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Abstract—Consider the problem of solving a system of
Wiener-Hopf integral equations

λigi(x)−
n∑

j=1

∫ ∞

0
gj(θ)kij(x− θ)dθ = fi(x), and x ≥ 0,

where for i = 1, 2, · · · , n, λi ∈ R, and kij(·) and fi(·) are given
functions and gj(·) are to be determined. This article provides solutions
for such system of Wiener-Hopf integral equations.

Index Terms—Wiener-Hopf integral equations; Hölder con-
dition; Fourier transform; Convolution theorem; Shannon sam-
pling theorem.

I. INTRODUCTION

CONSIDER the problem of solving a system of Wiener-
Hopf integral equations

λigi(x)−
n∑

j=1

∫ ∞

0
gj(θ)kij(x− θ)dθ = fi(x), (1)

where x ≥ 0, i = 1, 2, · · · , n, λi ∈ R, gj(·) are to be
determined, and kij(·) and fi(·) are given functions that: (i)
go to zero faster than some power; (ii) satisfy kii(−x) =
kii(x); and (iii) the Fourier transform of kij , say k̂ij , satisfy
k̂ij ≡ ¯̂

kji, for all i, j = 1, 2, · · · , n; and where k̄ji stands
for the conjugate of kji.

Solving a system of integral equations is a practical
mathematical problem which studied by several authors. For
instance [1] employed an integral form of the method of
moving planes to study positive solutions of the following
system of integral equations in Rn

u(x) =

∫
Rn

|x− y|α−nvq(y)dy

v(x) =

∫
Rn

|x− y|α−nuq(y)dy,

where (q+1)−1+(q+1)−1 = 1−α/n, u ∈ Lp+1(Rn) and
v ∈ Lq+1(Rn). [2] used a Taylor-series expansion method
to solve a second kind Fredholm integral equations system
with smooth or weakly singular kernels. [3] implemented
Adomian-Pade (Modified Adomian-Pade) technique along
with the Pade approximation to solve linear and nonlinear
systems of Volterra functional equations. [4] based upon the
calculus of variations solved a class of linear and nonlinear
system of Volterra integral equations of the first and the
second kinds. [5] derived solutions (and some asymptotic
properties of solutions) of a singularly perturbed nonlin-
ear system fractional integral equations. [6] employed the
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Taylor collocation method to approximate solutions of a
system of Volterra-Fredholm integral equations in terms of
Taylor polynomials. [7] studied application of Laplace and
inverse Laplace transforms to approximate solutions of a
system of Volterra integral equations of the first kind with
highly oscillatory Bessel kernels. [8] compared two well
known variational iteration and modified variational iteration
methods for approximating solution of a system of the first
kind Volterra integral equations. [9] used a hybrid func-
tional approximation method to solve a system of nonlinear
mixed Volterra-Fredholm integral equations. [10] employed
a generalized Single-Term Walsh Series method to solve
systems of linear Volterra integral equations of the second
kind. [11] introduced two direct quadrature methods based
on linear rational interpolation for solving general system of
the second kind Volterra integral equations.

This article employs the matrix Riemann-Hilbert problem
along with the well-known Shannon sampling theorem to
provide an exact solutions for a class of system of Wiener-
Hopf integral equations. Section 2 collects some useful
elements for other sections. Exact solutions for such system
of Wiener-Hopf integral equations accompanied with an error
estimate for the case of approximate solutions and some
real examples are given in Section 3. Section 4 reviews the
findings and discusses a situation where the given functions
in the corresponding matrix Riemann-Hilbert problem are
non-exponential-type functions.

II. PRELIMINARIES

Now, we collect some useful elements for the rest of this
article.

Definition 1. A function f in L1(R) ∩ L2(R) is said to be
an exponential type T function on the domain D ⊂ C if
there are positive constants M and T such that |f(ω)| ≤
M exp{T |ω|}, for ω ∈ D. An n × m matrix function f
is said to be of exponential type T in a domain D if its
components are of exponential type T or better.

The following lemma collects some useful properties of a
matrix function.

Lemma 1. Suppose g(x) stands for the pointwise opera-
tor norm of a matrix function F := [fij ], i.e., g(x) :=
∥[fij(x)]∥. Then,

(a) |fij | ≤ g(x) for all coefficient functions fij ;
(b) g(x) is an exponential type function if and only if

F is an exponential type matrix-valued function.

Proof. For part (a), suppose Eij denote the elementary
matrix units, which satisfy EijFEjk = Eikfik. Now observe
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that
|fik| = ||Eikfik||

= ||EijFEjk||
≤ g(x),

where the last inequality comes from the submultiplicative
property of the operator norm. Proof of part (b) comes by
an application of part (a). �

The well known Paley-Wiener theorem states that the
Fourier transform of an L2(R) function vanishes outside
of an interval [−T, T ], if and only if the function is an
exponential type T , see [12] for more detail. The Fourier
transforms of exponential type functions are continuous
functions which are infinitely differentiable everywhere and
are given by a Taylor series expansion over every compact
interval, see [13] and [14]. These functions are also called
band-limited functions, see [15] for more details about band-
limited functions (which are equivalent to exponential-type
functions under the Fourier transform by the above stated
Paley-Wiener theorem).

Lemma 2. Suppose h is a bounded function which goes
to zero faster than some power (i.e., h(ω) = o(|ω|−α), for
some positive α, as |ω| → ∞). Then, the Fourier transform
of h satisfies the Hölder condition on C for some positive
exponent λ.

Proof. Suppose ĥ stands for the Fourier transform of h.
Now, observe that

|ĥ(ω2)− ĥ(ω1)| ≤
∫ ∞

−∞

∣∣eitω2 − eitω1
∣∣ |h(x)|dx

≤ a|ω2 − ω1|λ
∫ ∞

−∞
|xλh(x)|dx

≤ aM |ω2 − ω1|λ,

where the second inequality comes from the fact that eitω

satisfies the Hölder condition and the third inequality comes
from the fact that h is bounded function that goes to zero
faster than some power. �
Lemma 3. Suppose h satisfies the Hölder condition on a
disk around 0 in the complex plane. Then, h and ln(h) are
exponential-type functions.

Proof. Since h satisfies the Hölder condition, one may
conclude that

|h(ω)| ≤ |h(ω)− h(0)|+ |h(0)|
≤ a|ω|λ +M

= aeλ ln(|ω|) +M

≤ (a+M)eλ|ω|,

where the last inequality comes from the fact that ln(|ω|) ≤
|ω|−1 < |ω| and that since λ is positive eλ|ω| ≥ 1. However,
| ln(h(ω))| ≤ |h(ω)|, for all ω ∈ C. �
Definition 2. A complex-valued square matrix function
M(t) is Hermitian, whenever its conjugate transpose, say
M∗(t), is equal to M(t).

Hermitian matrices can be understood as an analogue of
real symmetric matrices (see [16]). Moreover, a Hermitian
matrix M(t) is non-degenerate on a smooth oriented curve
Γ if and only if det(M(t)) ̸= 0, for all t ∈ Γ (see [17]). [18]
and [19], as well as others, showed that all the partial indices
(see below for definition) of a Hermitian matrix function are
zero.

Lemma 4. (Payandeh & Kucerovsky, 2014) Suppose
g : R −→ Mn(C) be a Hermitian matrix function with either
g(−x) = g(x) or g(−x) = −g(x). Then, the (inverse)
Fourier transform of g is a scalar multiple of a Hermitian
matrix function.

Henceforth, logarithms and exponentials of matrix-valued
functions are defined by the resolvent functional calculus
from operator theory. In general, such logarithms and expo-
nentials do not coincide with the componentwise logarithms
and exponentials, except of course in the case of 1-by-1
matrices.

Lemma 5. Suppose matrix function G is a Hermitian matrix
at every point. Moreover, suppose that the spectrum of G(x)
is bounded below by some fixed positive real number, say
a. Then,

(a) the operator logarithm of G exists;
(b) the logarithm of G(x) is an exponential type

function, whenever G(x) is an exponential type
function.

