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Abstract—Gaussian Copula has been successfully applied in
spatially correlated count data due to its ability to completely
model the high-dimensional dependence. In this article, we
develop a Bayesian method to fulfill both parameter estima-
tion and spatial prediction for spatially correlated count data
set. A MCMC scheme (MetropolisCHastings Algorithm plus
rejection sampling) is adopted to iteratively update parameter
estimates; upon convergence the parameters are then used for
spatial (missing count data) prediction. In terms of parameter
estimation, we show that our approach yields better and
more consistent results than the existing method and that our
approach can significantly decrease computational burden, in
the same real-life data set. Moreover, we compare the spatial
prediction performance to the common Generalized Additive
Models (GAM). The results in the real-life dataset as well as
a well-designed simulated data set both demonstrate that our
approach outperforms GAMs, especially when the missing data
is small.

Index Terms—geostatistical, Gaussian copula, effective range,
spatially correlated, count data, Bayesian inference, soil science,
MCMC.

I. INTRODUCTION

SPATIALLY correlated count data arise in many situation-
s, such as in agriculture, ecology, and so on. However,

when modeling this kind of data, people often face some
technical issues related to non-Gaussian distribution and
to over-dispersion. In addition, the introduction of spatial
dependence in count variable may cause greatly complicates
in estimation and specification testing, thus spatial model-
s for dependent count variables are still quite imperfect.
Nevertheless, the studies focusing on spatial models for
count variables and developing appropriate methods for their
estimation and prediction have attracted more and more
attention recently (e.g., LeSage [19]; Gschlößl and Czado
[16]).

Accurate parameter estimation is crucial for making rea-
sonable predictions when working with spatially correlated
data. Traditional geostatistical methods (see, e.g., Cressie [5])
are based on normality assumption, which is not valid for
discrete data. Liang and Zeger [20] and Zeger and Liang [28]
introduced generalized estimating equation (GEE) to estimate
unknown parameters for a discrete response variable. Howev-
er, GEE is unsatisfactory for spatially correlated count data,
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since it contains n-fold summation in the model. In order to
avoid n-fold summation in GEE, more recently, Madsen [21]
proposed a maximum likelihood method (hereafter referred
to as MML) to estimate the unknown parameters, where
dependent count data are brought into the geostatistical
framework by means of Gaussian copula (its application
of Gaussian copula, please refer to Song et al. [26], Fang
and Madsen [12], Fang et al. [13], and so on). Since the
Gaussian copula makes no assumption about the affiliated
to dependence and MML estimator can model correlations
up to the theoretical maximum, MML method has played an
important role in the analysis of spatially correlated count
data. However, the estimation procedure from MML method
is based on the expected likelihood function with respect
to the jittering variables and is implemented under some
regularity conditions. Moreover, the MML procedure does
not scale up very well as problem size increases.

This paper improves the MML estimation by using
Bayesian inference methods, where we estimate the posterior
distribution with respect to available data, to model the
parameter uncertainty and to obtain an approximation to
the full posterior distribution, rather than point estimates
given by the MML method. The Bayesian approach has been
used to the analysis of spatial data (e.g., Ecker and Gelfand
[10], Berger et al. [4], Eidsvik et al. [11], etc.). However,
most of them focused on continuous variables. In order to
improve the performance for Bayesian method used in count
data, the parameters characterizing the unknown regression
parameters as well as the spatial association are assumed to
be random variables with a chosen a priori distribution, a
posterior distribution of these parameters given the observed
data can be computed by an appropriate Markov Chain
Monte Carlo (MCMC) scheme, and a complete assessment
of the unknown parameters is achieved (see, e.g., Gelman et
al. [14], for an introduction to MCMC method).

Moreover, another important topic in geostatistics is the
spatial prediction, which, in general, is any prediction method
that incorporates spatial dependence. A difficulty with tra-
ditional prediction methods is the fact that the standard
formula for the mean squared prediction error does not
take into account the estimation of covariance parameters.
This generally leads to under-estimated prediction errors,
even if the model is correct. Hence, some people use the
nonparametric krigging model to do the prediction, and one
of most popular spatial prediction methods is the Generalized
Additive Model (GAM) proposed by Hastie and Tibshirani
[17]. With our proposed Bayesian approach, the missing
count prediction as well as the parameter estimation can
be achieved simultaneously. In contrast to GAM, Bayesian
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method naturally use the posterior predictive distribution to
do predictive inference, i.e. to predict the distribution of a
new/unobserved data point. Hence, this is more powerful
than simply making point predictions as in conventional
approaches.

