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Abstract—This paper examines a continuous-
time mean-variance portfolio selection problem with
stochastic salary and strategic consumption planning
for a constant relative risk averse (CRRA) pension
plan member (PPM) in the accumulation phase of a
defined contribution (DC) pension plan. It was as-
sumed that the flow of contributions made by the
PPM are invested into a market that is character-
ized by a cash account, an index bond and a stock.
Due to the increasing risk of inflation rate and dimin-
ishing value of pension benefits, the need for manag-
ing such risk has becomes imperative. In this paper,
index bond is traded and used to protect the invest-
ment against inflation risks. The aim of this paper are
to determine the optimal variational Merton portfo-
lios, optimal variational consumption plan for a life-
cycle of a PPM and to maximize the expected final
value of wealth and simultaneously minimize its vari-
ance and consumption risk. Efficient frontier for the
three classes of assets that will enable PPMs to decide
their own value of wealth and risk in their investment
profile at retirement was obtained. The optimal con-
sumption overtime and final consumption of the PPM
are established. The variational portfolio processes
for the three classes of assets were established. Some
numerical results are also consider in this paper.

Index Terms—mean-variance, optimal portfolio,

stochastic salary, defined contribution, strategic con-

sumption planning, efficient frontier.

AMS Subject Classifications. 91B28, 91B30, 91B70,
93E20.

I. INTRODUCTION

This paper consider a continuous-time mean variance
portfolio selection problem with stochastic salary and
strategic life consumption planning for a defined contri-
bution pension plan. The optimal portfolios, expected
value of wealth of a PPM, optimal consumption plan of
a life-cycle of a PPM and efficient frontier of the three
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classes of assets were established. The contributions of
the PPM are invested into a market that is composed of
cash account, an index bond and a stock.
In a related literature, Jensen and Sφrensen [17] stud-
ied the effect of a minimum interest rate guarantee con-
straint. It was studied through the wealth equivalent in
case of un-constraints. They shown numerically that the
guarantees may induce a significant utility loss for rela-
tive risk tolerant investors. Deelstra et al ([12], [13] and
[14]) studied optimal design of the minimum guarantee in
a defined contribution pension scheme. They studied the
investment in the financial market by ensuring that the
pension fund optimizes its retribution as a part of the sur-
plus. Brawne et al [5] modeled and analyzed the ex ante
liquidity premium demanded by the holder of an ”illiquid
annuity”. The annuity was an insurance product that is
similar to a pension scheme that involve both accumu-
lation and ”decumulation” phase. They computed the
yield required to offset the utility welfare loss, which was
induced by the inability to re-balance and maintain an
optimal portfolio when holding an annuity. Cairns et al
[7] developed a pension plan accumulation programmed
designed to delivered a pension fund at retirement which
is closely related to salary received by PPM prior to re-
tirement. Cairns et al [7] considered the optimal dynamic
asset allocation policy for a defined contribution (DC)
pension scheme by taking into consideration the stochas-
tic features of the PPM’s lifetime salary progression as
well as the stochastic properties of the assets held in
his accumulating pension scheme. They emphasized that
salary risk was not fully hedgeable by using existing finan-
cial assets. They further emphasized that wage-indexed
bonds could be suitable to hedged productivity and infla-
tion shocks, but such assets are not widely traded. They
referred to the optimal dynamic asset allocation strategy
stochastic life-styling. They compared it against various
static and deterministic lifestyle strategies in order to ob-
tained the costs of adopting suboptimal strategies.
Cairns et al [8] considered the solution technique of
Cairns et al [7] and made used of the present value of
future contribution premiums into the scheme, see also
(Boulier et al [4], Deelstra et al [11], Korn and Krekel
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[19] and Blake et al [3]. Deterministic life-styling de-
signed to protect the pension fund from a catastrophic
fall in the stock market just prior to retirement can be
found in Cairns et al [7], Blake et al [3] and Cajueiro and
Yoneyama [9]. Haberman and Vigna [15] and Cairns et
al ([6], [7]) analyzed the occupational DC pension fund,
where the contribution rate was a fixed percentage of the
salary. For a constant flow of contributions, see Hφjgaard
and Vigna [16]. For stochastic cash inflows, see Maurer et
al [21], Battocchio [2], Zhang et al [29], Zhang et al [28],
Korn and Kruse [20]. Maurer et al [21] modeled inflation
index that involves inflation uncertainty. They consid-
ered multi-decade investment horizons. Battocchio and
Menoncin [1] considered a stochastic dynamic program-
ming approach to model a DC pension fund in a complete
financial market with stochastic investment opportunities
and two background risks: salary risk and inflation risk.
They gave a closed form solution to the asset allocation
problem and analyzed the behavior of the optimal portfo-
lio with respect to salary and inflation. Zhang et al [28]
considered the optimal management and inflation pro-
tection strategy for defined contribution pension plans
using Martingale approach. They derived an analytical
expression for the optimal strategy and expresses it in
terms of observable market variables. Dai et al [10] stud-
ied a continuous-time Markowitz’s mean-variance port-
folio selection problem involving propositional transac-
tion costs. They established a critical length of time
which depends on the stock excess return as well as the
transaction fees but independent of the investment tar-
get and stock volatility. Nwozo and Nkeki [25] consid-
ered optimal portfolio and strategic consumption plan-
ning ina life-cycle of a PPM in a DC pension scheme.
They found that investment in the risky assets should
be gradually transferred to riskless asset prior to retire-
ment date. Nkeki [24] and Nkeki and Nwozo [26] studied
the variational form of classical portfolio strategy and
expected wealth for a pension plan member. They as-
sumed that the growth rate of salary is a linear function
of time and that the cash inflow is stochastic. Nkeki
and Nwozo [27] studied the optimal portfolio strategies
with stochastic cash flows and expected optimal terminal
wealth under inflation protection for a certain investment
company (IC) who trades in a complete diffusion models,
receives a stochastic cash inflows and pays a stochastic
outflows to its holder. They found that as the market
evolved parts of the index bond and stock portfolio val-
ues should be transferred to cash account. This, to a
great extent will protect the IC from catastrophic fall in
the stock market. They also found that the portfolio pro-
cesses involved inter-temporal hedging terms that offset
any shock to both the stochastic cash inflows and cash
outflows. Josa-Fombellida and Rincon-Zapatero [18] con-
sidered simultaneous minimization of risks problem, and
maximization of the terminal value of expected funds as-
sets in a defined benefit pension plan. They considered
risks associated with the solvency, the variance of the fi-

nal funds level, and the contribution risk, in the form of
a running cost that was related to deviations from the
evolution of the stochastic normal cost. They found the
efficient frontier. They shown that the optimal portfolio
depends linearly on the supplementary cost of the fund,
plus an additional term due to the stochastic evolution
of the benefits.
The aims of this paper are to study optimal variational
Merton portfolio, (for Merton portfolio, see Merton ([22],
[23])) variational consumption plan for a life-cycle of a
PPM and market efficiency test and efficient frontier of
the three classes of assets for a DC pension scheme. This
paper also aim at maximizing the expected final value
of wealth and simultaneously minimize the variance of
expected final value of wealth of a PPM and consumption
risk.
The remainder of this paper is organized as follows. In
section II, we presents the financial market models. The
expected value of a PPM’s discounted future contribution
is presented in section III. The value of a PPM’s wealth
process is presented in section IV. Section V presents
the optimization problem. The solution of the resulting
Hamilton-Jacobi-Bellman equation is presented in section
VI. In section VII, we present optimal portfolio and con-
sumption planning strategies of the PPM and some nu-
merical examples and discussions. In section VIII, we
present the efficient frontier of the PPM’s value of wealth.
Finally, section XI concludes the paper.

II. THE FINANCIAL MODELS

In this section, we describe the financial markets where
by the flow of wealth operates. In this paper, the sign ′

denotes transpose. Let (Ω,F ,P) be a probability space.
Let F(F) = {Ft : t ∈ [0, T ]}, where Ft = σ(W (s) :
0 ≤ s ≤ t), where the process W (t) = (W I(t),WS(t))′,
0 ≤ t ≤ T is a 2-dimensional Brownian motion, defined on
a given filtered probability space (Ω,F ,F(F),P), where
P is the real world probability measure and σ ∈ R2 and
σZ ∈ R2 are the volatility vectors of stock and volatility
of the index bond with respect to changes in W I(t) and
WS(t), respectively, referred to as the coefficients of the
market and are progressively measurable with respect to
the filtration F . The fund manager manages the fund in
the planning interval [0, T ] by means of a portfolio that is
composed by two risky assets; index bond Z and stock S,
which are correlated geometric Brownian motions, gen-
erated by W (t) and a cash account B, as proposed by
Merton (1971). The evolution of these assets are given
by the equations:

dB(t) = r(t)B(t)dt,B(0) = 1. (1)

dS(t) = S(t)(µ(t)dt + σ(t)dW (t)), S(0) = s0 ∈ R+, (2)

dZ(t, Q(t)) = Z(t, Q(t))((r(t) + σI(t)θI(t))dt
+σZ(t)dW (t)), Z(0, Q(0)) = z0 ∈ R+,

(3)

where σZ(t) = (σI(t), 0), S(t) is stock price process at
time t, Z(t, Q(t)) is the price of index bond, where Q(t)
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inflation index at time t, µ(t) ∈ R+ is the appreciation
rate for stock, σ(t) = (ξσS(t),

√
1− ξ2σS(t)), r(t) ∈ R+

is the nominal interest rate, θI(t) ∈ R is the price of in-
flation risk, B(t) is the price process of the cash account
at time t, Q(t) is the inflation index at time t and has the
dynamics: dQ(t) = q̄(t)Q(t)dt + σI(t)Q(t)dW I(t), where
q̄(t) is the expected rate of inflation, which is the differ-
ence between nominal interest rate, r(t) and real interest
rate r̃(t) ∈ R+ (i.e. q̄(t) = r(t)− r̃(t) + σI(t)θI(t)). It is
assumed in this paper that µ(t) > r(t), so that the fund
manager has incentives to invest with risk. We suppose
that there exists correlation ξ ∈ (−1, 1) between W I(t)
and WS(t).
The proportion of fund invested in time t in index bond is
denoted by ∆I(t) and stock is denoted by ∆S(t). The re-
mainder, ∆0(t) = 1−∆I(t)−∆S(t) is invested in cash ac-
count at time t. We assume in this paper, that borrowing
and short selling is allowed. Suppose {∆(t) : t ≥ 0} with
∆(t) = (∆I(t),∆S(t)), is a control process adapted to
filtration {Ft}t≥0, Ft−measurable, Markovian and sta-
tionary, satisfying

E

∫ T

0

∆(t)∆(t)′dt < ∞, (4)

where E is the expectation operator. The intermediate
consumption process is tolerable at a nonnegative rate
C(t) ∈ R+ at time t ≤ T . Then, C(t) is also adapted
process with respect to {Ft}t≥0, satisfying

E

∫ T

0

C2(t)dt < ∞. (5)

Then, the volatility matrix

Σ(t) :=
(

σI(t) 0
ξσS(t)

√
1− ξ2σS(t)

)
(6)

corresponding to the two risky assets and satisfies
det(Σ(t)) = σS(t)σI(t)

√
1− ξ2 6= 0. Therefore, the mar-

ket is complete and there exists a unique market price of
risks θ satisfying

θ(t) :=
(

θI(t)
θS(t)

)
=

 θI(t)
µ(t)− r(t)− θI(t)ξσS(t)

σS(t)
√

(1− ξ2)

 ,

(7)
where θS(t) is the market price of stock risks. We assume
in this paper that the salary process Y (t) at time t of the
PPM is governed the by the dynamics

dY (t) = Y (t)(β(t)dt + σY (t)dW (t)), Y (0) = y0 ∈ R+,
(8)

where β(t) ∈ R+ is the expected growth rate of the salary
of the PPM and σY (t) = (σY1(t), σY2(t)) is the volatility
of a PPM’s salary. σY1(t) ∈ R is the volatility caused
by the source of inflation, W I(t) and σY2(t) ∈ R is the
volatility caused by the source of uncertainty arising from
the stock market, WS(t).

Remark 1. If the pension PPM’s salary is deterministic,
then (8) becomes dY (t) = β(t)Y (t)dt.