Proof. For part (a), we take a contour that encloses the
spectrum of G but does not enclose zero. For part (b), sup-
pose, λ(x) and µ(x), respectively, represent the largest and
the smallest eigenvalues of G(x). The largest and smallest
eigenvalues of the Hermitian matrix function ln(G(x)) are
then ln(λ(x)) and ln(µ(x)). For Hermitian matrix functions,
the pointwise operator norm can be given in terms of the
spectrum at each point. In particular, then, ∥ ln(G(x))∥ is
bounded by max{| ln(λ(x))|, | ln(µ(x))|}. But, since λ(x)
is equal to the pointwise operator norm of G, which is an
exponential-type, and µ(x) ≥ a > 0 (From part a). One
may conclude that max{| ln(λ(x))|, | ln(µ(x))|} is certainly
an exponential-type. Then the pointwise operator norm of
ln(G(x)) is of exponential-type and hence by part (b) of
Lemma 1 the matrix function ln(G(x)) is of exponential-
type. �

A matrix Riemann-Hilbert problem is, in general, far more
complicated than a scalar Riemann-Hilbert problems. It is the
function-theoretical problem of finding a vector of functions
Φ which are sectionally analytic, bounded, and having a
prescribed jump discontinuity on R, i.e.,

Φ+(ω) = G(ω)Φ−(ω) + F(ω), for ω ∈ R, (2)

where Φ+ and Φ− are one-sided limits of Φ at the
discontinuities, the kernel G and the nonhomogeneous vector
F are given complex-valued and continuous matrix functions
whose elements satisfy a Hölder condition on R and detG(t)
does not vanish on R.

The continuity and non-vanishing properties are quite
restrictive conditions. In some cases, the Riemann-Hilbert
problem can be extended to handle cases with vanishing G
or jump discontinuities of F, see [20] for more detail.

Computing the partial indices of a matrix Riemann-Hilbert
problem is usually a key step in determining the existence
and number of solutions of a matrix Riemann-Hilbert prob-
lem. The index of a complex-valued smooth scalar kernel G
on a smooth oriented curve Γ is defined to be the winding
number of G(Γ) about the origin. In contrast to the case of a
scalar kernel, the indices of a matrix kernel apparently cannot
be completely determined by any a priori investigation. To
determine such indices, one must solve the corresponding
homogeneous Riemann-Hilbert problem. Thus, to evaluate
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the partial indices of an n-by-n matrix kernel G on a smooth
oriented curve Γ, one has to find a fundamental solution
matrix X that is componentwise sectionally analytical in
the upper and lower complex half-planes, and such that
the lower and upper radial limits, say X±, respectively,
satisfy G(t) = X+(t)X

−1
− (t), for all t ∈ Γ. Then, the

partial indices κ1 · · · , κn are defined by investigating the
behavior of X11(t), · · · , Xnn(t) at infinity. Some limited a
priori information on partial indices can be found using the

fact that
n∑

i=1

κi = indΓ det(G(t)), so that we may at least

easily find the sum of the partial indices: more detail can
be found in [21]. We are primarily interested in the matrix
Riemann-Hilbert problems with a Hermitian kernel whose
partial indices are all zero (see [18] and [19]).

Solutions of a matrix Riemann-Hilbert problem whose ker-
nel has a so-called commutative factorization (a commutative
kernel) can be restated in term of the Sokhotskyi-Plemelj
integrals, see [22], [23], and [24] for more details. Unfor-
tunately, the majority of matrix Riemann-Hilbert problems
which appear in practical problems simply do not have com-
mutative factorizations. Using the Shanonn sampling theorem
along with Carlemann’s method [25] provided exact solution
for a wide class of matrix Riemann-Hilbert problems. Since,
commutative factorization is not required for Payandeh &
Kucerovsky’s method, one may employ their method for a
wide class of practical problems. The following two theorems
represent their findings.
Theorem 1. (Payandeh & Kucerovsky, 2014) Suppose all
the partial indices of matrix Riemann-Hilbert problem 2
are zero. Moreover, suppose ln(G) and F, in the matrix
Riemann-Hilbert problem 2 are two exponential-type T and
T ∗ matrix functions. Then, unique solution of the matrix
Riemann-Hilbert problem 2 can be explicitly determined by

Φ±(ω) = ± exp

±
∞∑

n=−∞
ln(G(

2n

T
))
e±iπ(Tω−2n) − 1

2iπ(Tω − 2n)


×

 ∞∑
m=−∞

H(
2m

T ∗ )
e±iπ(T∗ω−2m) − 1

2iπ(T ∗ω − 2m)
}

 ,

where

H(ω) := exp{−
∞∑

n=−∞
ln(G(

2n

T
))
eiπ(Tω−2n) − 1

2iπ(Tω − 2n)
} × F(ω).

The following corollary represents [25]’s results under
some weak conditions.
Corollary 1. Suppose G and F in matrix Riemann-Hilbert
problem 2 are given, Hermitian, and exponential type T
function and T ∗ matrix functions. Moreover, suppose also
that the spectrum of G(x) is uniformly bounded away from
zero. Then, unique solution of the matrix Riemann-Hilbert
problem 2 can be explicitly determined by

Φ±(ω) = ± exp

±
∞∑

n=−∞
ln(G(

2n

T
))
e±iπ(Tω−2n) − 1

2iπ(Tω − 2n)


×

 ∞∑
m=−∞

H(
2m

T ∗ )
e±iπ(T∗ω−2m) − 1

2iπ(T ∗ω − 2m)
}

 ,

where

H(ω) := exp{−
∞∑

n=−∞
ln(G(

2n

T
))
eiπ(Tω−2n) − 1

2iπ(Tω − 2n)
} × F(ω).

Proof. Since G and F are two Hermitian matrices, from
[18] and [19]’s result, one may conclude that: all the partial

indices of matrix Riemann-Hilbert problem 2 are zero. From
By part (b) of Lemma 1 and Lemma 5 observe that ln(G)
is an exponential-type function. Now, an application of
Theorem 1 leads to the desired conclusion. �

The above corollary extends [25]’s result to any matrix
Riemann-Hilbert problem that: (1) The operator norm of its
corresponding kernel and inhomogeneous matrix functions,
say G and F, respectively, are exponential-type matrices;
(2) G and F are Hermitian matrices; and (3) The spectrum
of G, at each point, is uniformly bounded below by some
positive real number a.

The following theorem gives the error bound for our
approximate solutions to matrix Riemann-Hilbert problem 2.
Theorem 2. (Payandeh & Kucerovsky, 2014) Suppose G
and F in matrix Riemann-Hilbert problem 2 are given,
Hermitian, exponential-type (T and T ∗, respectively) matrix
functions, and the spectrum of G(x) is uniformly bounded
away from zero. Moreover, suppose G(m) and F(m) are
two sequence of Hermitian, exponential-type (T and T ∗,
respectively) matrix functions, and the spectrum of G(m)(x)
is uniformly bounded away from zero. Then, the approximate
solutions of matrix Riemann-Hilbert problem (2) can be
explicitly given as:

Φ
(m)
± (ω) = ± exp

±
∞∑

n=−∞
ln(G(m)(

2n

T
))
e±iπ(Tω−2n) − 1

2iπ(Tω − 2n)


×

 ∞∑
k=−∞

H(m)(
2k

T ∗ )
e±iπ(T∗ω−2k) − 1

2iπ(T ∗ω − 2k)
}

 ,

where

H(m)(ω) := exp{−
∞∑

n=−∞
ln(G(m)(

2n

T
))
eiπ(Tω−2n) − 1

2iπ(Tω − 2n)
}

×F(m)(ω);

and satisfy the error bound

|Φ(m)
± −Φ±| ≤ ∥ ln(G(m))− ln(G)∥∥H(m) −H∥,

where the norm is defined by ∥M∥ :=

supij

{∫∞
−∞ |Mij(x)|2 dx

}1/2

.

III. MAIN RESULTS

Now consider solving the system of Wiener-Hopf in-
tegral equation given by (1) in functional vector g =
(g1, g2 · · · , gn)′.
Lemma 6. The system of integral Equation (1) can be
converted to the following matrix Riemann-Hilbert problem.

G(ω)Φ−(ω) = Φ+(ω) + F(ω), ω ∈ R, (3)

where F is the Fourier transform of vector function f and
elements of the kernel matrix G = [gij ]n×n are gij = −k̂ij
and gii = λi − k̂ii, for i ̸= j = 1, 2, · · · , n.

Proof. For x ≤ 0, an unknown vector function h =
(h1, h2, · · · , hn)

′ can be defined as hi(x) := λigi(x) −∑n
j=1

∫∞
0

gj(x)kij(x−θ)dθ, for i = 1, 2, · · · , n. By adding
in such an unknown vector function h to integral equation
1, each elements of integral equation 1 can be extended to
the whole of the real line R as

λig
∗
i (x)−

n∑
j=1

∫ ∞

0
g∗j (x)kij(x− θ)dθ = f∗(x) + h∗(x),

where (g∗i (x), f
∗
i (x), h

∗
i (x)) = (0, 0, h(x))I(−∞,0)(x) +

(gi(x), fi(x), 0)I[0,∞)(x), for x ∈ R, and i = 1, 2, · · · , n.
The Fourier transform from both sides of the above extended
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integral equations along with the convolution theorem and
the Paley-Wiener theorem leads to desired results. �
Theorem 3. Solution of the integral equation 1 is given by
the inverse Fourier transform of

Φ−(ω) = − exp

−
∞∑

n=−∞
ln(G(

2n

T
))
e−iπ(Tω−2n) − 1

2iπ(Tω − 2n)


×

 ∞∑
m=−∞

H(
2m

T ∗ )
e−iπ(Tω−2m) − 1

2iπ(Tω − 2m)

 ,

where

H(ω) := exp{−
∞∑

n=−∞
ln(G(

2n

T
))
eiπ(Tω−2n) − 1

2iπ(Tω − 2n)
} × F(ω).

Proof. Using Lemma 6, one may restate the system of
Wiener-Hopf integral equation (1) as the matrix Riemann-
Hilbert problem (3). Our conditions on the kij functions
imply that the kernel G(ω) is a Hermitian matrix function.
Therefore, all of the partial indices of matrix Riemann-
Hilbert problem (3) are zero. The desired proof completed
by an application of Corollary 1. �
Theorem 4. Suppose given functions kij and fi in integral
Equations (1) replaced with by a sequence functions k

(m)
ij

and f
(m)
i , where, for each specified m, k

(m)
ij and f

(m)
i : (i)

go to zero faster than some power; (ii) their Fourier transform
satisfy the Hölder condition on R; (iii) k(m)

ij ≡ k̄
(m)
ji , for all

i, j = 1, 2, · · · , n; and (iv) all functions kij(·) satisfy either
k
(m)
ij (−x) = k

(m)
ij (x) or k

(m)
ij (−x) = −k

(m)
ij (x), where

k̄
(m)
ji stands for conjugate of k(m)

ji . Then, solution of integral
equations

λig
(m)
i (x) =

n∑
j=1

∫ ∞

0
g
(m)
j (θ)k

(m)
ij (x− θ)dθ (4)

+f
(m)
i (x), x ≥ 0

given by the inverse Fourier transform of

Φ
(m)
− (ω) = − exp

−
∞∑

n=−∞
ln(A(m)(

2n

T
))
e−iπ(Tω−2n) − 1

2iπ(Tω − 2n)


×

 ∞∑
m=−∞

H(m)(
2m

T ∗ )
e−iπ(Tω−2m) − 1

2iπ(Tω − 2m)

 ,

where

H(m)(ω) := exp

−
∞∑

n=−∞
ln(A(m)(

2n

T
))
eiπ(Tω−2n) − 1

2iπ(Tω − 2n)


×F(m)(ω);

and satisfy the error bound

||g(m) − g||L2 ≤ || ln(G(m))− ln(G)||L2 ||H
(m) −H||L2 ,

where the norm is defined by ∥M∥ :=

supij

{∫∞
−∞ |Mij(x)|2 dx

}1/2

.

The following represents a practical application of our
findings.

[26] considered the following system of Wiener-Hopf
equations

f1(x) = g1(x) +
α

π

∫ ∞

0

sin(x− t)

x− t
g1(t)dt

−
α

iπ

∫ ∞

0

cos(x− t)

x− t
g2(t)dt

f2(x) = g2(x) +
1

iπα

∫ ∞

0

cos(x− t)

x− t
g1(t)dt

−
1

πα

∫ ∞

0

sin(x− t)

x− t
g2(t)dt, (5)

where f1 and f2 are two real-valued and given function
which go to zero faster than some power, α ̸= 0, and g1
and g2 are two functions which should be determined.

[26] stated that “System of Wiener-Hopf equations, unlike
single equations, cannot be solved in closed form.” Then, he
found an asymptotic solution of the Wiener-Hopf Equation
(5). The following lemma establishes an exact solution for
the Wiener-Hopf Equation (5).

Lemma 7. The Wiener-Hopf integral Equation (5) have
an unique solution, which is given by the inverse Fourier
transform of

Φ−(ω) = − exp

−
∞∑

n=−∞
ln(A(2n))

e−iπ(Tω−2n) − 1

2iπ(Tω − 2n)


×

 ∞∑
m=−∞

H(2m)
e−iπ(Tω−2m) − 1

2iπ(Tω − 2m)

 ,

where H(ω) := F(ω) exp{−
∑∞

n=−∞ ln(A(2n))
exp{iπ(Tω−2n)}−1

2iπ(Tω−2n)
},

G(ω) :=
(
1 + αI[−1,1](ω)

)( 1 0
0 α

)
+sgn(1− ω)[1− I[−1,1](ω)]α

(
0 −1
1 0

)
F(ω) :=

(
f̂1(ω)

α2f̂2(ω)

)
.

Proof. Using the fact that α ̸= 0, one may re-
state Equations (5) as f1(x) = g1(x) + α

π

∫∞
0

k1(x −
t)g1(t)dt+

αi
π

∫∞
0

k2(x−t)g2(t)dt and α2f2(x) = α2g2(x)−
αi
π

∫∞
0

k2(x − t)g1(t)dt − α
π

∫∞
0

k1(x − t)g2(t)dt, where
k1(x) = sin(x)/x and k2(x) = cos(x)/x. The correspond-
ing matrix Riemann-Hilbert problem for 5 is given by

G(ω)

(
Φ−

1 (ω)

Φ−
2 (ω)

)
=

(
Φ+

1 (ω)

Φ+
2 (ω)

)
+ F(ω), ω ∈ R.

The determination of kernel of the above 2 × 2 matrix
Riemann-Hilbert problem does not vanishes nowhere on R,
i.e., Det(K)(ω) = 2α2 + (α3 − 2α2 − α)I[−1,1](ω) ̸= 0,
for all ω ∈ R. On the other hand, all elements of the kernel
K are exponential-type-1 functions that satisfy the Hölder
condition. Application of Theorem 3 along with the fact that
f̂ = (f̂1, f̂2)

′ is an exponential-type-T (from Lemma 2 and
3) vector function complete the desired proof. �

[27] considered a class of single integral equation∫ ∞

0

k(x− t)g(t)dt = f(x), x ≥ 0,

where k(x) = sgn(x)f(x) and f(x) is an even, real-valued,
bounded and given function which goes to zero faster than
some power and g is to be determined.

The following develops [27]’s findings to a 2× 2 system
of integral equations.
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Example 1. Consider the following system of integral equa-
tions.

f1(x) =

∫ ∞

0
k1(x− t)g1(t)dt

f2(x) =

∫ ∞

0
k2(x− t)g2(t)dt (6)

where x ≥ 0, ki(x) = sgn(x)fi(x),
f1(x) = exp{−x2/2}/

√
(2π), and f2(x) =

exp{−x}/(1 + exp{−x})2. The corresponding
2 × 2 matrix Riemann-Hilbert problem is given by( −2i√

π
Daw( ω√

2
) 0

0 1− 2
ω(ω−i)LPhi(−1;1;−iω)

iω−1
+ πω

sinh(πω)

)
×(

Φ−
1 (ω)

Φ−
2 (ω)

)
=

(
1
2
e−

ω2

2 − 2i√
π
Daw( ω√

2
)

1
2
− iωLPhi(−1; 1;−iω)

)
+(

Φ+
1 (ω)

Φ+
2 (ω)

)
,where Daw(·) is the Dawson function

given by Daw(y) = e−y2 ∫ y

0
et

2

dt and LPhi(·, ; ·; ·)
is the general Lerch Phi function given by
LPhi(ζ;α;β) =

∑∞
n=0 ζ

n/(n+ β)α. The determination of
kernel Kvanishes at ω = 0. To remove this barrier, one may
reduce the above 2 × 2 matrix Riemann-Hilbert problem to
the following 2× 2 matrix Riemann-Hilbert problem which
all require conditions are held.

G(ω)

(
Φ−

1 (ω)

Φ−
2 (ω)

)
=

( 1
iω

Φ+
1 (ω)

1
iω

Φ+
2 (ω)

)
+ F(ω),

where

G(ω) :=

( −2i√
πω

Daw( ω√
2
) 0

0 0

)
+

(
0 0

0 1
ω
− 2

(ω−i)LPhi(−1;1;−iω)
iω−1

+ π
sinh(πω)

)

F(ω) :=

(
1

2iω
exp{−ω2

2
} − 2√

πω
Daw( ω√

2
)

1
2ω

− iLPhi(−1; 1;−iω)

)
.

Using the fact that both kernel and nonhomogeneous vector
functions are exponential type 1 functions, one may conclude
that an approximate solution for the system of integral
Equations (6) is given by the inverse Fourier transform of

Φ−(ω) = − exp

{
−

∞∑
n=−∞

ln(G(2n))
e−iπ(Tω−2n) − 1

2iπ(Tω − 2n)

}

×

[ ∞∑
m=−∞

H(2m)
e−iπ(Tω−2m) − 1

2iπ(Tω − 2m)

]
,

where H(ω) := F(ω) exp{−
∑∞

n=−∞ ln(G(2n))
exp{iπ(Tω−2n)}−1

2iπ(Tω−2n)
}.

�

IV. CONCLUSION AND SUGGESTIONS

This article considers a class of system of Wiener-Hopf
integral equations

λigi(x)−
n∑

j=1

∫ ∞

0

gj(θ)kij(x− θ)dθ = fi(x),

where x ≥ 0, i = 1, 2, · · · , n, gi-s are to be determined, and
kij-s and fi-s are given functions with some mild conditions.
Exact and approximated solution for such class of system of
Wiener-Hopf integral equations are given.

In the case of λi = 0, for i = 1, 2, · · · , n, one may replace
two above conditions (ii) and (iii) by matrix function k =
[kij ] be a Hermitian matrix which either kij(−x) = kij(x)
or kij(−x) = −kij(x). Application of Lemma 4 leads to

desired conditions on the corresponding matrix Riemann-
Hilbert problem. Moreover, result of Example 1 may be
extended to∫ ∞

0

gi(θ)ki(x− θ)dθ = fi(x), x ≥ 0,

where either ki(−x) = ki(x) or ki(−x) = −ki(x), for all
i = 1, 2, · · · , n.

ACKNOWLEDGMENT

The support of Shahid Beheshti University and Natural
Sciences and Engineering Research Council (NSERC) of
Canada are gratefully acknowledged by authors. Thanks to
anonymous reviewers for their constructive comments.

REFERENCES

[1] W. E. Chen, C. O. Li, and B. Ou, “Classification of solutions for a
system of integral equations,” Communications in Partial Difference
Equations, vol. 30, no. 1, pp. 59–65, 2005.

[2] K. Maleknejad, N. Aghazadeh, and M. Rabbani, “Numerical solution
of second kind fredholm integral equations system by using a taylor-
series expansion method,” Applied Mathematics and Computation, vol.
175, no. 2, pp. 1229–1234, 2006.

[3] M. Dehghan, M. Shakourifar, and A. Hamidi, “The solution of linear
and nonlinear systems of volterra functional equations using adomian-
pade technique,” Chaos, Solitons and Fractals, vol. 39, no. 5, pp.
2509–2521, 2009.

[4] A. Vahidian Kamyad, M. Mehrabinezhad, and J. Saberi-Nadjafi, “A
numerical approach for solving linear and nonlinear volterra integral
equations with controlled error,” IAENG: International Journal of
Applied Mathematics, vol. 40, no. 2, pp. 69–74, 2010.

[5] A. M. Bijura, “Systems of singularly perturbed fractional integral
equations ii,” IAENG: International Journal of Applied Mathematics,
vol. 42, no. 4, pp. 198–203, 2012.

[6] K. Wang and Q. Wang, “Taylor collocation method and convergence
analysis for the volterra-fredholm integral equations,” Journal of
Computational and Applied Mathematics, vol. 260, no. 1, pp. 294–
300, 2014.

[7] S. Xiang, “Laplace transforms for approximation of highly oscillatory
volterra integral equations of the first kind,” Applied Mathematics and
Computation, vol. 232, no. 1, pp. 944–954, 2014.

[8] A. Armand and Z. Gouyandeh, “Numerical solution of the system of
volterra integral equations of the first kind,” International Journal of
Industrial Mathematics, vol. 6, no. 1, pp. 27–35, 2014.

[9] S. Mashayekhi, M. Razzaghi, and O. Tripak, “Solution of the nonlinear
mixed volterra-fredholm integral equations by hybrid of block-pulse
functions and bernoulli polynomials,” The Scientific World Journal,
vol. 2014, Article ID 413623, 8 pages, doi:10.1155/2014/413623,
2014.

[10] V. Balakumar and K. Murugesan, “Single-term walsh series method
for systems of linear volterra integral equations of the second kind,”
Applied Mathematics and Computation, vol. 228, pp. 371–376, 2014.

[11] J. P. Berrut, S. A. Hosseini, and G. Klein, “The linear barycentric
rational quadrature method for volterra integral equations,” SIAM
Journal on Scientific Computing, vol. 36, no. 1, pp. 105–123, 2014.

[12] H. Dym and J. P. Mckean, Fourier series and integrals. Probability
and Mathematical Statistics. Academic Press, 1972.

[13] D. C. Champeney, A handbook of Fourier theorems. Cambridge
University press, 1987.

[14] D. F. Walnut, An introduction to wavelet analysis, 2nd ed. Birkhauser,
2002.

[15] R. N. Bracewell, The Fourier transform and its applications, 3rd ed.
McGraw-Hill, 2000.

[16] F. P. Miller, A. F. Vandome, and J. McBrewster, Hermitian Matrix.
VDM Publishing House Ltd., 2011.

[17] A. Serre, Matrices Theory and Applications, 2nd ed. Springer-Verlag,
2010.

[18] A. F. Voronin, “A method for determining the partial indices of
symmetric matrix functions,” Siberian Mathematical Journal, vol. 52,
no. 1, pp. 54–69, 2011a.

[19] ——, “Partial indices of unitary and hermitian matrix functions,”
Siberian Mathematical Journal, vol. 51, no. 5, pp. 805–809, 2011b.

[20] N. I. Muskhelishvili, Singular integral equations: Translated from
Russian. Preprint of the 1946 translation. Noordhoff international
publishing Leyden. Groningen-Holland, 1977.

IAENG International Journal of Applied Mathematics, 44:2, IJAM_44_2_05

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 



[21] M. J. Ablowitz and A. S. Fokas, Complex variable, introduction and
application. Springer-Verlag, 1990.

[22] D. S. Jones, “Commutative wiener-hopf factorization of a matrix,”
Proc. R. Soc. A, vol. 393, no. 1804, pp. 185–192, 1984a.

[23] ——, “Factorization of a wiener-hopf matrix,” IMA journal of applied
mathematics, vol. 32, no. 1, pp. 211–220, 1984b.

[24] I. V. Benjamin and I. D. Abrahams, “On the commutative factorization
of n×n matrix wiener-hopf kernels with distinct eigenvalues,” Proc.
R. Soc. A, vol. 463, pp. 613–639, 2007.

[25] A. T. Payandeh and D. Kucerovsky, “Exact solutions for a class of ma-
trix riemann-hilbert problems,” IMA Journal of Applied Mathematics,
vol. 79, no. 1, pp. 109–123, 2014.

[26] A. A. Polosin, “Asymptotic solution of a system of wiener-hopf
equation with piecewise constant fourier transforms of the kernels,”
Differential equations, vol. 43, no. 9, pp. 1197–1205, 2007.

[27] D. Kucerovsky, E. Marchand, A. T. Payandeh, and W. Strawderman,
“On the bayesianity of maximum likelihood estimators of restricted
location parameters under absolute value error loss,” Statistics and
Decisions, vol. 27, pp. 145–168, 2009.

Amir T. Payandeh Najafabadi & Dan Kucerovsky Amir T. Payandeh
Najafabadi is an Associate Professo in Department of Mathematics sciences
at Shahid Behashti University, Tehran, Evin (Email address: amirtpayan-
deh@sbu.ac.ir). He was born on Sep 3, 1973. He received his PhD from
University of New Brunswick, Canada in 2006. He has published 28 papers
and was co-author of two books. Dan Kucerovsky was born on Oct 4, 1967.
He received his D.Phil from Magdalen College, at the University of Oxford,
in Dec. 1994. After time spent at the University of Paris, the University of
Switzerland, and the University of Toronto, he became a professor at the
University of New Brunswick, Canada. He has published 44 papers and one
book chapter (Email address: dkucerov@unb.ca).

IAENG International Journal of Applied Mathematics, 44:2, IJAM_44_2_05

(Advance online publication: 27 May 2014)

 
______________________________________________________________________________________ 