The Bayesian approach is well suited for both estimation
and prediction problem, since (1) Bayesian methods are good
at dealing with uncertainties, regardless of the nature. A
Bayesian paradigm enables a more realistic assessment of
the variability inherent in estimating parameters or predicting
missing data, as in our application; (2) Bayesian estimation
requires weaker conditions for consistency than other meth-
ods (see, e.g., Strasser [27], Assareh and Mengersen [1],
etc.); (3) Bayesian prediction is based on the natural principle
that new collected evidence should be used to update predic-
tions, and Bayesian predictions perform uniformly well over
the whole parameter space (see, e.g., Sancetta [24]).

Experimental results show our Bayesian approach gener-
ates more robust results than the MML method, and produces
better predictions than GAM method, especially when the
missing count values are small (close to zero). The paper is
organized as follows. Section II outlines our methodology for
modeling spatially correlate count data; The Bayes estima-
tion and prediction procedure are described in Section III; In
Section IV, we give results for both estimation and prediction
with the Bayesian approach based on Gaussian copula for the
grub data set. The results of simulation studies are presented
in Section V. In the end, we draw some conclusions in
Section VI.

II. MODEL FOR SPATIALLY CORRELATED COUNT DATA

In this section, we will discuss the model for spatially
correlated count data.

A. Univariate Distribution

Let I ⊂ R2 denotes the field where the counts are
observed. If one considers the unobserved positions of counts
as a realization of a spatial point process, the information of
the independent variables need to be incorporated into the
model. For a location s ∈ I , let µ(s) be the expected number
of counts in the location s after removing spatial correlation,
namely, the marginal expected number of counts. For each
s ∈ I , we model µ(s) as

µ(s) = exp
(
X(s)

T
β
)
, (1)

where exp(·) denotes the exponential function, X(s) is the
co-variate vector associated with s, and β ∈ Rp is a vector
of regression parameters.

Let Y (s) denote the count (observed or unobserved) at a
location s. In reality, count data often show overdispersion
compared to the Poisson distribution, and overdispersion
is typically modeled by the negative binomial distribution
(Hougaard et al. [18]). Hence, we model Y (s), s ∈ I ,
conditioned on removing the spatially correlation, as the
independent negative binomial distributed random variables
with the probability mass function

p(y(s), φ, µ(s)) =
Γ
(
y(s) + φµ(s)

)
y(s)!Γ

(
φµ(s)

) · φφµ(s)

(1 + φ)y(s)+φµ(s)
,

(2)

where Γ(·) is the gamma function, µ(s) is the marginal mean,
and φ is the “over-dispersion” parameter defined as φ =

µ(s)
var(Y (s))−µ(s) .

B. Continuous Extension for Count Data

Assume Y (s) is a discrete variable observed at location s.
Then associated with Y (s), a continuous random variable is
defined as

Y ∗(s) = Y (s)− U, (3)

where U , the jittering variable, follows a uniform distribution
(0,1). Then Y ∗(s) is a continuous random variable with the
distribution function

F(y∗(s)) = P
(
Y ∗(s) ≤ y∗(s)

)
= P

(
Y ∗(s) ≤ [y∗(s)]

)
+
(
y∗(s)− [y∗(s)]

)
× P

(
Y ∗(s) = [y∗(s)] + 1

)
= P

(
Y (s) ≤ y(s)− 1

)
+ (1− u)× P

(
Y (s) = y(s)

)
,

(4)

and the density function

f(y∗(s)) = P
(
Y ∗(s) = [y∗(s)] + 1

)
= P

(
Y (s) = y(s)

)
,

(5)
where [y∗(s)] denotes the integer part of y∗(s) and y∗(s) ∈
R. [8] proved that this continuous extension preserves K-
endall’s τ , thus variables Y ∗(s) and Y (s) preserve the same
dependence relationship.

