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Abstract—In this paper we investigate the control variate
Monte Carlo method for pricing some multi-asset options with
the stochastic volatility model. First several multi-asset options
are priced analytically, which volatilities are the deterministic
functions of the time, by using the risk-neutral pricing formula.
Then we derive the explicit representation of control variate
under the Hull-White stochastic volatility model. Numerical
experiment results suggest that our proposed method performs
good in terms of improving the efficiency of variance reduction
by obtaining more accurate prices of multi-asset options.
This idea can be extended easily for pricing other financial
instruments with stochastic volatility models.

Index Terms—Multi-asset options pricing, Stochastic volatil-
ity, Monte Carlo method, control variates.

I. INTRODUCTION

F INANCE derivatives being an important part of modern
financial market are constructed and traded by financial

institutions. Since these finance derivatives or securities are
so complex, pricing these securities poses a challenging
task. Practitioners usually collect the data happened in today
market, update the database and calculate prices of the
instruments for trading tomorrow. Because of huge trading
volumes, the error resulting from inaccurate pricing may
cause big loss, and good pricing algorithms are necessary
to be devised. Therefore, we provide a class of efficiency
control variates for pricing multi-asset options to accelerate
the Monte Carlo method.

Multi-asset option is an exotic option whose payoff de-
pends on the overall performance of more than one under-
lying asset. It can be divided into three categories: rainbow
options, basket options and quanto options. What we discuss
like exchange options, spread options, chooser options and
max-call options are rainbow options. We will consider bas-
ket options and basic quanto options. Jiang [14] introduced
concepts and properties of these options in detail, which
volatilities are constant. And the stochastic volatility model
was first proposed by Hull and White [13] for improving the
assumption about the distribution of the stock price in the
Black-Scholes model [2]. There are many literatures having
been done on the stochastic volatility models, like Scott [21],
Stein and Stein [23], Ball and Roma [1], and Heston [12].
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Fouque et al. [9] summarized the application of the stochastic
volatility models in financial instruments.

Two main methods are proposed for pricing multi-asset
options: the analytic approximation approach and the fast
Fourier transform(FFT for short) method. The former ap-
proach uses a new pricing model which has closed form
solution as an approximation value. The advantage of this
method is the fast computation, but with the big error
which will not be disappeared just not as in the Monte
Carlo method when the number of paths goes to infinite.
Datey, Gauthier and Simonato [7], Borovkova, Permana and
Weide [3], Milevsky and Posner [20], Li, Deng and Zhou
[17] focused on this method. The latter method solves low-
dimensional problem very well, but can not be applied to
the problems whose dimensions over three, which Monte
Carlo method is well used. In the other way, we must get
the closed form of underlying assets union characteristic
functions in advance when using the FFT method. In fact,
these functions are not easy to be obtained unless under some
very special models(like affine models). Carr and Madan [5],
Carr and Wu [6] exploited the FFT method successfully.
Also, Monte Carlo method is applied to finance very widely
in practice, like Zheng, et al. [24], Boughmoura and Trabelsi
[4] and Grzybowski [11], because of its simple exercise, but
not much for multi-asset options pricing. The main reason
maybe that there is no good method for speed up simulation
for Monte Carlo method. So we present a class of control
variates for multi-asset options pricing with Monte Carlo
method, which provides good variance reduction efficiency.

How to price multi-asset options with stochastic volatility
models? Since there is no closed formula for options value,
we mainly focus on the control variate Monte Carlo method
for multi-asset options pricing because it works more effi-
ciently than the ordinary Monte Carlo method. We derive the
control variate by choosing a deterministic function which is
equal to some order moments of the Hull-White stochastic
volatility. We can obtain the number of control variates just
as the number of the order moments. Numerical results show
that these control variates improve the Monte Carlo method
efficiently by reducing variance hundreds of times or ten
thousands of times. Theoretically, we can use multi control
variates to get much faster computation. As a byproduct, we
get analytical approximation values for several multi-asset
options.

The rest of the paper is organized as follows. First we
give some introductions on the control variate method and
its application procedure in pricing financial instruments
under the stochastic volatility model. Then we consider
rainbow options, basket options and quanto options with
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the control variate separately, under the Hull-White model,
which numerical results are also provided. At the end, we
summary the paper and extend the idea to other financial
derivatives.

II. CONTROL VARIATE MONTE CARLO METHOD AND ITS
APPLICATION IN VALUATING FINANCIAL SECURITIES

The control variate method is a variance reduction tech-
nique used most widely in the Monte Carlo method. It
exploits information about the error of the estimators known
quantities to reduce the error of the estimator unknown
quantity. We will introduce this method in detail as follows.
Suppose we want to calculate an expectation E[V ], and
E[X] is a known value. Then we can generate (Xi, Vi),
i = 1, ..., n, which are independent and identical distribution
samples from the population (X,V ). Then for some real
number b, we derive Vi(b) = Vi − b(Xi − E[X]), and its
sample average value V (b) = V − b(X − E[X]).

Glasserman [10] proved V (b) is an unbiased and consistent
estimator of the expectation E[V ]. The variance of V (b) is

V ar(V (b)) = σ2
V − 2bσXσV ρXV + b2σ2

X . (1)

To make V ar(V (b)) achieve the minima, we choose

b∗ =
σV
σX

ρXV ,

and derive the minimum variance estimator by replacing b in
(1), which divides the variance of the ordinary Monte Carlo
method, i.e.

V ar(V (b∗))

V ar(V )
= 1− ρ2XV . (2)

(2) suggests that the larger the coefficient is, the larger the
variance reduction ratio is. Then there are two basic princi-
ples for choosing the good control variate: the conditional
expectation of the control variate should have closed forms;
the correlation between the control variate and the random
variates that we want the expectation should be strong. In
practice, we always obtain b∗ by the estimator b̂ based on
samples,

b̂ =

∑n
i=1(Xi −X)(Vi − V )∑n

i=1(Xi −X)2
.

Just as Glasserman [10] said, we can derive most advantage
from the control variate even the approximation b̂ used.
Strictly, we only need samples Vi when we do not use
the control variate, but samples (Xi, Vi) with the control
variate method. Then we can ignore the time increasing for
the control variate simulation and just consider the variance
reduction ratios as in the paper of Ma and Xu [18].

Suppose we consider the problem in the probability space
(Ω, {Ft}t≥0, P), where Ω is the sample space, {Ft}t≥0
is the σ-algebra based on Ω, and P is the risk-neutral
probability measure. In this paper all stochastic processes
are presented under the risk-neutral measure P. Suppose
the underlying asset is the stock, whose price follows the
geometric Brownian Motion

dSt = rStdt+ σtStdW1t, (3)

where r is the risk-free interest rate and supposed to be
a constant, W1t is the standard Brownian Motion under

P, and σt is the volatility of the stock yield, which is
a diffusion process, whose diffusion part is the standard
Brownian Motion W2t satisfying Cov(dW1t, dW2t) = ρdt.
Then we can denote W2t = ρW1t+

√
(1− ρ2)Bt, where Bt

is the standard Brownian Motion independent with W1t. Let
Ft be the filtering generated by (W1t, Bt). Then we know
St and σt are Ft adapted, where σt is integrable, that is

E[

∫ t

0

σ2
sds] <∞.

Suppose the financial derivative with the underlying asset
St has the payoff function G(S) at the expiration time
T, where S is the stock price at the time T . If there are
several(two or more than two) underlying assets(like multi-
asset), S is a vector. If the derivative is path-dependent, then
we need anther variate J(like Asian options, J is the average
of the underlying asset prices) to derive the payoff function
G(S, J). The risk-neutral pricing formula suggests that the
security price at the time t is

Vt = E[e−r(T−t)G(S, J)|Ft]. (4)

When calculating the estimator of Vt by Monte Carlo
method, we need to simulate path St from the time t to
T. Denote Si and J i as the i-th simulation path S and
J respectively. Then we can derive the estimator of the
discounted Vt by N simulation paths

V t =
e−r(T−t)

N

N∑
i=1

G(Si, J i). (5)

When the variance of G(S, J) is large, it suggests that
the error will be large between the estimator V t and the
true value Vt. However, if a random variable H(S̃, J̃) can
be found, whose conditional expectation can be calculated
easily, and with high correlation with G(S, J), we can use
H(S̃, J̃) as a control variate for G(S, J) to reduce the
estimator variance, and make the estimator more accurate.

There are two methods to make H(S̃, J̃) and G(S, J) with
high correlation: the first one is to make the function H
and the payoff function G closer, just as the method used
in Kemma and Vorst [16]; the second method is to make
the variable S̃ and the underlying asset S closer. Here we
consider the control variate for options pricing under the
stochastic volatility model. So the point is to find a good
random variable S̃ as close as possible to the underlying asset
S, and satisfying the conditional expectation of G(S̃, J̃) can
be easily calculated.

The conditional expectation in (4) cannot derive a closed
form for the stochastic volatility of St, which remind me
we can find S̃t with non-random volatility satisfying the
conditional expectation G(S̃, J̃) obtained easily. However
this cannot guarantee a good control variate unless the
correlation between G(S̃, J̃) and G(S, J) is strong. Suppose
S̃t satisfies the following stochastic differential equation

dS̃t = rS̃tdt+ σ(t)S̃tdW1t, (6)

where the volatility function σ(t) is a deterministic function
rather a random one. We can tell the difference between (3)
and (6), the volatility functions (here we suppose S0 = S̃0).
So G(S̃, J̃) may be a good control variate for G(S, J). The
point is how to choose σ(t) satisfying close relation with σt.
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Our method is adapting the m-order moment condition, that
is

σm(t) = E[σmt ]. (7)

Then the random variable σmt varies from the center σm(t),
which makes σ(t) and σt have strong correlation, by the law
of large numbers.

III. CONTROL VARIATE MONTE CARLO METHOD FOR
MULTI-ASSET OPTIONS PRICING UNDER THE

STOCHASTIC VOLATILITY MODEL

The control variate Monte Carlo method is introduced
simply in the last section. Here we will present an explicit
method choosing control variate for multi-asset options with
the stochastic volatility model to improve the efficiency of
the Monte Carlo method. There are two advantages of the
method we provide: we just need the moment conditions of
the stochastic volatility for determining the control variate,
and the numerical results show the high efficiency of the
variance reduction. The control variate previously proposed
in Fouque and Han [8] need the distribution function of the
volatility process or the variance process, which is not easily
obtained for most of the models. Thus, our proposed method
is better than those methods used before. First we model
the underlying asset processes(stock price, stock price index
etc.), and present some lemmas which are not special for
some explicit stochastic volatility models.

Jiang [14] introduced multi-asset options carefully, which
volatilities are constant. Here we will consider the control
variate method for pricing some multi-asset options with the
stochastic volatility model, and give the numerical experi-
ments for the Hull-White model especially. Of course, our
method can also be used for pricing financial derivatives with
the multi-factor stochastic volatility model, or even more
complex models.

A. Exchange Options and Spread Options

Suppose the underlying assets(two stocks for simplicity)
prices satisfy geometric Brownian Motions

dSit = rSitdt+ σitSitdWit, (8)

where i = 1, 2 (in the rest of the paper for convenience we
ignore i = 1, 2 where i appears), r is the constant risk-free
interest rate. σit = σi

√
Yt are stochastic volatilities of stock

prices, σi are constant, and

dYt = µYtdt+ σYtdBt. (9)

The combination of (8) and (9) is the Hull-White stochastic
volatility model. The method in this paper is also useful to
the models represented by the stochastic differential equa-
tions without explicit relation. Let Wit and Bt be standard
Browmian Motions, and dW1tdW2t = ρdt, dW1tdBt =
ρ1dt, dW2tdBt = ρ2dt.

Denote Ve|t as the exchange option value at the time t.
The payoff function is

Ve|t=T = (S2T − S1T )+. (10)

The spread option payoff function is similar to that of the
exchange option, as follows

Ve|t=T = (S2T − S1T −K)+, (11)

where K > 0 is the strike price. Suppose σit, i = 1, 2, is
square integrable, that is E[

∫ t
0
σ2
isds] < ∞. We can derive

the exchange option price by the risk-neutral price formula
and (10)

Ve|t=0 = E[e−rTVe|t=T ] = e−rTE[(S2T − S1T )+]. (12)

Similarly, the price of the spread option is

Ve|t=0 = E[e−rTVe|t=T ]

= e−rTE[(S2T − S1T −K)+]. (13)

The exchange option is first studied by Margrabe [19], who
gave a closed form value for the exchange option with the
constant volatility model, and there is no analytical solution
for the exchange option with the stochastic volatility model.
However there is no closed form value even for the spread
options with constant volatility. Then we price them with
Monte Carlo method, and improve the convergence rate and
the accurate through the control variate induced by (7).

Replacing σit in (8) with the deterministic functions σi(t),
we derive the auxiliary processes

dSi(t) = rSi(t)dt+ σi(t)Si(t)dWi(t). (14)

With the underlying assets prices as in (14), the price of
the exchange option is

Xe|t=0 = E[e−rTXe|t=T ]

= e−rTE[(S2(T )− S1(T ))+]. (15)

We will obtain a solution analytically for (15) in the follow-
ing theorem.

Theorem 1 Suppose stochastic volatilities σit in (8) are
replaced by deterministic square-integrable volatilities σi(t),
there is an analytic solution for the exchange option with
underlying assets (14),

Xe|t=0 = S2(0)N(d2)− S1(0)N(d1),

where N(·) is the standard normal distribution function,

d1 =
log(S2(0)

S1(0)
)− 1

2σ
2(T )

σ(T )
, d2 =

log(S2(0)
S1(0)

) + 1
2σ

2(T )

σ(T )
,

and σ2(T ) =
∫ T
0

[σ2
1(s)− 2ρσ1(s)σ2(s) + σ2

2(s)]ds.
From Theorem 1, we can use Xe as the control variate for

Ve. In order to derive better variance reduction efficiency we
need the correlation between Xe and Ve stronger. The differ-
ence between them is replacing the stochastic volatilities σit
by the time-varying functions σi(t). Then the stronger the
relation between σi(t) and σit is, the stronger the relation
between Xe and Ve is. Then we can choose σi(t) as in the
formula (7),

[σi(t)]
m = E[σmit ] = E[σmi Y

m
2
t ] = σmi E[Y

m
2
t ].

It is easy to know from (9) that Yt = Y0e
(µ− 1

2σ
2)t+σBt , and

σi(t) = σi
√
Y0e

1
2 [µ+

1
4 (m−2)σ

2]t. (16)

Then we derive deterministic volatilities whose m-th order
moments equal to those of the stochastic volatilities respec-
tively.

Numerical experiments will be exploited to show the
variance reduction ratio of the control variate mentioned
above. For simplicity, we delete the inferior characters e of
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Xe and Ve. As done by Glasserman [10] and Ma and Xu
[18], we use the standard deviation reduction ratio instead
of the variance reduction ratio, which is defined by (2) as

R =

√
1

1− ρ2XV
, (17)

where ρXV is the correlation between X and V . Usually
we cannot derive accurate ρXV because there is no accurate
value E[V ]. Then we calculate ρ̂XV by samples to obtain the
estimator R̂ for R. Theoretically the larger R̂ is, the larger
variance reduction ratio is. We provide the algorithm steps
in Algorithm 1.

Algorithm 1: 1) Divide [0, T ] into n even intervals with
mesh size 4t = T/n = tk+1− tk, 0 = t1 < t2 < ... < tn =
T.

2) After replacing σt by σi(t) in (3), we have S(tk+1) as

Sji (tk+1) = Sji (tk) · exp

{
r4t− 1

2

∫ tk+1

tk

σ2
i (s)ds

+

∫ tk+1

tk

σi(s)dWis

}
. (18)

Because σi(t) are non-random, we have
∫ tk+1

tk
σi(s)dW1t ∼

N(0,
∫ tk+1

tk
σ2
i (s)ds)(Shreve [22], Example 4.7.3). Then we

can simulate paths

Sji (tk+1) = Sji (tk) exp

{
r4t− 1

2

∫ tk+1

tk

σ2
i (s)ds

+

√∫ tk+1

tk

σji (s)dsZ
i,j
k

}
, (19)

where Zi,jk are the standard normal random variables, and
cov(Z1,j

k , Z2,j
k ) = ρ, j means the j-th simulation path,

Sji (t0) = Si0.
3) From (15), we know that the control variate price in

the j-th simulation path is

Xj = [Sj2(T )− Sj1(T )]+. (20)

4) When volatilities are σit, we derive Si,tk+1
from Si,tk

by

Si,tk+1
= Si,tk exp

{
r4t− 1

2

∫ tk+1

tk

σ2
isds

+

∫ tk+1

tk

σisdWis

}
. (21)

The approximation in the j-th simulation path is

Sji,tk+1
= Sji,tk exp

{
[r4t− 1

2
(σjitk)2]4t

+σjitk

√
4tZi,jk

}
, (22)

where Sjit0 = Si0, Z
i,j
k are the same as in (2). σjitk =

σi

√
Y jtk , where Y jtk satisfies the following equation

Y jtk+1
= Y jtk exp [(µ− 1

2
σ2)4t+ σ

√
4tU jk ], (23)

where U jk is the standard normal distribution variable and
cov(U jk , Z

i,j
k ) = ρi.

5) From (10), we have the exchange option price in the
j-th simulation path

Vj = (Sj2T − S
j
1T )+. (24)

6) Suppose there are p simulation paths,

Xp =
1

p

p∑
j=1

Xj ,

V p = 1
p

∑p
j=1 Vj , we have the estimator

ρ̂XV =

∑p
j=1(Xj −Xp)(Vj − V p)√∑p

j=1(Xj −Xp)2
√∑p

j=1(Vj − V p)2
.

Then from (17) we derive the estimator R̂ for R

R̂ =

√
1

1− ρ̂2XV
.

Experiment 1:
In this experiment we use the exchange option price

Xe under the time-varying volatility model as the control
variate for the exchange option price Ve under the stochastic
volatility model. The numerical results are shown in Table
1, where R̂ represent the standard derivation reduction ratio
with different m-th order moment, MC is the option price
estimator by the ordinary Monte Carlo method, and MC+CV
is the option price estimator by the control variate Monte
Carlo method referring to Theorem 1. Following Carr and
Madan [5], and Ma and Xu [18], we set the parameters
p = 5000, n = 100, r = 0.05, Y0 = 0.04, ρ = 0.5,
ρ1 = 0.25, ρ2 = −0.5. Let m vary. When m = 2 − 4µ

σ2 ,
σi(t) = σi

√
Y0 are constant.

In the first row of Table I m means that the time-varying
volatility is obtained by m-th order moment of the stochastic
volatility, as in (16). The data in Table I show us that:

1) The standard derivation reduction ratios vary as m
changes. Except in the last column, the variance reduction
performance keep in a good level in the rest columns. The
reason is that the weak correlation between the constant
volatility and the stochastic volatility, and the time-varying
volatility varies as the stochastic volatility which their strong
correlation is promised by (17) in the rest of the columns.
The largest standard derivation reduction ratio is about 300,
which means the variance reduction ratio is about 90000, and
the price error reduce about 300 times as the control variate
method used, or equally, to achieve the same accurate, we
can minus about 900000 times paths by using the control
variate method. So the numerical results suggest that our
control variate method is effective in options pricing by the
Monte Carlo method.

2) Comparing the data in the last two rows, we can find
that option prices obtained by the control variate Monte Carlo
method are close to Xe|t=0 given by Theorem 1, so Xe|t=0

can be used as an analytic approximation solution to the
option price. The standard derivation reduction ratios in the
last column is smaller than that of the rest columns, then we
don’t use these prices as approximation prices to Ve|t=0.

Experiment 2:
In this experiment the exchange option price Xe is used as

the control variate for the spread option under the stochastic
volatility model. The algorithm for calculating R̂ (24) should
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TABLE I
STANDARD DEVIATION REDUCTION RATIOS FOR EXCHANGE OPTIONS PRICING BY THE CONTROL VARIATE METHOD

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

R̂ 303.85 299.74 287.31 296.18 278.76 110.16

MC 4.57 4.62 4.67 4.55 4.49 4.49

MC+CV 4.20 4.20 4.20 4.20 4.20 4.21

Xe|t=0 4.20 4.20 4.20 4.20 4.20 4.19

be changed with Vj = (Sj2T − Sj1T − K)+. We choose
different K, m, and keep other parameters unchanged. The
numerical results are shown in Table II.

The data in Table II are the standard deviation reduction
ratios of the control variate Monte Carlo method to that of
the ordinary Monte Carlo method, which squared are the
variance reduction ratios. They suggest that the efficiency of
using Xe as the control variate for VS is worse than that using
Xe as the control variate. The reason is that the difference
between Xe and Ve is just only the volatility, however,
the difference between Xe and VS is the different payoff
functions (10) and (11), besides of the volatility. And when
K becomes larger, the option change from in-the-money to
out-of-money, and the distance of the structures in (10) and
(11) becomes larger. So we need new control variates. The
reason why the standard deviation reduction ratio is small is
the big difference between their payoff functions, especially
for the large strike price K. Then we propose an instrumental
option Vai, which has the payoff function at the time T

Vai|t=T = (S2T − S1T −
e−rTK

S1(0)
S1T )+. (25)

The risk-neutral pricing formula suggest that

E[
e−rTK

S1(0)
S1T ] = K,

which can be treated as e−rTK
S1(0)

S1T ≈ K. Then the structures
of (25) and (11) are closer than that of (10) and (11). The
option price for the instrumental option is

Vai|t=0 = E[e−rT (Vai|t=T )]

= e−rTE[(S2T − S1T −
e−rTK

S1(0)
S1T )+].(26)

The instrumental option price (26) has no analytical solution
because of the stochastic volatility. If replacing the stochastic
volatility with the time-varying one, we can have the instru-
mental option price with the condition (14) as follows

Xai|t=0 = E[e−rT (Xai|t=T )]

= e−rTE[(S2(T )− K̃S1(T ))+], (27)

where K̃ = 1 + e−rTK
S1(0)

. We will give the solution in the
following theorem.

Theorem 2 Suppose stochastic volatilities σit in (8) are
replaced by deterministic square-integrable volatilities σi(t),
there is an analytic solution for the instrumental option price
(27) with underlying assets (14),

Xai|t=0 = S2(0)N(d2)− S1(0)N(d1), (28)

where N(·) is the standard normal distribution function,

d1 =
a(T )− log(K̃)

σ(T )
, d2 = d1 + σ(T ),

σ2(T ) =

∫ T

0

[σ2
1(s)− 2ρσ1(s)σ2(s) + σ2

2(s)]ds,

a(T ) = log(
S1(0)

S2(0)
)− 1

2
σ2(T ).

Theorem 2 suggests that we can choose Xai as the control
variate for VS , and derive σi(t) by (16) to achieve larger
variance reduction ratio.

Experiment 3:
In this experiment we use the instrumental option Xai with

the time-varying volatility model as the control variate for
the spread option VS with the stochastic volatility model. The
algorithm is similar to Algorithm 1, where we need replace
(20) with Xj = (Sj2(T ) − K̃Sj1(T ))+, and (24) with Vj =
(Sj2T − S

j
1T −K)+. Let K and m vary and keep the other

parameters unchanged. The numerical results are shown in
Table III.

Comparing the data in Table II and Table III, we know that
the variance reduction ratios of the new control variate Xai

are much better than that of Xe, because Xai is much closer
to VS . Even for out-of-the-money, the variance reduction
ratio of the new control variate is about 6400 times. Totally,
the variance reduction efficiency become low for the out-of-
the-money option, which is caused by the simulation paths
with zeros payoff. We provide two methods to solve this
problem:

1) Enlarge the probability of non-zeros payoff simulation
paths by important sampling, which can be found in Glasser-
man [10].

2) Change out-of-the-money option with in-the-money
option by the call-put parity. We know that

[(S2T − S1T )−K]+ = [K − (S2T − S1T )]+

+[(S2T − S1T )−K].

Discounting both sides of above equations and taking the
expectations, we derive the following equation by the risk-
neutral pricing formula

VS |t=0 = E[e−rT [(S2T − S1T )−K]+]

= E[e−rT [K − (S2T − S1T )]+]

+[(S2T − S1T )− e−rTK].

Then calculating the spread call option price has been
changed into pricing the put option

VP |t=0 = E[e−rT [K − (S2T − S1T )]+].

If VS is out of the money, Vp must be in the money. Then
we change out-of-the-money options pricing into the in-the-
money options pricing. Just as the way of constructing the
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TABLE II
STANDARD DEVIATION REDUCTION RATIOS FOR SPREAD OPTIONS WITH EXCHANGE OPTIONS AS CONTROL VARIATES

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

K = 0.1 129.25 131.59 129.11 132.65 132.49 72.45

K = 1 12.98 12.90 12.91 12.98 12.94 12.37

K = 4 3.09 3.09 3.10 3.09 3.11 3.13

K = 4.5 2.75 2.81 2.76 2.76 2.77 2.76

TABLE III
STANDARD DEVIATION REDUCTION RATIOS FOR EXCHANGE OPTIONS WITH EXCHANGE OPTIONS AS CONTROL VARIATES

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

K = 0.1 298.99 296.07 291.62 302.64 283.91 110.34

K = 1 241.35 243.40 235.38 235.58 240.29 111.62

K = 4 90.69 86.61 91.27 89.72 89.25 69.64

K = 4.5 77.44 77.63 78.29 76.96 81.70 62.70

control variate for VS , we choose the control variate for Vp,
which is in the money, and reduce the variance a lot.

In practice, the strike price of the option is chosen around
the initial price of the underlying assets. Then we can provide
good control variate for the accurate price. The way of the
standard deviation reduction ratio changed as m varies is
similar to that in Table I, so as the reasons.

B. Chooser Options and Max-call Options

Suppose there are two underlying assets for chooser op-
tions and max-call options. Of course, the method we provide
is useful to the options with more than two underlying assets.
Let the underlying assets and volatilities satisfy (8) and (9).
The payoff function for the chooser option is

Vbo|t=T = max{S1T , S2T }. (29)

The max-call option’s payoff function is

Vm|t=T = (max{S1T , S2T } −K)+, (30)

where the strike price K > 0. Suppose σit is square
integrable, that is E[

∫ t
0
σ2
isds] < ∞. By the risk-neutral

pricing formula and (28), we can obtain the chooser option
price

Vbo|t=0 = E[e−rTVbo|t=T ] = e−rTE[max{S1T , S2T }]. (31)

Similarly, the price of the max-call option is

Vm|t=0 = E[e−rTVm|t=T ]

= e−rTE[(max{S1T , S2T } −K)+]. (32)

Johnson [15] priced the max-call option with any number
of the underlying assets under the constant volatility ana-
lytically. However, there is no closed form for that options
with the stochastic volatility model (30) and (31). We use
the time-varying volatility function σi(t) instead of σit in
(8), then we can derive the chooser option’s value under the
auxiliary process (14)

Vbo|t=0 = E[e−rTVbo|t=T ]

= e−rTE[max{S1(T ), S2(T )}], (33)

and the price of the max-call option is

Vm|t=0 = E[e−rTVm|t=T ]

= e−rTE[(max{S1(T ), S2(T )} −K)+].(34)

We present the solution to (32) analytically when σi(t)
satisfy some conditions.

Theorem 3 Suppose stochastic volatilities σit in (8) are
replaced by square-integrable volatilities σi(t), there is an
analytical solution for the chooser option with underlying
assets (14),

Xe|t=0 = S2(0)N(d2) + S1N(−d1),

where N(·) is the standard normal distribution function,

d1 =
log(S2(0)

S1(0)
)− 1

2σ
2(T )

σ(T )
,

d2 =
log(S2(0)

S1(0)
) + 1

2σ
2(T )

σ(T )
,

σ2(T ) =

∫ T

0

[σ2
1(s)− 2ρσ1(s)σ2(s) + σ2

2(s)]ds.

Experiment 4:
In this experiment we use the chooser option price Xbo

with the time-varying volatility as the control variate of that
option Vbo with the stochastic volatility model. The algorithm
is similar to Algorithm 1 but replacing (20) with Xj =
max{Sj2(T ), Sj1(T )}, and (24) with Vj = max{Sj2T , S

j
2T },

and the time-varying volatility σi(t) chosen by (16). The
other parameters are the same as in Algorithm 1. The
numerical results are shown in Table IV.

The data in Table IV show that the efficiency of the
standard deviation reduction when m varies, which is the
same as that in Table I, and so are the reasons. The best
standard deviation reduction ratio is about 280 times, which
suggests that the control variate we provide improve the
Monte Carlo method effectively. The numbers in the last two
rows show that the option price estimator given by the control
variate Monte Carlo method is close to Xbo|t=0 by Theorem
2. Then we can use Xbo|t=0 as an analytic approximation
solution to the option price.

For the max-call option, we deduce the closed form
solution to the option price (33) with σi(t) in the following
theorem.

Theorem 4 Suppose stochastic volatilities σit in (8) are
replaced by square-integrable volatilities σi(t), there is an
analytical solution for the max-call option price (33) with
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TABLE IV
STANDARD DEVIATION REDUCTION RATIOS FOR CHOOSER OPTIONS BY THE CONTROL VARIATE METHOD

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

R̂ 278.22 275.28 278.44 268.80 254.07 94.23

MC 100.65 100.60 100.57 100.58 100.62 100.60

MC+CV 100.20 100.20 100.20 100.20 100.20 100.21

Xe|t=0 100.20 100.20 100.20 100.20 100.20 100.19

underlying assets (14),

Xm|t=0 = S1(0)N2[d1(S1(0),K, b21(T ));

d
′

1(S1(0), S2(0), b212(T )); ρ112(T )]

+S2(0)N2[d1(S2(0),K, b22(T ));

d
′

1(S2(0), S1(0), b212(T )); ρ212(T ))]

−e−rTK{1−N2[−d2(S1(0),K, b21(T ));

−d2(S2(0),K, b22(T )); ρ]},

where N(·, ·, ·) is the bivariate standard normal distribution
function.

Experiment 5:
In this experiment we use the max-call option price Xm

with the time-varying volatility as the control variate for that
option Vm with the stochastic volatility model. The algorithm
for calculating R̂ is similar to Algorithm 1, which we just
need replace (20) with Xj = (max{Sj2(T ), Sj1(T )} −K)+,
and (24) with Vj = (max{Sj2T , S

j
1T } −K)+. We change b

and m, and keep other parameters unchanged. The numerical
results are shown in Table V.

The standard deviation reduction efficiency for out-of-the-
money option is worse than that for in-the-money option,
which the reasons are the same as that in Table III, so are the
methods for better efficiency. The efficiency of the standard
deviation reduction when m varies is the same as that in the
experiments above.

C. Basket Options

The payoff of the basket option at the expiration time is

VAb = (
N∑
i=1

αiSiT −K)+, (35)

where
∑N
i α1 = 1, αi ≥ 0. The basket option based on the

arithmetic average does’t have a closed form price even with
the constant volatility. Then we construct the basket option
based on the geometric average as an instrumental option,
whose payoff function at the time T is

VGb = (
N∏
i=1

Sαi

iT −K)+. (36)

Suppose these underlying stocks prices satisfy the following
stochastic differential equations

dSi(t) = rSi(t)dt+ σ
′

i(t)Si(t)dWt,

where Wt = (W1t,W2t, ...,WMt)
′

are M -dimensional
Brownian Motions, σi(t) = (σi1(t), σi2(t), ..., σiM (t))′ are
volatility vectors. The basket option price (36) based on the
geometric average with the volatility σij(t) satisfying some
conditions has a closed form value.

Theorem 5 Suppose stochastic volatilities σit in (8) are
replaced by square-integrable volatilities σi(t), there is an
analytical solution for the basket option based on the geo-
metric average,

XGb|t=0 = e
1
2σ

2(t)−rT+a(T )N(d2)−Ke−rTN(d1),

where N(·) is the standard normal distribution function,

a(T ) = rT +
N∑
i=1

αiSi(0)− 1

2

N∑
i=1

M∑
j=1

∫ T

0

αiσij(s)ds,

σ2(T ) =
M∑
j=1

∫ T

0

[
N∑
i=1

αiσij(s)]
2ds,

d1 =
a(T )− logK

σ(T )
, d2 = d1 + σ(T ).

Theorem 5 suggests that the basket option based on the
geometric average with the time-varying volatility can be
used as the control variate for that option based on the
arithmetic average with the stochastic volatility model. For
simplicity, we just consider that the underlying assets are two
stocks, which prices are driven by two-dimensional Brownian
Motions, that is stocks prices satisfy (8) and (9), and time-
varying volatilities are determined by (16).

Experiment 6:
In this experiment the basket option price XGb based on

the geometric average with the time-varying volatility is used
as the control variate for that option price VAb based on the
arithmetic average with the stochastic volatility. The algo-
rithm used to calculate R̂ is similar to Algorithm 1, which
need replace (20) with Xj = (Sj1(T )α1Sj2(T )α2 − K)+,
and (24) with Vj = (α1S

j
1T + α2S

j
2T − K)+. Let K, m

vary, α2 = 0.8, and other parameters be used as before. The
numerical results are shown in Table VI.

The standard deviation reduction ratios change when K
and m vary, where the way they change is the same as that
in Table III and V, so are the reasons and the methods used
to improve the efficiency.

D. Quanto Options

Quanto option is a contract written when someone invest
money in foreign securities. Usually, its risk depends on the
volatility of the securities prices and the change of the foreign
currency rate. For example, a China investor buys a European
call option which strike price is K(dollar). There are two
underlying assets here: American stock price S2t(dollar) and
the dollar rate(the units of RMB per unit of dollar) S1t. Then
the payoff function of the option at the expiration time is

Vq|t=T = S1T (S2T −K)+ (37)
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TABLE V
STANDARD DEVIATION REDUCTION RATIOS FOR MAX-CALL OPTIONS BY THE CONTROL VARIATE METHOD

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

K = 90 260.53 272.09 281.39 272.91 269.40 96.68

K = 95 274.18 274.39 277.13 275.18 261.68 91.38

K = 100 275.01 277.93 284.52 270.26 270.98 90.86

K = 105 243.25 248.58 236.86 231.30 235.63 99.05

K = 110 138.68 147.68 141.53 129.78 139.87 48.48

TABLE VI
STANDARD DEVIATION REDUCTION RATIOS FOR BASKET OPTIONS BASED ON ARITHMETIC AVERAGE WITH BASKET OPTIONS BASED ON

GEOMETRIC AVERAGE AS CONTROL VARIATES

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

K = 96 90.95 90.00 89.14 84.76 86.83 72.80

K = 960.2 × 1000.8 93.10 92.48 92.94 89.88 91.05 68.06

K = 100 89.33 95.42 94.54 89.80 90.60 67.67

K = 105 55.75 55.13 56.46 55.16 55.49 49.41

Suppose that Sit satisfy (8), and their volatilities satisfy
(9). Then by the risk-neutral pricing formula, we can derive
the option price at the time 0

Vq|t=0 = E[e−rTVq|t=T ] = e−rTE[S1T (S2T −K)+]. (38)

There is no analytical solution to (38) under the stochastic
volatility model. However we can derive a closed form price
for that option when the volatility σit replaced by σi(t),
which is promised by Theorem 6.

Theorem 6 Suppose stochastic volatilities σit in (8) are
replaced by square-integrable volatilities σi(t), there is an
analytical solution for the quanto option price (38) with
auxiliary processes (14),

Xq|t=0 = S1(0)e
1
2σ

2(t)+a(T )N(d2)− S1(0)KN(d1),

where N(·) is the standard normal distribution function,

a(T ) = logS2(0) + rT − 1

2

∫ T

0

σ2
2(s)ds

+ρ

∫ T

0

σ1(s)σ2(s)ds,

σ2(T ) =

∫ T

0

σ2(s)ds,

d1 =
a(T )− logK

σ(t)
, d2 = d1 + σ(t).

Theorem 6 suggests that we can use the quanto option
price Xq with the time-varying volatility as the control
variate for that option price Vq with the stochastic volatility
model, where σi(t) are determined by (16).

Experiment 7:
In this experiment the quanto option price Xq with the

time-varying volatility is used as the control variate for that
option price Vq with the stochastic volatility model. The
algorithm used to derive R̂ is similar to Algorithm 1, where
we need replace (20) with Xj = Sj1(T )(Sj2(T ) − K)+,
and (24) with Vj = Sj1T (Sj2T − K)+. Let K, m vary,
S1(0) = 6.5, and other parameters unchange. The numerical
results are shown in Table VII.

The standard deviation reduction ratios change when K
and m vary, where the way is the same as that in Table III,
V and VI, so are the reasons. We don’t repeat them. Except

the last column, the standard deviation reduction ratios all
over 250, that is about 60000 times variance reduction ratios,
which suggests that the control variate we use improve the
efficiency of the Monte Carlo method.

IV. CONCLUSION

In this paper, we have investigated the control variate
Monte Carlo method for pricing several multi-asset options
under the stochastic volatility model. First we have priced
these multi-asset options analytically with the time-varying
non-random function volatility, which is utilized to derive
a class of control variates for pricing corresponding multi-
asset options under the stochastic volatility model to improve
the pricing efficiency. The time-varying functions have been
obtained by the m-th order moment of the stochastic volatil-
ity model. Numerical results shown in Tables I, IV and VII
have suggested that our control variate performs good for
exchange options, chooser options and quanto options. As
for spread options, max-call options and basket options, the
data in Tables III, V and VI have shown that we achieved
significant improvement on the efficiency of the variance
reduction when the option is in-the-money, but our method
performed not good when the option is out-of-the-money,
which can be solved by the call-put parity. With respect
to exchange options, chooser options, basket options and
quanto options, when it is required to calculate the price
more quickly with less accurate, Theorems 1, 2, 3 and 4 can
be exploited for deriving the prices as an analytical approx-
imation prices to the options with the stochastic volatility
model. The numerical experiments have shown that they are
very close to the estimator values obtained by the Monte
Carlo method.

The idea we proposed can be extended to other stochastic
volatility models, such as the volatility satisfying Ornstein-
Uhlenbeck process or the square root diffusion process, by
replacing (13) with the expectation of the new volatility
model. However, the expectation can be obtained without
the closed form solution or the transform density, which
is convenient for choosing the time-varying deterministic
volatility. The idea can also be applied to price other financial
derivatives under the stochastic volatility model, such as
Asian options, barrier options, variance swaps, etc.
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TABLE VII
STANDARD DEVIATION REDUCTION RATIOS FOR QUANTO OPTIONS BY THE CONTROL VARIATE METHOD

m = −50 m = 0 m = 1 m = 2 m = 100 m = 2− 4µ/σ2

K = 95 277.19 285.92 276.10 289.99 290.55 122.71

K = 100 318.26 301.50 312.54 322.29 311.27 113.63

K = 105 248.99 250.63 256.62 259.43 253.38 110.23
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