In this paper, we assume that r(t), µ(t), σ(t), σI(t), θI(t),
θS(t), σZ(t), q̄(t), σS(t), β(t), σY (t) are constant in time.
The process Λ(t) referred to as the stochastic discount
factor (which adjusts for nominal interest rate and market
price of risks for stock and index bond) is assumed to
satisfy

Λ(t) = B(t)−1Θ(t), (9)

where
Θ(t) = e−θ′W (t)− 1

2‖θ‖
2t, 0 ≤ t ≤ T. (10)

The PPM starts at time t ∈ [0, T ] with initial wealth
x0 ∈ R+. The current wealth X(t), t ≤ s ≤ T , satisfies
the budget constraint

dX(t) = [X(t)(r + ∆(t)λ) + cY (t)− C(t)]dt+
X(t)(Σ′∆′(t))′dW (t), X(0) = x0 ∈ R+,

(11)

where λ = (σIθI , µ− r)′.

III. THE EXPECTED VALUE OF PPM’s
DISCOUNTED FUTURE CONTRIBUTION

(EVPPMDFC)

In this section, we determine expected value of PPM’s
future contribution and consumption process.

Definition 1. The EVPPMDFC is defined as

Φ(t) = Et

(∫ T

t

Λ(u)
Λ(t)

cY (t)du

)
(12)

where, Et = E(·|Ft) is the conditional expectation with
respect to the Brownian filtration {Ft}t≥0.

Theorem 1. Suppose Φ(t) is the EVPPMDFC, then

Φ(t) =
cY (t) (exp((β − r − σY θ)(T − t))− 1)

β − r − σY θ
. (13)

Proof: See Nkeki and Nwozo [26].

Lemma 1. Suppose that Theorem 1 holds, then

dΦ(t) = Φ(t) ((r + σY θ)dt + σY dW (t))− cY (t)dt. (14)

Proof: See Nkeki and Nwozo [26].
At t = 0, we obtain the present value of PPM’s dis-
counted future contribution to be

Φ(0) = Φ0 =
cy0 (exp((β − r − σY θ)T )− 1)

β − r − σY θ
. (15)

See Nkeki and Nwozo [26] for details.

III. THE VALUE OF PPM’s WEALTH

In this section, we consider the value of the PPM’s wealth
and obtain the dynamics of the value of the wealth at time
t.
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Definition 2. The value of a PPM’s life-time consump-
tion process, Ψ(t) is defined as

Ψ(t) = Et

[∫ ∞

t

Λ(u)
Λ(t)

C(u)du

]
, t ≥ 0.

Definition 3. Let V (t) be a value process at time t. We
defined V (t) as

V (t) := X(t) + Φ(t), (16)

where, X(t) satisfy (11) and Φ(t) satisfy (14).

Proposition 1. Let V (t) satisfy (16), X(t) satisfy (11)
and Φ(t) satisfy (14), then

dV (t) = [X(t)(r + ∆(t)λ) + Φ(t)(r + σY θ)
−C(t)]dt + (Φ(t)σ′Y + X(t)Σ′∆′(t))′dW (t), (17)

with V (0) = v0 ∈ R+ such that X(0) = x0 ∈ R+ and
Φ(0) = Φ0 ∈ R+.
Proof: Finding the differential of both sides of (16) and
then substitute in (11) and (14), the result follows.

IV. THE OPTIMIZATION PROBLEM

The objective of the fund manager is to maximize the
expected value of final wealth, V (T ) and to minimize
the variance of the final wealth V ar(V (T )), and the con-
sumption level, C(t) at time interval [0, T ]. The PPM
expected utility of wealth is given by

J(v, t;∆, C) =
E
(∫ T

0
e−ρtU(C(t))dt + U(V (T ))|X(t) = x,Φ(t) = Φ

)
,

(18)
for (v; t) = (x,Φ; t) ∈ H = R+ ×R× [0, T ], with the pro-
cesses X and Φ solving, respectively, (11) and (14), and
V solve (17). Here ρ ∈ R+ denotes the PPM’s consump-
tion preference discount rate. The value function which
represents the maximal expected utility of PPM’s wealth
is defined as

U(v; t) = sup
(∆,C)=Kv0,c0

J(x,Φ, t;∆, C), (19)

subject to (17). Here Kv0,c0 is a set of measurable pro-
cesses (∆, C), where ∆ satisfies (4), C satisfies (5) and
such that (17) admit a unique solution Ft−measurable
adapted to the filtration {Ft}t≥0. We now introduce the
following differential operator:

L =
1
2
Φ2σY σ′Y

∂2

∂Φ2
+ Φ(r + σY θ)

∂

∂Φ
. (20)

Proposition 2. The value function U is a solution of
the Hamilton-Jacobi-Bellman (HJB) equation

Ut + max∆[x(r + ∆(t)λ)Ux

+
1
2
x2Σ∆(t)Σ′∆′(t)Uxx + xΦΣ∆(t)σ′Y UxΦ]

+maxC(−C(t)Ux + U(C(t))e−ρt) + LU = 0,

(21)

and
U(v, T ) =

vγ

γ
, γ > 0

with L as defined in (20).

The optimal variational portfolio in the risky assets and
optimal consumption are obtained as

∆
′∗(t) =

−(ΣΣ′)−1(λUx + ΦΣσ′Y UxΦ)
xUxx

, (22)

C∗(t) = I(Uxeρt),where I =
(

∂U(C(t))
∂C(t)

)−1

. (23)

Substituting (22) and (23) into (21), we obtain the fol-
lowing

Ut + rxUx + Φ(r + σY θ)UΦ − I(Uxeρt)Ux

+U(I(Uxeρt))e−ρt − 1
2
(Σ′Mλ)′Σ′Mλ

U2
x

Uxx

+Φ(Σ′Mλ)′Σ′MΣσ′Y
UxUxΦ

Uxx

+
1
2
Φ2(Σ′MΣσ′Y )′(Σ′MΣσ′Y )

U2
xΦ

Uxx

−2Φ(Σ′Mλ)′σ′Y
UxUxΦ

Uxx

−Φ2(Σ′MΣσ′Y )′σ′Y
U2

xΦ

Uxx
+

1
2
Φ2σY σ′Y UΦΦ = 0.

(24)

V. THE SOLUTION TO THE HJB EQUATION

In this section, we consider and provide the solution to
the HJB equation (24).

Proposition 3. The solution to the HJB equation (24)
is of the form

U(t, v) =
(

(X∗(t) + Φ(t))γ

γ
− C(t)γ

γ

)
(A(t)B(t))γ

U(T, v) =
X∗(T )γ

γ
− C(T )γ

γ
(25)

with {
A(t) = e(r+ 1

2(γ−1) (ΣMλ)′ΣMλ)(T−t),
A(T ) = 1,

(26)

 B(t) =

(
1− e

−ρT
γ−1 (e

−(rγ−ρ)(T−t)
γ−1 − 1)(γ − 1)
rγ − ρ

) 1−γ
γ

,

B(T ) = 1.

(27)

Proof: We start by finding the following partial deriva-
tives:

Ut = (X∗(t)+Φ(t))γ(A(t)B(t))γ−1(Ȧ(t)B(t)+A(t)Ḃ(t)),
(28)

Ux = (X∗(t) + Φ(t))γ−1(A(t)B(t))γ , (29)

Uxx = (X∗(t) + Φ(t))γ−2(A(t)B(t))γ , (30)

UΦ = (X∗(t) + Φ(t))γ−1(A(t)B(t))γ , (31)

UΦΦ = (γ − 1)(X∗(t) + Φ(t))γ−2(A(t)B(t))γ , (32)

UxΦ = (γ − 1)(X∗(t) + Φ(t))γ−2(A(t)B(t))γ . (33)
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Substituting (28)-(33) into (24), we have

(X∗(t) + Φ(t))γ(A(t)B(t))γ−1(Ȧ(t)B(t)
+A(t)Ḃ(t)) + rX∗(t)(X∗(t)
+Φ(t))γ−1(A(t)B(t))γ + rΦ(t)(X∗(t)
+Φ(t))γ−1(A(t)B(t))γ

−1
2
(Σ′Mλ)′Σ′Mλ(X∗(t) + Φ(t))γ(A(t)B(t))γ

−I[(X∗(t) + Φ(t))γ−1(A(t)B(t))γeρt)](X∗(t)
+Φ(t))γ−1(A(t)B(t))γ + U(I[(X∗(t)
+Φ(t))γ−1(A(t)B(t))γeρt])e−ρt = 0.

(34)

From (34), we obtain the following ordinary differential
equations (ODEs), (35) and (36):

Ȧ(t) + A(t)(r +
1

2(γ − 1)
(ΣMλ)′ΣMλ) = 0, A(T ) = 1.

(35)

Ḃ(t)− γ − 1
γ

B(t)
2γ−1
γ−1 e

ρt+rγ(T−t)
γ−1 = 0, B(T ) = 1. (36)

Solving the ODEs (35) and (36), we have{
A(t) = e(r+ 1

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t),

A(T ) = 1.
(37)

 B(t) =

(
1− e

−ρT
γ−1 (e

−(rγ−ρ)(T−t)
γ−1 − 1)(γ − 1)
rγ − ρ

) 1−γ
γ

,

B(T ) = 1.

(38)
Proposition 3 gives the expected utility of optimal value
of wealth that will accrued to the PPM at time t.

VI. OPTIMAL PORTFOLIO AND CONSUMPTION
PLAN

We present the optimal portfolio and optimal consump-
tion of a PPM at time t.

Proposition 4. Let X∗(t) be the optimal wealth process
of a CRRA PPM solving (11), Φ(t) be the discounted
value of PPM’s contributions at time t satisfying (14),
then
(i) The optimal investment, ∆∗(t) at time t is given by

∆
′∗(t) =

−(ΣΣ′)−1λ(X∗(t) + Φ(t))
(γ − 1)X∗(t)

−(ΣΣ′)−1Σσ′Y
Φ(t)
X∗(t)

.

(39)
(ii) The optimal consumption process of a PPM at time
t is given by

C∗(t) =
γ(rγ − ρ)(X∗(t) + Φ(t))f(t)

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

,

(40)
where f(t) = e

1
γ−1 (ρt+(r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t)).

Proof: Using the partial derivatives (29), (30) and (33)
on (22) and (23), we have

∆
′∗(t) =

−(ΣΣ′)−1λ(X∗(t) + Φ(t))
(γ − 1)X∗(t)

−(ΣΣ′)−1Σσ′Y
Φ(t)
X∗(t)

.

(41)

∆∗
0(t) = 1− I∆

′∗(t) = 1 + I((ΣΣ′)−1Σσ′Y )
Φ(t)
X∗(t)

+
I(ΣΣ′)−1λ(X∗(t) + Φ(t))

(γ − 1)X∗(t)
,

(42)
where, I = (1, 1).

C∗(t) = I(Uxeρt)
= I((X∗(t) + Φ(t))γ−1(A(t)B(t))γeρt)

= [(X∗(t) + Φ(t))γ−1(A(t)B(t))γeρt]
1

γ−1

= (X∗(t) + Φ(t))(A(t)B(t))
γ

γ−1 e
ρt

γ−1

=
γ(rγ − ρ)(X∗(t) + Φ(t))f(t)

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

.

Intuitively, the expected growth rate (GR) of PPM opti-
mal consumption is equals

GR =
1

γ − 1

(
r − ρ +

1
2(γ − 1)

(Mλ)′λ
)

, γ > 1. (43)

This is referred to as the Eulers equation for the inter-
temporal maximization under uncertainty. The coeffi-

cient
1

γ − 1
is referred to as the elasticity of substitu-

tion of consumption in macroeconomics. The positive
term (Mλ)′λ captures the uncertainty of the financial
markets. When the market become risky, it induces
the PPM not make more contributions into the pen-
sion scheme. From (43), we have that for a fixed, γ,

if ρ > r +
1

2(γ − 1)
(Mλ)′λ the growth rate of the ex-

pected consumption is strictly negative, it is strictly non-

negative if ρ < r +
1

2(γ − 1)
(Mλ)′λ and constant if

ρ = r +
1

2(γ − 1)
(Mλ)′λ. Intuitively, as the discount rate

captures the PPMs preference over time, if ρ is less than

r+
1

2(γ − 1)
(Mλ)′λ, it implies that PPM will like to con-

sume more since the markets are risky to invest in. If ρ

is greater than r +
1

2(γ − 1)
(Mλ)′λ, it implies that PPM

will like to consume less and invest more into the pension

scheme. Finally, if ρ is equal to r+
1

2(γ − 1)
(Mλ)′λ, then

PPM will be at the critical position to determine whether
to consume more and invest less or to invest more and to
consume less.
At time t = 0, we have the optimal initial value of the
portfolio in the risky assets and optimal initial consump-
tion of the PPM as follows:

∆
′∗(0) =

−(ΣΣ′)−1λ(x0 + Φ0)
(γ − 1)x0

− (ΣΣ′)−1Σσ′Y
Φ0

x0
. (44)

∆∗
0(0) = 1− I∆

′∗(0) = 1 + I((ΣΣ′)−1Σσ′Y )
Φ0

x0

+
I(ΣΣ′)−1λ(x0 + Φ0)

(γ − 1)x0
.

(45)
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C∗(0) =
γ(rγ − ρ)(x0 + Φ0)e

1
γ−1 (r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)T )

γ(rγ − ρ)− γ(γ − 1)(e
−rγT
γ−1 − e

−ρT
γ−1 )

.

(46)
At time t = T , we have

C∗(T ) = X∗(T )e
ρT

γ−1 . (47)

(47) gives the optimal terminal consumption of the PPM.
Observe that the terminal consumption of the PPM de-
pend on the optimal final wealth, consumption pref-
erence factor ρ, retirement date, T and coefficient of
PPM’s risk preference, γ. We can re-express (47) as
X∗(T ) = C∗(T )e

−ρT
γ−1 . Observe that

lim
T→∞

X∗(T ) = lim
T→∞

C∗(T )e
−ρT
γ−1 = 0.

This shows that the accumulated wealth will terminate
after a long run of consumption of the wealth by a PPM
after retirement. Proposition 5 show the optimal value of
PPM’s wealth dynamics and second degree of Ito process
of the optimal value of PPM’s wealth.

VII. SOME NUMERICAL EXAMPLES AND
DISCUSSIONS

All the figures are obtained (except the optimal consump-
tion where the value of ρ is varied) by setting ρ = 0.1,
σI = 0.2, r = 0.04, θI = 0.125, µ = 0.09, σS = 0.3,
ξ = 0.3, T = 20, γ = 0.3, σY = (0.18, 0.24), β = 0.0292,
c = 0.15 and y0 = 0.9. Figure 1 shows the portfolio
value of a PPM invested in index bond under stochastic
salary over time. Figure 2 gives the portfolio value with
stochastic salary of a PPM invested in stock at time t.
Figure 3 shows the portfolio value with stochastic salary
invested in cash account at time t. Observe from figure
1 to figure 3 that the portfolios are made up of several
shocks. We referred to these as the variational Merton
portfolios. The portfolio value in stock remain negative
over time and the portfolio values index bond and cash
account remain nonnegative over time. This implies that
the portfolio value in stock should be withdraw and in-
vested the fund in index bond and put the remaining in
cash account at time t. Figure 4 shows the optimal vari-
ational consumption of the PPM at time t. We observe
that as wealth increases, consumption increases stochas-
tically over time. Figure 5 shows the portfolio value of
a PPM in index bond given that the salary of the PPM
is deterministic. It was found that the portfolio value in
index bond remain nonnegative over time. Similarly, in
figure 6 under deterministic salary process of the PPM,
the portfolio value in stock is also nonnegative over time.
Figure 7 shows the portfolio value in cash account at time
t. We found that the portfolio value in cash account re-
main negative over time. This shows that the fund in
cash account should be shorten and invested the amount
in stock and index bond at time t. Interestingly, in the
case of portfolio value under stochastic salary, the result
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Figure 1: Portfolio value in index bond under stochastic
salary

shows that the fund invested in stock should be shorten
to finance index bond and put the remaining in cash ac-
count. Now, under deterministic salary case, the cash
account is to be shorten to finance index bond and stock.
We therefore conclude that under stochastic salary case
the amount of fund invested should be gradual transferred
to the riskless assets as the retirement date approaches.
In the case of deterministic salary case, the investment
should remain in stock and index bond. Observe in both
cases, index bond remain favourite. We therefore con-
clude that index bond is a suitable asset to invest in by
a PPM.
Under a deterministic salary case: in figure 8, we have
the optimal wealth-consumption over time for a PPM,
given that PPM consumption preference discount rate, ρ
is zero. Figure 9 shows the optimal wealth-consumption
over time for a PPM, given that ρ = 0.01, figure 10
shows optimal wealth-consumption over time, given that
ρ = 0.1 and figure 11 when ρ = 0.5. From figure 8 to
figure 11, we observe that as ρ increases and all other
parameters remain fixed, consumption decreases drasti-
cally, and vice versa. The economic implication of this, is
that as the investor (i.e., PPM) taste to consume reduces,
contributions will increase, thereby the expected wealth
of the PPM will increase and more wealth to consume
after retirement period. A critical observation from (43),
shows that PPM will only be encouraged to make more
contributions in to the scheme only if the financial mar-
kets are not under bearish condition (i.e., the markets
are booming). It implies that more contributions will be
made into the scheme under booming market conditions,
which is expected. If we allow ρ −→ +∞ and γ > 1,
then we found that C∗(t) −→ 0. If we allow ρ −→ −∞
and γ < 1, then we found that C∗(t) −→ 0. We therefore
conclude that consumption is zero only when ρ −→ +∞
and γ > 1 or ρ −→ −∞ and γ < 1.
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Figure 2: Portfolio value in stock under stochastic salary
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Figure 3: Portfolio value in cash account under stochastic
salary
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Figure 4: Optimal variational consumption of a PPM for
ρ = 0.1
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Figure 5: Portfolio value in index bond
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Figure 6: Portfolio value in stock
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Figure 7: Portfolio value in cash account
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Figure 8: Optimal consumption of the PPM given that
ρ = 0.0
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Figure 9: Optimal consumption of the PPM given that
ρ = 0.01
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Figure 10: Optimal consumption of the PPM given that
ρ = 0.1
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Figure 11: Optimal consumption of the PPM given that
ρ = 0.5

Table I
Initial investment in the risky assets, ∆∗I(0), ∆∗S(0)

γ
∆∗I

T = 1
∆∗S

T = 1
∆∗I

T = 2
∆∗S

T = 2
∆∗I

T = 5
∆∗S

T = 5
∆∗I

T = 10
∆∗S

T = 10
∆∗I

T = 20
∆∗S

T = 20

0.1 0.6676 0.6315 0.6424 0.5877 0.5762 0.4724 0.4911 0.3241 0.3858 0.1407

0.2 0.7657 0.7274 0.7512 0.6940 0.7129 0.6059 0.6638 0.4928 0.6030 0.3528

0.3 0.8919 0.8507 0.8911 0.8306 0.8887 0.7776 0.8858 0.7096 0.8821 0.6255

0.4 1.0601 1.0150 1.0775 1.0127 1.1231 1.0066 1.1818 0.9988 1.2544 0.9891

0.5 1.2957 1.2451 1.3386 1.2677 1.4513 1.3272 1.5962 1.4036 1.7755 1.4981

0.6 1.6491 1.5903 1.7301 1.6502 1.9436 1.8080 2.2178 2.0108 2.5572 2.2617

0.7 2.2379 2.1655 2.3827 2.2876 2.7640 2.6094 3.2538 3.0230 3.8600 3.5343

0.8 3.4157 3.3159 3.6879 3.5626 4.4048 4.2122 5.3259 5.0467 6.4657 6.0795

0.9 6.9490 6.7672 7.6035 7.3873 9.3274 9.0205 11.5420 11.1186 14.2827 13.7152

Table II
Initial optimal consumption, C∗0

ρ T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 10 T = 12 T = 15 T = 20
0.00 0.5420 0.3828 0.2993 0.2466 0.2095 0.1817 0.1144 0.0939 0.0716 0.0472

0.01 0.5400 0.3791 0.2945 0.2410 0.2034 0.1751 0.1072 0.0869 0.0648 0.0413

0.02 0.5381 0.3755 0.2897 0.2354 0.1973 0.1687 0.1003 0.0801 0.0585 0.0359

0.03 0.5361 0.3718 0.2850 0.2299 0.1913 0.1624 0.0937 0.0737 0.0535 0.0310

0.04 0.5342 0.3682 0.2802 0.2245 0.1854 0.1562 0.0873 0.0676 0.0470 0.0265

0.05 0.5322 0.3645 0.2755 0.2191 0.1796 0.1501 0.0812 0.0618 0.0418 0.0226

0.06 0.5306 0.3609 0.2708 0.2138 0.1738 0.1441 0.0754 0.0564 0.0371 0.0191

0.07 0.5283 0.3573 0.2662 0.2085 0.1682 0.1383 0.0699 0.0513 0.0328 0.0160

0.08 0.5263 0.3536 0.2616 0.2033 0.1626 0.1326 0.0647 0.0465 0.0289 0.0134

0.09 0.5244 0.3500 0.2570 0.1981 0.1572 0.1271 0.0597 0.0421 0.0253 0.0111

0.10 0.5224 0.3464 0.2524 0.1930 0.1519 0.1217 0.0555 0.0380 0.0221 0.0091

Table III
Optimal terminal consumption, C∗(T ) for ρ = 0.1

X∗(T ) T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 10 T = 12 T = 15 T = 20
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.8669 0.7515 0.6514 0.5647 0.4895 0.4244 0.2397 0.1801 0.1173 0.0574

2 1.7338 1.5030 1.3029 1.1294 0.9791 0.8487 0.4793 0.3602 0.2346 0.1149

3 2.6006 2.2544 1.9543 1.6942 1.4686 1.2731 0.7190 0.5403 0.3520 0.1723

4 3.4675 3.0059 2.6058 2.2589 1.9582 1.6975 0.9586 0.7204 0.4693 0.2297

8 6.9350 6.0118 5.2115 4.5177 3.9163 3.3950 1.9172 1.4407 0.9386 0.4595

10 8.6688 7.5148 6.5144 5.6472 4.8954 4.2437 2.3965 1.8009 1.1732 0.5743

Table IV
Optimal terminal consumption, C∗(T ) for ρ = 0.3

X∗(T ) T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 10 T = 12 T = 15 T = 20
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.6514 0.4244 0.2765 0.1801 0.1173 0.0764 0.0138 0.0058 0.0016 0.0002

2 1.3029 0.8487 0.5529 0.3602 0.2846 0.1529 0.2753 0.0117 0.0032 0.0004

3 1.9543 1.2731 0.8294 0.5403 0.3520 0.2293 0.0413 0.0175 0.0048 0.0006

4 2.6058 1.6975 1.1058 0.7204 0.4693 0.3057 0.0551 0.0234 0.0065 0.0008

8 5.2115 3.3950 2.2116 1.4407 0.9386 0.6114 0.1101 0.0467 0.0129 0.0015

10 6.5144 4.2437 2.7645 1.8009 1.1732 0.7643 0.1376 0.0584 0.0161 0.0019

Table V
Optimal terminal consumption, C∗(T ) for ρ = 0.5

X∗(T ) T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 10 T = 12 T = 15 T = 20
0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.4895 0.2397 0.1173 0.0574 0.0281 0.0138 0.0008 0.0002 0.0000 0.0000

2 0.9791 0.4793 0.2346 0.1149 0.0562 0.0275 0.0016 0.0004 0.0000 0.0000

3 1.4686 0.7190 0.3520 0.1723 0.0843 0.0413 0.0024 0.0006 0.0000 0.0000

4 1.9582 0.9586 0.4693 0.2297 0.1125 0.0551 0.0032 0.0008 0.0000 0.0000

8 3.9163 1.9172 0.9386 0.4595 0.2249 0.1101 0.0063 0.0015 0.0002 0.0000

10 4.8954 2.3965 1.1732 0.5743 0.2812 0.1376 0.0079 0.0019 0.0002 0.0000
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Table VI
Initial consumption, C∗0 with different values of γ

γ T = 1 T = 2 T = 3 T = 4 T = 5 T = 6 T = 10 T = 12 T = 15 T = 20
0.10 0.5270 0.3556 0.2642 0.2063 0.1659 0.1359 0.0674 0.0488 0.0307 0.0144

0.20 0.5246 0.3510 0.2584 0.1998 0.1590 0.1289 0.06123 0.0434 0.0263 0.0116

0.30 0.5224 0.3464 0.2524 0.1930 0.1519 0.1217 0.0550 0.0380 0.0221 0.0091

0.40 0.5210 0.3424 0.2468 0.1865 0.1449 0.1147 0.0491 0.0330 0.0184 0.0070

0.50 0.5221 0.3408 0.2432 0.1818 0.1397 0.1091 0.0443 0.0289 0.0154 0.0054

0.60 0.5306 0.3470 0.2471 0.1839 0.1405 0.1091 0.0429 0.0274 0.0141 0.0047

0.70 0.5640 0.3824 0.2803 0.2140 0.1674 0.1329 0.0565 0.0374 0.0202 0.0071

0.80 0.7242 0.5977 0.5254 0.4783 0.4444 0.4181 0.3434 0.3127 0.2699 0.2060

0.81 0.7653 0.6614 0.6076 0.5774 0.5599 0.5494 0.5327 0.5263 0.5126 0.4780

0.83 0.8859 0.8679 0.8987 0.9610 1.0475 1.1546 1.7686 2.1890 2.9820 4.8490

0.85 1.1032 1.3090 1.6312 2.0950 2.7394 3.6184 11.3281 19.9654 46.0985 180.111

0.87 1.5560 2.5087 4.2149 7.2825 12.7925 22.6709 227.334 713.828 3909.88 64315.2

Table I shows the total amount of initial investment pro-
portion in the risky assets, ∆∗I(0) and ∆∗S(0), chosen to
maximize wealth to the prescribed levels at difference val-
ues of γ. The investment in cash account is ∆∗

0(0), that
can be obtained from table I. As expected, the risky in-
vestment increases with higher value of γ. Table II shows
the total expected optimal value of the initial consump-
tion when the portfolio comprises the cash account and
two risky assets at difference values of ρ. We observed
that as ρ increases, the optimal initial consumption levels
reduces. Table III shows the optimal terminal consump-
tion for ρ = 0.1 as optimal wealth increases. We ob-
served that the as the optimal terminal wealth increases,
the optimal terminal consumption levels increases along-
side. Table IV shows the optimal terminal consumption
for ρ = 0.3 as optimal wealth increases. Furthermore, as
the optimal terminal wealth increases, the optimal termi-
nal consumption levels increases as well. Table V shows
the optimal terminal consumption for ρ = 0.5 as optimal
wealth increases. We observed that as time increases,
wealth level increases and consumption level reduces to
zero. This shows that as the PPM get older and older,
consumption will terminate. Table VI shows the initial
optimal consumption at varying value of γ. We observed
that as γ increases from 0.10 to 0.40, consumption level
decreases. From 0.50 and above consumption level in-
creases. We also observed that consumption level be-
comes much more sensitive to γ, when γ raises form 0.8
upward.

VIII. THE EFFICIENT FRONTIER

We now consider the efficient frontier of the PPM port-
folio in mean-standard deviation.

Proposition 5. Let V ∗(t) be the optimal value of wealth
process of a CRRA PPM solving (17), then
(i) the dynamic of the value of a PPM’s wealth is

dV ∗(t) = V ∗(t)
((

r − (Mλ)′λ
γ − 1

)
− φ(t)

)
dt

−V ∗(t)
(

Σ′Mλ

γ − 1

)′
dW (t),

(48)

(ii) the second moment of the dynamic of the value of
wealth of a PPM is

dV ∗2(t) = V ∗2(t)(2(r − (Mλ)′λ
γ − 1

− φ(t))

+
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)dt− 2V ∗2(t)

(
Σ′Mλ

γ − 1

)′
dW (t),

(49)

where

φ(t) =
γ(rγ − ρ)e

1
γ−1 (ρt+(r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t))

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

.

Proof: Substituting (39) and (40) into (17), we have

dV ∗(t) =
((

r − (Mλ)′λ
γ − 1

)
V ∗(t)− C∗(t)

)
dt

−V ∗(t)
(

ΣMλ

γ − 1

)′
dW (t).

(50)

Simplifying (50), we have

dV ∗(t) = V ∗(t)[(r − (Mλ)′λ
γ − 1

)

−γ(rγ − ρ)e
1

γ−1 (ρt+(r+ γ
2(γ−1) (Σ

′Mλ)′Σ′Mλ)(T−t))

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

)]dt

−V ∗(t)
(

Σ′Mλ

γ − 1

)′
dW (t).

(51)
Therefore,

dV ∗(t) = V ∗(t)
((

r − (Mλ)′λ
γ − 1

)
− φ(t)

)
dt

−V ∗(t)
(

Σ′Mλ

γ − 1

)′
dW (t),

(52)

where

φ(t) =
γ(rγ − ρ)e

1
γ−1 (ρt+(r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t))

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

.

Applying Ito lemma on (52), we have

dV ∗2(t) = V ∗2(t)[2(r − (Mλ)′λ
γ − 1

− φ(t))+

(Σ′Mλ)′Σ′Mλ

(γ − 1)2
]dt− 2V ∗2(t)

(
Σ′Mλ

γ − 1

)′
dW (t).

(53)

Taking the mathematical expectation of (52) and (53), we
have the following ODEs which are the first and second
moments of the value of PPM’s wealth at time t: dE(V ∗(t)) = E(V ∗(t))

((
r − (Mλ)′λ

γ − 1

)
− φ(t)

)
dt,

E(V ∗(0) = v0,
(54)

dE(V ∗2(t)) = E(V ∗2(t))[2(r − (Mλ)′λ
γ − 1

− φ(t))

+
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
]dt, E(V ∗2(0)) = v2

0 .

(55)
Solving the ODEs (54) and (55), we have

E(V ∗(t)) = v0e
(r−

(Mλ)′λ
γ − 1

)t−
∫ t

0

φ(u)du
, (56)

E(V ∗2(t)) =

v2
0e

(2(r−
(Mλ)′λ
γ − 1

) +
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)t− 2

∫ t

0

φ(u)du
.

(57)
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At time t = T , we have

E(V ∗(T )) = v0e
(r−

(Mλ)′λ
γ − 1

)T −
∫ T

0

φ(u)du
, (58)

E(V ∗2(T )) = v2
0×

e
(2(r−

(Mλ)′λ
γ − 1

) +
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)T − 2

∫ T

0

φ(u)du
.

(59)
The variance of the expected value of final wealth of the
PPM is obtained as

V ar(V ∗(T )) = v2
0

e
(
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)T

− 1


×e

(2(r−
(Mλ)′λ
γ − 1

)T − 2
∫ T

0

φ(u)du
.

(60)

Simplifying (60), we have

σ(V ∗(T )) = v0

√
e
(
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)T

− 1

×e
(r−

(Mλ)′λ
γ − 1

)T −
∫ T

0

φ(u)du
.

(61)

We now express (61) in terms of expected value of final
wealth of the PPM as follows:

σ(V ∗(T )) = E(V ∗(T ))

√
e
(
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)T

− 1. (62)

Therefore, the efficient frontier of a PPM’s wealth in
mean-standard deviation is

E(V ∗(T )) =
σ(V ∗(T ))√

e
(
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)T

− 1

. (63)

Figure 12 shows the efficient frontier of the three classes
of assets in mean-standard deviation approach. It shows
that to have 6 million expected value of wealth, the in-
vestor stand the risk of losing 1.9 million. We observe
that from (63), we can write

v0 =
σ(V ∗(T ))

g(T )e
(
(Mλ)′λ
γ − 1

− r)T −
∫ T

0

φ(u)du

,
(64)

where g(T ) =

√
e
(
(Σ′Mλ)′Σ′Mλ

(γ − 1)2
)T

− 1.
It implies that

x0 =
σ(V ∗(T ))

g(T )e
(
(Mλ)′λ
γ − 1

− r)T −
∫ T

0

φ(u)du

− Φ0.
(65)
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Figure 12: The efficient frontier

We observe from (64) that the initial value of wealth, v0

can be expressed in terms of the standard deviation of
a PPM final value of wealth, the sharpe ratio, (Mλ)′λ,
coefficient of risk averse utility function γ, consumption
rate, φ and the retirement date, T . From (65). we found
that the initial wealth, x0 can be expressed in terms of
the standard deviation of a PPM final value of wealth,
the sharpe ratio, (Mλ)′λ, coefficient of risk averse util-
ity function γ, consumption rate, φ, the present value of
PPM’s future discounted contributions, Φ0 and the re-
tirement date, T .

Proposition 6. The optimal consumption of the life-
cycle of a PPM is

Ψ(t) =
∫ ∞

0

e−rtE(C∗(t))dt,

with

E(C∗(t)) =
γ(rγ − ρ)E(V ∗(t))e

1
γ−1 (ρt+(r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t))

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

.

(66)

From (66), we have

E(C∗(t))
E(V ∗(t))

=
γ(rγ − ρ)e

1
γ−1 (ρt+(r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t))

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

,

(67)
is the tradeoff between expected consumption and ex-
pected value of wealth. This implies that at time
t ≤ T , the expected consumption is decreasing in
expected value of wealth. It implies that there is
a linear relationship between expected value of op-
timal consumption and expected value of optimal
wealth. We then say that expected value of opti-
mal consumption varies directly as expected value of
optimal wealth, with time varying proportionality of
γ(rγ − ρ)e

1
γ−1 (ρt+(r+ γ

2(γ−1) (Σ
′Mλ)′Σ′Mλ)(T−t))

γ(rγ − ρ)− γ(γ − 1)(e
−rγ(T−t)−ρt

γ−1 − e
−ρT
γ−1 )

.
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Figure 13: Efficiency Test between Optimal Expected
Terminal Consumption and Wealth. This figure was ob-
tained by setting γ = 0.5 and T = 20.

We observe that at t = T , (67) becomes

E

(
C∗(T )
V ∗(T )

)
=

E(C∗(T ))
E(V ∗(T ))

= e
ρT

γ−1 . (68)

This shows that E(C∗(T )) varies directly as E(V ∗(T ))
with constant of proportionality, e

ρT
γ−1 . This shows the

efficiency test between expected terminal consumption,
E(C∗(T )) and expected value of final wealth, E(V ∗(T ))
with gradient, e

ρT
γ−1 . We observed from (68) that if ρ = 0,

then E(C∗(T )) = E(V ∗(T )). Hence, this efficiency test
depend on T , ρ and γ. The second moment of (68) is
given by

E

(
C∗2(T )
V ∗2(T )

)
=

E(C∗2(T ))
E(V ∗2(T ))

= e

“
2ρ

γ−1−
(Mλ)′λ
(γ−1)2

”
T
. (69)

The variance is

V ar

(
C∗(T )
V ∗(T )

)
= E

(
C∗2(T )
V ∗2(T )

)
−
(

E

(
C∗(T )
V ∗(T )

))2

= e
2ρT
γ−1

(
e
− (Mλ)′λ

(γ−1)2
T − 1

)
.

(70)

The efficient frontier of the ratio
C∗(T )
V ∗(T )

is

E

(
C∗(T )
V ∗(T )

)
=

1√
e
− (Mλ)′λ

(γ−1)2
T − 1

σ

(
C∗(T )
V ∗(T )

)
. (71)

Figure 13 and figure 14 show the efficient test between
optimal expected terminal consumption and expected op-
timal wealth of the PPM at different values of ρ. In figure
13 at a higher value of ρ, we found that expected optimal
consumption was at a reduced end. When the value of ρ
was reduced as shown in figure 14, expected optimal con-
sumption increases, which confirmed the initial argument
in subsection .
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Figure 14: Efficiency Test between Optimal Expected
Terminal Consumption and Wealth. This figure was ob-
tained by setting γ = 0.5 and T = 20.

XI. CONCLUSION

This paper have studied a continuous-time mean-variance
portfolio selection problem with stochastic salary and
strategic life-cycle consumption planning in the accumu-
lation phase of a defined contribution pension plan. In-
dex bond was traded and used to protect the investment
against inflation risks. Efficient frontier for the three
classes of assets that will enable PPMs to decide their
own value of wealth and risk in their investment profile
at retirement was obtained. The optimal consumption
overtime and final consumption of the PPM are estab-
lished. The variational Merton portfolio processes for the
three classes of assets were established. As expected, the
numerical example (see table VI) shows that as the in-
vestment becomes more risky, PPM will prefer consuming
more and invest little or none.
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