C. Gaussian Copula Model for Spatially Correlated Count
Data

Since each observation is associated with a location, we
need to model the spatial correlation. In order to model the
random effect from the spatial correlation, Madsen [21] sug-
gested to use a Gaussian copula model with the correlation
ρ(h) which is assumed to be exponential:

ρ(h) =

{
θ0 exp(−hθ1), h 6= 0

1, h = 0,
(6)

where h is the Geographical distance (which are defined by
geographical coordinates in terms of latitude and longitude
for location s.) between two locations, θ0 is the “nugget”
parameter ranging between 0 to 1, and θ1 is the “decay”
parameter.

Then the random effects in grub data are modeled in
Gaussian copula model with the marginal distribution defined
in equation (2). In order to obtain a unique copula function,
we will construct Gaussian copula model based on Y ∗(s)
defined in Equation (3) instead of Y .

With the incorporation of Gaussian copula, the joint dis-
tribution of Y ∗

1 , . . . , Y
∗
n with the specified marginal is

C(y∗1 , . . . , y
∗
n; Σ) = ΦΣ

[
Φ−1{F(y∗1)}, . . . ,Φ−1{F(y∗n)}

]
,

(7)
where ΦΣ(·) is the multivariate normal cumulative distribu-
tion function (c.d.f.), Σ is the correlation matrix with the
entries defined in Equation (6), Φ−1(·) is the inverse of the
univariate normal c.d.f., and function F(y∗i ) is the c.d.f. for
variable Y ∗ defined in Equation (4). The joint probability
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density function (p.d.f.) can be derived by differentiating
C(y∗1 , . . . , y

∗
n; Σ), i. e.,

c(y∗1 , . . . , y
∗
n; Σ)

= |Σ|−1/2 exp
{
− 1

2
ZT (Σ−1 − In)Z

} n∏
i=1

f(y∗i ), (8)

where Z =
{

Φ−1
[
F(y∗1)

]
, . . . ,Φ−1

[
F(y∗n)

]}
, f(y∗i ) =

P (Yi = yi), and In denotes the n× n identity matrix.
The likelihood function for the original data (y1, . . . , yn)T

is thus given by

l(y1, . . . , yn;X,Θ)

= l(y∗1 , . . . , y
∗
n;X, β, θ1, θ2, φ)

= |Σ|−1/2 exp
{
− 1

2
ZT (Σ−1 − In)Z

} n∏
i=1

P(Yi = yi),

(9)

where Θ = (β, θ1, θ2, φ,U).
However, apart from the given information and the un-

known parameters, this model brings in one more unknown
variable, i.e., the jittering U , to Gaussian copula model. In or-
der to eliminate the comprehensive effect caused by variable
U , Madsen [21] used the expected likelihood function with
respect to variable U when estimating the unknown parame-
ter. Nevertheless, the MML method in Madsen [21] might be
rather time consuming and cannot implement parameter es-
timation and data prediction simultaneously. Unlike Madsen
[21], we will use a Bayesian inference approach, where priors
are implemented on the unknown regression parameters, the
jittering variable U , and the correlation parameters of the
Gaussian copula model.

III. BAYES ESTIMATION AND PREDICTION

Our Bayesian inference is therefore decomposed into, first,
the posterior simulation of β, θ0, θ1, φ, U given X and Y
; second, the prediction for missing count data. In section
III-A, we discuss Metropolis-Hastings algorithm for posterior
simulation, and in section III-B, we describe Gaussian copula
to prediction.

With the likelihood function defined in Equation (9),
nevertheless, there is a possibility of numerical error in
calculating Z at some steps of the Bayesian approach. We
might encounter situations where F(y∗i ) is rounded to 0 or 1.
Then the inverse of F(y∗i ) will give +∞ or −∞. To prevent
this, we restrict 10−6 ≤ Φ−1{F(y∗i )} ≤ 1−10−6 following
Pitt et al. [23], which ensures both the numerical stability
and the adequate accuracy.

A. Bayes Estimation

Briefly, a Metropolis-Hastings algorithm iteratively gener-
ates an ergodic Markov chain that yields data examples. In
each step, a proposal is generated for an update of the current
state of the chain. The update is then accepted or rejected
according to a certain acceptance probability. In our MCMC
algorithm, β, θ0, θ1, φ, and U are updated in turn in each
step using a random-walk Metropolis procedure as discussed
below. The prior for β, θ0, θ1, φ, and U are independent with

prior densities πβ , πθ0 , πθ1 , πφ, and πU , respectively. Thus,
we have the joint posterior distribution of Θ given by

π(Θ|Y ,X) = π(β, θ0, θ1, φ,U |Y ,X)

∝ l(y1, . . . , yn;X,Θ)π(β, θ0, θ1, φ,U)

= |Σ|−1/2 exp
{
− 1

2
ZT (Σ−1 − In)Z

}
×

n∏
i=1

P (Yi = yi)πβπθ0πθ1πφπU . (10)

We specify the non-informative priors on all the pa-
rameters. Specifically, we use Np(µp×1,Σp×p) priors for
the regression coefficients β0, . . . , βp, µp×1 is equal to the
present state, and matrix Σp×p is a diagonal matrix with 104

as its diagonal entries (and 0 elsewhere); a uniform (0,1)
prior for the θ0; Gamma(0.0001, 1000) prior for both the
nugget parameter θ1 and the over-dispersion parameter φ;
and a uniform (0,1) prior for the jitter parameters, Ui for
i = 1, . . . , n.

As usual, the convergence diagnostics is one of the most
important components in Bayesian approach. If a Markov
chain induced by the MCMC algorithm fails to converge, the
resulting posterior estimates will be biased and unreliable.
Instead of using the subjective trace plot as diagnostics, in
both the example application and the simulation study, we
check the adequacy of the burn-in period by using the slightly
modified Gelman-Rubin Statistic (Monahan [22, page 371]),
which is defined as

√
R̂ =

√
V̂ (θ)

W
, (11)

where V̂ (θ) is the estimated variance; W is the within chain
variance. For the sake of simplicity, five independent chains
are run with different starting values. And each chain runs
for 2N iterations, of which the first half are treated as pre-
convergence burn-in and are discarded. A rule of thumb is
that values of R̂ under 1.2 (Gilks [15, page 138]) indicates
the convergence of Markov Chain.

Parameters are estimated using the means of the samples
from the posterior distribution. A method for finding a
posterior credible interval is by constructing the set, which
is defined as

C = {θ ∈ Θ : p(θ|y) ≥ k(α)},

where k(α) is the largest constant such that p(C|y) ≥ α.
Here α is chosen for the posterior probability of the credible
interval ( Banerjee et al. [2, page 104]).

B. Bayesian Prediction

Now we consider the prediction for Y (sn+1), . . . ,
Y (sn+q) observed at location Z(sn+1), . . . , Z(sn+q), re-
spectively. We denote set Xobs = (X(s1), . . . , X(sn))T ,
Yobs = (Y (s1), . . . , Y (sn))T , and Sobs = (s1, . . . , sn)T as
the explanatory variables, the response variables and the loca-
tions for the observed data, respectively. Likewise, we have
Xnew = (X(sn+1), . . . , X(sn+q))

T , Ynew = (Y (sn+1),
. . ., Y (sn+q))

T , and Snew = (sn+1, . . . , sn+q)
T for the

missing data, accordingly.
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With the Bayesian framework, the joint distribution for
Z = (Znew, Zobs) can be denoted as:(

Znew

Zobs

)
∼ N(0, Σ̂), (12)

where the entries for Σ̂ are defined by Equation (6) with
hi,j representing the distance between location i and j,
(i, j) ∈ 1, . . . , n, and the parameters in the multivariate nor-
mal distribution are estimated from the Metropolis-Hastings
update. In addition, Zobs = Φ−1

(
F (Y ∗

obs)
)

, where Y ∗
obs is

the continuous extension for variable Yobs, function Φ−1(·)
is the Normal inverse c.d.f, and function F (·) is the c.d.f for
variable Y ∗

obs..
Accordingly, the prediction of Znew at Snew follows the

posterior predictive distribution given by

f(Znew|Zobs,Xobs,Xnew)

=

∫
f(Znew,Θ|Zobs,Xobs,Xnew)dΘ

=

∫
f(Znew|Θ,Zobs,Xobs,Xnew)f(Θ|Zobs,Xobs)dