number of small binomial 

movements. Other procedures are finite difference methods 

for pricing derivative by [3], Monte Carlo method for 

pricing European option and path dependent options 

introduced by [2] and a class of control variates for pricing 

Asian options under stochastic volatility models considered 

by [5]. The comparative study of finite difference method 

and Monte Carlo method for pricing European option was 

considered by [6]. Some numerical methods for options 

valuation were considered by [10]. [11] Considered Monte 

Carlo method for pricing some path dependent options. On 

the accuracy of binomial model and Monte Carlo method for 

pricing European options was considered by [7]. These 

procedures provide much of the infrastructures in which 

many contributions to the field over the past three decades 

have been centered. 

In this paper we shall consider only the accuracy of 

binomial model for the valuation of standard options 

namely; American and European options with dividend yield 

in the context of Black-Scholes model.  

 

II. BINOMIAL MODEL FOR THE VALUATION OF 

STANDARD OPTIONS WITH DIVIDEND YIELD 

This section presents binomial model for the valuation of 

standard options with dividend yield. 

 

A. Binomial Model 

This model is a simple but powerful technique that can be 

used to solve the Black-Scholes and other complex option-

pricing models that require solutions of stochastic 

differential equations. The binomial option-pricing model 

(two-state option-pricing model) is mathematically simple 

and it is based on the assumption of no arbitrage. 

The assumption of no arbitrage implies that all risk-free 

investments earn the risk-free rate of return (zero dollars) of 
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investment but yield positive returns. It is the activity of 

many individuals operating within the context of financial 

markets that, in fact, upholds these conditions. The activities 

of arbitrageurs or speculators are often maligned in the 

media, but their activities insure that our financial market 

work. They insure that financial assets such as options are 

priced within a narrow tolerance of their theoretical values 

[10]. 

 

1) Binomial Option Model 

This is defined as an iterative solution that models the 

price evolution over the whole option validity period. For 

some types of options such as the American options, using 

an iterative model is the only choice since there is no known 

closed form solution that predicts price over time. There are 

two types of binomial tree model namely 

i. Recombining tree 

ii. Non-recombining tree 

The difference between recombining and non-

recombining trees is computational only. The recombining 

tree with n  trading periods has )1( n final nodes (in 

n periods there can be n,...,3,2,1 ups) and a non-

recombining tree with n  trading periods has 
n2 final nodes. 

In binomial tree, the number of final nodes is the number of 

rows of a worksheet when implementing the binomial model. 

The Black-Scholes model seems to have dominated 

option pricing, but it is not the only popular model, the Cox-

Ross-Rubinstein (CRR) “Binomial” model is also popular. 

The binomial models were first suggested by [4] in their 

paper titled “Option Pricing: A Simplified Approach” in 

1979 which assumes that stock price movements are 

composed of a large number of small binomial movements. 

Binomial model comes in handy particularly when the 

holder has early exercise decisions to make prior to maturity 

or when exact formulae are not available. These models can 

accommodate complex option pricing problems [11]. 

CRR found a better stock movement model other than the 

geometric Brownian motion model applied by Black-

Scholes, the binomial models. 

First, we divide the life time ],0[ T of the option into 

N time subinterval of length t , where 

 

N

T
t                                                                          (1) 

Suppose that 0S  is the stock price at the beginning of a 

given period. Then the binomial model of price movements 

assumes that at the end of each time period, the price will 

either go up to uS0  with probability p or down to 

dS0 with probability )1( p where u and d are the up and 

down factors with ud 1 . 

We recall that by the principle of risk neutral valuation, 

the expected return from all the traded options is the risk-

free interest rate. We can value future cash flows by 

discounting their expected values at the risk-free interest 

rate. The parameters du, and p satisfy the conditions for 

the risk-neutral valuation and lognormal distribution of the 

stock price and we have the expected stock at time 

T as )( TSE . An explicit expression for )( TSE is obtained 

as follows: 

Construct a portfolio comprising a long position in 

 units of the underlying asset price and a short position 

when 1N . We calculate the value of  that makes the 

portfolio riskless. If there is an up movement in the stock 

price, the value of the portfolio at the end of the life of 

option is ufuS 0  and if there is a down movement in 

the stock price, the value becomes dfdS 0 . Since the 

last two expressions are equal, then we have 

du

du

du

ffduS

ffdSuS

fdSfuS







)(0

00

00

 

)(0 duS

ff du




                                                            (2) 

In the above case, the portfolio is riskless and must earn 

the risk-free interest rate. (2) Shows that  is the ratio of the 

change in the option price to the change in the stock price as 

we move between the nodes. If we denote the risk-free 

interest rate by r , the present value of the portfolio 

is
tr

u efuS  )( 0 . The cost of setting up the portfolio 

is fS 0 , it follows that,
tr

u efuSfS  )( 00  

tr

u efuSSf  )( 00              (3) 

Substituting (2) into (3) and simplifying, then (3) becomes 

))1(( du

tr fppfef   
            (4) 

du

de
p

tr








                 (5) 

For TtN  1 , then we have a one-step binomial 

model. Equations (4) and (5) become respectively 

))1(( du

rT fppfef  
           (6) 

du

de
p

rT




                   (7) 

(6) and (7) enable an option to be priced using a one-step 

binomial model. 

Although we do not need to make any assumptions about 

the probabilities of the up and down movements in order to 

obtain (4). 

The expression du fppf )1(  is the expected payoff 

from the option. With this interpretation of p , (4) then 

states that the value of the option today is its expected future 

value discounted at the risk-free rate. For the expected return 

from the stock when the probability of an up movement is 

assumed to be p , the expected stock price, )( TSE  at time 

T is given by 

0 0 0 0 0( ) (1 )TE S pS u p S d pS u S d pS d        

Therefore, 
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dSdupSSE T 00 )()(                   (8) 

Substituting (7) into (8), yields 

0 0

0 0 0 0

( ) ( )
rT

T

r t r t

e d
E S S u d S d

u d

S e S d S d S e 

 
    

  


    

                     (9) 

Now, 

tr

tr

edppu

eSdSdupS









)1(

)( 000
 

Therefore, 

dppue tr )1( 
               (10) 

When constructing a binomial tree to represent the 

movements in a stock price we choose the parameters u and 

d to match the volatility of a stock price. 

The return on the asset price 0S in a small interval t of 

time is 

tWt
S

S





0

0
                   (11) 

where  = Mean return per unit time,   = Volatility of the 

asset price, tW = Standard Brownian motion and 

)()( tWttWWt   . Neglecting powers of t of 

order two and above, it follows from (10) that the variance 

of the return is 

t

tt

tWEtEtE

tWttE

WtEWtE

S

S
E

S

S
E

t

t

tt




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





2
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222222
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2

0

0

2

0

0

0

)()(2)(

)2(

))(()(















































 

For the one period binomial model, we have that the 

variance of the return of the asset price in the interval t as 
222 ))1(()1( dppudppu   

To match the stock price volatility with the tree's 

parameters, we must therefore have that 

tdppudppu  2222 ))1(()1(    (12) 

Substituting (7) into (12), we have that 

teuddue tt  22)(   

When terms in t2  and higher powers of t are ignored, 

one solution to this equation is 











 t

t

ed

eu





                   (13) 

The probability p obtained in (7) is called the risk neutral 

probability. It is the probability of an upward movement of 

the stock price that ensures that all bets are fair, that is it 

ensures that there is no arbitrage. Hence (10) follows from 

the assumption of the risk-neutral valuation. 

 

2) Cox-Ross-Rubinstein Model 

The Cox-Ross-Rubinstein model [8] contains the Black-

Scholes analytical formula as the limiting case as the number 

of steps tends to infinity. 

After one time period, the stock price can move up to 

uS0 with probability p or down to dS0 with 

probability )1( p as shown in the Fig. 1 below. 

 
Fig. 1: Stock and Option Prices in a General One-Step Tree 

 

 Therefore the corresponding value of the call option at 

the first time movement t is given by [11] 









)0,max(

)0,max(

0

0

KdSf

KuSf

d

u
             (14) 

where uf and df are the values of the call option after 

upward and downward movements respectively. 

We need to derive a formula to calculate the fair price of 

the option. The risk neutral call option price at the present 

time is  

))1(( du

tr fppfef   
            (15) 

To extend the binomial model to two periods, let 

uuf denote the call value at time t2 for two consecutive 

upward stock movements, udf  for one upward and one 

downward movement and ddf for two consecutive 

downward movement of the stock price as shown in the Fig. 

2 below. 

 Fig. 2: Binomial Tree for the respective Asset and Call      

Price in a Two-Period Model  
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Then we have 















)0,max(

)0,max(

)0,max(

0

0

0

KddSf

KudSf

KuuSf

dd

ud

uu

            (16) 

The values of the call options at time t  are 















))1((

))1((

ddud

tr

d

uduu

tr

u

fppfef

fppfef





                                (17) 

Substituting (17) into (15), we have: 

)))1(()1(

))1(((

ddud

tr

uduu

trtr

fppfep

fppfpeef













))1()1(2( 222

dduduu

tr fpfppfpef   
 (18) 

(18) is called the current call value using time t2 , where 

the numbers
2p , )1(2 pp  and 

2)1( p  are the risk 

neutral probabilities that the underlying asset prices Suu , 

udS0 and ddS0  respectively are attained. 

We generate the result in (18) to value an option at 

N

T
t  as 

jNjdu

jNj
N

j

trN fpp
j

N
ef 





 







  )1(

0



)0,max()1( 0

0

KduSpp
j

N
ef jNjjNj

N

j

trN 







 



 
(19) 

where 

)0,max( 0 KduSf jNj

du jNj  
 and  

!)!(

!

jjN

N

j

N











 is the binomial coefficient. We 

assume that m  is the smallest integer for which the option's 

intrinsic value in (19) is greater than zero. This implies 

that KdSu mNm 
. Then (19) can be expressed as 

jNj
N

mj

trN

jNjjNj
N

mj

trN

pp
j

N
Ke

dupp
j

N
eSf





































)1(

)1(0





     (20) 

(20) gives us the present value of the call option. 

The term 
trNe 
 is the discounting factor that reduces 

f to its present value. The first term of 

jNj pp
j

N









)1( is the binomial probability of j upward 

movements to occur after the first N trading periods and 
jNj dSu 
is the corresponding value of the asset after 

j upward move of the stock price. 

The second term is the present value of the option`s strike 

price. Putting
treR  , in the first term in (20), we obtain 

jNj
N

mj

trN

jNjjNj
N

mj

N

pp
j

N
Ke

dupp
j

N
RSf





































)1(

)1(0



           

Therefore, 

jNj
N

mj

trN

jNj
N

mj

pp
j

N
Ke

dpRpuR
j

N
Sf



































)1(

))1(()( 11

0



       (21) 

Now, let ),;( pNm denotes the binomial distribution 

function given by 





N

mj

jNj

j

N ppCpNm )1(),;(         (22)  

(22) is the probability of at least m  success in 

N independent trials, each resulting in a success with 

probability p and in a failure with probability )1( p . 

Then let puRp 1  and dpRp )1()1( 1  
. 

Consequently, it follows from (21) that 

),;(),;(0 pNmKepNmSf rt 
        (23) 

The model in (23) was developed by Cox-Ross-

Rubinstein [4] and we will refer to it as CRR model for the 

valuation of European call option. The corresponding value 

of the European put option can be obtained using call-put 

parity of the form 0SPKeC E

rt

E  
. We state a 

lemma for CRR binomial model for the valuation of 

European call option. 

 

Lemma 1[7]: The probability of a least m success in 

N independent trials, each resulting in a success with 

probability p and in a failure with probability q is given by 





N

mj

jNj

j

N ppCpNm )1(),;(  

Let puRp 1  and dpRq )1(1  
, then it 

follows that ),;(),;(0 pNmKepNmSf rt 

  

                                     
 

B. Procedures for the Implementation of the Multi-

Period Binomial Model 

When stock price movements are governed by a multi-

step binomial tree, we can treat each binomial step 

separately. The multi-step binomial tree can be used for the 

American and European style options. 

Like the Black-Scholes model, the CRR formula in (23) 

can only be used in the pricing of European style options 

and is easily implementable in Matlab. To overcome this 

problem, we use a different multi-period binomial model for 

the American style options on both the dividend and non-

dividend paying stocks. The no-arbitrage arguments are used 

and no assumptions are required about the probabilities of 

the up and down movements in the stock price at each node. 
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For the multi period binomial model, the stock price $S$ 

is known at time zero. At time t , there are two possible 

stock prices uS0 and dS0 respectively. At time t2 , there 

are three possible stock prices uuS0 , udS0 and ddS0 and 

so on. In general, at time ti where Ni 0 , 

)1( i stock price are considered, given by 

NjforduS jNj ,...,2,1,0,0 
                         (24) 

where N is the total number of movements and j is the total 

number of up movements. The multi-period binomial model 

can reflect numerous stock price outcomes if there are 

numerous periods. The binomial option pricing model is 

based on recombining trees, otherwise the computational 

burden quickly become overwhelming as the number of 

moves in the tree increases. 

Options are evaluated by starting at the end of the tree at 

time T and working backward. We know the worth of a call 

and put at time T is  









)0,max(

)0,max(

T

T

SK

KS
                (25) 

respectively. Because we are assuming the risk neutral 

world, the value at each node at time )( tT   can be 

calculated as the expected value at time T discounted at rate 

r for a time period t . Similarly, the value at each node at 

time )2( tT  can be calculated as the expected value at 

time )( tT  discounted for a time period t  at rate r , 

and so on. By working back through all the nodes, we obtain 

the value of the option at time zero. 

Suppose that the life of a European option on a non-

dividend paying stock is divided into N  subintervals of 

length t . Denote the 
thj  node at time ti as the 

)( ji  node, where Ni 0  and ij 0 . Define 

jif , as the value of the option at the ),( ji node. The stock 

price at the ),( ji node is
jNj dSu 
. Then, the respective 

European call and put can be expressed as 

)0,max(, KdSuf jNj

jN  
                 (26) 

,...2,1,0),0,max(,   jfordSuKf jNj

jN    (27) 

There is a probability p of moving from the ),( ji node 

at time ti  to the )1,1(  ji   node at time tji ),( and a 

probability )1(( p of moving from the ),( ji node at the 

ti to the ),1( ji   node at time ti )1(  . Then the 

neutral valuation is 









 



ijNi

fppfef jiji

tr

ji

0,10

])1([ ,11,1,



        (28) 

For an American option, we check at each node to see 

whether early exercise is preferable to holding the option for 

a further time period t . When early exercise is taken into 

account, this value of jif ,  must be compared with the 

option's intrinsic value [7]. For the American put option, we 

have that 

, , ,,i j i j i jf P f   

 ])1([, ,11,10, jiji

trjij

ji fppfeduSKf 

  


 (29) 

(29) gives two possibilities: 

 If jiji fP ,,  , then early exercise is advisable. 

 If jiji fP ,,  , then early exercise is not advisable. 

 

C. Variations of Binomial Models 

The variations of binomial models is of two forms namely 

underlying stock paying a dividend or known dividend yield 

and underlying stock with continuous dividend yield. 

 

1) Underlying stock paying a dividend or known 

dividend yield 

The value of a share reflects the value of the company. 

After a dividend is paid, the value of the company is reduced 

so the value of the share. 
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2) Underlying stock with continuous dividend yield 

A stock index is composed of several hundred different 

shares. Each share gives dividend away a different time so 

the stock index can be assumed to provide a dividend 

continuously. 

We explored Merton's model, the adjustment for the 

Black-Scholes model to carter for European options on 

stocks that pays dividend. Here the risk-free interest rate is 

modified from r to )( r where   is the continuous 

dividend yield. We apply the same principle in our binomial 

model for the valuation of the options. The risk neutral 

probability in (5) is modified but the other parameters 

remains the same. 
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                   (32) 

These parameters apply when generating the binomial tree 

of stock prices for both the American and European options 

on stocks paying a continuous dividend and the tree will be 

identical in both cases. The probability of a stock price 

increase varies inversely with the level of the continuous 

dividend rate . 

III. BLACK –SCHOLES EQUATION 

Black and Scholes derived the famous Black-Scholes 

partial differential equation that must be satisfied by the 
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price of any derivative dependent on a non-dividend paying 

stock. The Black-Scholes model can be extended to deal 

with European call and put options on dividend-paying 

stocks, this will be shown later. In the sequel, we shall 

present the derivation of Black-Scholes model using a no-

arbitrage approach. 

 

A. Black-Scholes Partial Differential Equation 

We consider the equation of a stock price 

tttt dWSdtSdS                            (33) 

where  is the rate of return,  is the volatility and 

)(tW follows a Wiener process on a filtered probability 

space ))(,,,( tt BFB  in which filtration 

)0,{)(  tBBF tt , where tB is the sigma-algebra 

generated by }.0:{ TtSt   Now, suppose that 

),(),( StfStf t  is the fair price of a call option or other 

derivative contingent claim of the underlying asset price 

S at time t . Assuming that ]),0[,(1,2 TRCf  then by 

the Ito’s lemma given below; 
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We obtained the Black-Scholes partial differential equation 

of the form 

0
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Solving the partial differential equation above gives an 

analytical formula for pricing the European style options. 

These options can only be exercised at the expiration date. 

The American style options are exercised anytime up to the 

maturity date. Thus, the analytical formula we will derive is 

not appropriate for pricing them due to this early exercise 

privilege [8]. 

In the case of a European call option, when Tt  , the 

key boundary condition is 

)0,max( KSf                      (36) 

In the case of a European put option, when Tt  , the key 

boundary condition is 

)0,max( SKf                       (37) 

 

B. Solution of the Black-Scholes Equation 

We shall apply the boundary conditions for the European 

call option to solve the Black-Scholes partial differential 

equation. The payoff condition is  

)0,max(),( KSSTtf                (38) 

The lower and upper boundary conditions are given by 
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These are the conditions that must be satisfied by the 

partial differential equation. 

Let tT  , whereT is the expiration date and t is the 

present time. Since tT   
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Substituting (39) into (35), yields 
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Taking Sy ln , then 
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Therefore, 
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We now introduce a new solution 

),(),(   yfeyw r ,  and then we have that 
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Substituting (41) into (40), we have 
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Also substituting (42) into (43), yields 
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Therefore, 
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(44) is called a diffusion equation which has a fundamental 

solution as a normal function. 
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So, 
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Since Sy ln , then 

yeS                       (47) 

The payoff for call option becomes 
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)0,max(),0( Kew                     (48) 

The solution to (44) is 
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We use the payoff condition in (48) and the fundamental 

solution of (46) to obtain 
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We denote the distribution function for a normal variable 

by )(xN  

duexN

x u
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Then (51) becomes 
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So (52) becomes 
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We consider the second term in the right-hand side of 

(53), that is  
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and the limits of (53) using (54) are given below 
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Changing the variable from   to z , the second term in 

the right-hand side of (54) becomes 
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The first integrand of the first term in (53) is expressed as 
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We use the definition of A to have 
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Substituting (58) into the first term of (53), we have 
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By changing the variables as we did in the previous case, 

we get 







zd

r

z

r dNSedzeSe )(
2

1
1

2

2




                 (59) 
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Whence (53) becomes 
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Recall that E

r Cyfywe  ),(),( 
, hence 
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This is the Black-Scholes formula for the price at time 

zero of a European call option on a non-dividend paying 

stock [1]. We can derive the corresponding European put 

option formula for a non-dividend paying stock by using the 

call-put parity given by
r

EE KeSCP  . 

The European put analytical formula is 

)()( 12 dSNdNKeP r
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           (63) 

where )(1)(),(1)( 2211 dNdNdNdN   

The European call and put analytic formulae have gained 

popularity in the world of finance due to the ease with which 

one can use the formula for options valuation, the other 

parameters apart from the volatility can easily be observed 

from the market. Thus it becomes necessary to find 

appropriate methods of estimating the volatility. 

 

C. Dividend Paying Stock 

We relax the assumption that no dividend are paid during 

the life of the option and examine the effect of dividend on 

the value of European options by modified the Black-

Scholes partial differential equation to carter for these 

dividends payments. 

Now we shall consider the continuous dividend yield 

model, let  denote the constant continuous dividend yield 

which is known. This means that the holder receives a 

dividend dt with the time interval dt . The share value is 

lowered after the payout of the dividend and so the expected 

rate of return  of a share becomes )(   . The 

geometric Brownian motion model in (33) becomes 

tttt dWSdtSdS   )(            (64) 

and the modified Black-Scholes partial differential equation 

in (35) is given by  

0
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
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c 
          (65) 

Let tT  , solving (65) by applying the same method, 

the European call option for a dividend paying stock is given 

by 

)()( 21 dNKedNSeC r

E


             (66) 

and the European put option is 
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where 
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The results in (66) and (67) can similarly be achieved by 

considering the non-dividend paying stock formulae in (62) 

and (63). The dividend payment lowers the stock price from 

S to 
Se and the risk-free interest rate which is the rate of 

return from r to )( r  [7]. 

D. Boundary Condition for Black-Scholes Model 

The boundary conditions for Black-Scholes model for 

pricing a standard option are given by 
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We shall state below some theorems without proof as 

follows: 

 

Theorem 2 [7]: Under the binomial tree model for stock 

pricing, the price of a European style option with expiration 

date Tt   is given by  

T
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Corollary 3 [7]: Under the binomial tree model for stock 

pricing, the price of a European style option with expiration 

date Tt   is given by  
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 (71) 

where 
*E  denotes expected value under the risk neutral 

probability 
*p for stock price.  

The above Theorem 2 can be written in words as “the 

price of the option is equal to the present value of the 

expected payoff of the option under the risk neutral 

measure”. 

 

 

 

Theorem 4: (Continuous Black Scholes Formula) [7] 
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where (.)N is the cumulative function of the standard 

normal distributions. 
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Theorem 5: Let CRRn, be the n period CRR binomial 

delta of a standard European put option with extended tree 

and BS is the true delta. Therefore  
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where 
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and m is the largest integer which satisfies 

KdSu mnm 
. 

 

IV. NUMERICAL EXAMPLES AND RESULTS 

This section presents some numerical examples and 

results generated as follows; 

 

A. Numerical examples  

Example 1: Consider a standard option that expires in 

three months with an exercise price of 65$ . Assume that the 

underlying stock pays no dividend, trades at 60$ , and has a 

volatility of %30 per annum. The risk-free rate is %8 per 

annum. 

We compute the values of both European and American 

style options using Binomial model against Black-Scholes 

model as we increase the number of steps with the following 

parameters: 
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30.0,08.0,25.0,65,60  rTKS  

 

The Black-Scholes price for call and put options are 

1334.2 and 8463.5  respectively. 

The results obtained are shown in Table I below.  

 

Example 2: Binomial pricing results in a call price of 

87.31$ and a put price of 03.5$ . The interest rate is %5 , 

the underlying price of the asset is 100$ and the exercise 

price of the call and the put is 85$ . The expiration date is in 

three years. What actions can an arbitrageur take to make a 

riskless profit if the call is actually selling for 35$ ? 

 

Solution: 

Since the call is overvalued and arbitrageur will not want 

to write the call, buy the put, buy the stock and borrow the 

present value of the exercise price, resulting in the following 

cash flow today as shown below 

 

Write 1 call             35$  

Buy 1 put          03.5$  

Buy 1 share             100$  

Borrow   
305.085$ e  16.73$  

 13.3$  

    

The value of the portfolio in three years will be worthless, 

regardless of the path the stock takes over the three-year 

period.  

 

Example 3: Consider pricing a standard option on a stock 

paying a known dividend yield, 05.0 with the 

following parameters: 

 

17.0,25.0,1.0,25.0,50  rTS  

 

The results obtained are shown in Table II below. 

 

Example 4: We consider the performance of Binomial 

model against the “true” Black-Scholes price for American 

and European options with  

 

25.0,1.0,5.0,40,45  rTKS  

 

The results obtained are shown in the Table III below. 

The convergence of the binomial model to the Black-

Scholes value of the option is also made more intuitive by 

the graph in Fig. 3 below. 

 

 
Fig. 3: Convergence of the European Call Price for a Non-

Dividend Paying Stock Using Binomial Model to the Black-

Scholes Value Of 62.7  

 

B. Table of Results 

We present the results generated in the Tables I, II and III 

below. 

 

TABLE I: THE COMPARATIVE RESULTS 

ANALYSIS OF THE BINOMIAL MODEL AND BLACK 

SCHOLES VALUE )8463.5,1334.2(  PC BB OF 

THE STANDARD OPTION 

 

N  European 

Call, CE  

American 

Call, CA  

European 

Put, pE  

American 

Put, pA  

20 2.1755 2.1755 5.8884 6.1531 

40 2.1409 2.1409 5.8538 6.1283 

60 2.1227 2.1227 5.8356 6.1178 

80 2.1315 2.1315 5.8444 6.1246 

100 2.1375 2.1375 5.8504 6.1280 

120 2.1375 2.1375 5.8523 6.1287 

140 2.1394 2.1394 5.8523 6.1282 

160 2.1384 2.1384 5.8513 6.1274 

180 2.1369 2.1369 5.8499 6.1262 

200 2.1369 2.1369 5.8481 6.1249 

220 2.1334 2.1334 5.8463 6.1237 

240 2.1315 2.1315 5.8444 6.1225 

260 2.1305 2.1305 5.8435 6.1224 

280 2.1324 2.1324 5.8453 6.1235 

300 2.1337 2.1337 5.8466 6.1243 

 

TABLE II: OUT-OF-THE MONEY, AT-THE-MONEY 

AND IN-THE-MONEY STANDARD OPTIONS ON A 

STOCK PAYING A KNOWN DIVIDEND YIELD 

 

K
 

CE

 

CA

 

E.E.P 
pE

 

pA

 

E.E.P 

30 18.97 20.50 1.53 0.004 0.004 0.00 

45 6.06 6.47 0.41 1.37 1.49 0.12 

50 3.32 3.42 0.10 3.38 3.78 0.40 

55 1.62 1.63 0.01 6.40 7.31 0.91 

70 0.11 0.11 0.00 19.19 21.35 2.16 
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TABLE III: COMPARISON OF THE CRR “BINOMIAL 

MODEL” TO BLACK-SCHOLES VALUE AS WE 

INCREASE N  

 

    6200.7CB              6692.0PB                 

N
 

CE  CA  pE  pA  

10 7.5849 7.5849 0.6341 0.6910 

30 7.6222 7.6222 0.6714 0.7258 

70 7.6219 7.6219 0.6711 0.7238 

120 7.6229 7.6229 0.6721 0.7238 

200 7.6213 7.6213 0.6705 0.7224 

270 7.6215 7.6215 0.6707 0.7223 

 

C. Discussion of Results 

As we can see from Tables I and III that Black-Scholes 

formula for the European call option, CE  can be used to 

price American call option, CA  for it is never optimal to 

exercise an American call option before expiration. As we 

increase the value of N , the value of the American put 

option, pA  is higher than the corresponding European put 

option, pE because of the early exercise premium (E.E.P). 

Sometimes the early exercise of the American put option can 

be optimal. Table II above shows that American option on 

dividend paying stock is always worth more than its 

European counterpart. A very deep in the money, American 

option has a high early exercise premium. The premium of 

both put and call options decreases as the option goes out of 

the money. The American and European call options are not 

worth the same as it is optimal to exercise the American call 

early on a dividend paying stock. A deep out of the money, 

American and European call options are worth the same. 

This is due to the fact that they might not be exercised early 

as they are worthless. The above results are obtained using 

Matlab codes. 

 

V. CONCLUSION 

Options come in many different flavours such as path 

dependent or non-path dependent, fixed exercise time or 

early exercise options and so on. Dividend is a payment 

made to the owner of a stock. One can distinguish three 

kinds of dividend. Cash dividend is a payment in cash. Stock 

dividend is a payment in stocks. The third type is a mixture 

of the two previous dividends.  Related to call-put parity one 

can create a synthetic stock out of a long call and a short put 

of the same strike. Against this synthetic stock one can sell 

the real stock. If one buys the normal stock and sell the 

synthetic stock (Long S , Long P , Short C ) one trades a 

conversion. If one does the reverse transaction (Long C, 

Short P , Short S ) this is called a reversal. With respect to 

changes in the underlying value there is almost no risk 

involved in these trading strategies. However, one of the 

biggest risks associated to these trading strategies is a 

change in dividend. When a dividend is lowered, this will 

have a positive effect on the value of the call option, and a 

negative effect on the value of the put option. This could be 

easily understood if one realizes that a lower dividend will 

result in a higher value of the future price of the stock. As 

one is long one option and short the other option, the 

changes in values due to a change in dividend work in the 

same direction. A lowered dividend will result in a loss for 

those trades that have set up a conversion. These traders are 

said to be long the dividends. It will result in a profit for 

those who have set up a reversal, i.e. for those traders who 

are said to be short the dividends.  

It will be no surprise that American options are 

more complicated and interesting. A dividend can trigger the 

early exercise of an American option. In the absence of 

dividends European and American options worth the same 

value and it is never optimal to exercise an American call 

option before its expiration. One should always hold the 

American call option till expiration. On the other hand it 

might be advantageous to exercise an American put option 

before expiration if the put option is sufficiently deep in the 

money. When dividends are paid during the life of the 

option it might be advantageous to exercise an American call 

option before expiration. For American call option, early 

exercise is possible whenever the benefits of being long the 

underlier (a security or commodity which is subject to 

delivery upon exercise of an option contract or convertible 

security) outweigh the cost of surrendering the option early. 

For instance, on the day before an ex-dividend date, it may 

make sense to exercise an equity call option early in order to 

collect the dividend.  

For an American put option it is never optimal to exercise 

the option immediately before a dividend payment. 

Changes in expected dividend can make the difference 

between early exercise and no early exercise of the option 

Binomial model is suited to dealing with some of these 

option flavours. 

In general, binomial model has its advantages and 

disadvantages of use. This model is good for options 

valuation with early exercise opportunities, accurate, 

converges faster and it is relatively easy to implement but 

can be quite hard to adapt to more complex situations. 

We conclude that binomial model is good for the 

valuation of standard options but path dependent option 

remains problematic. 
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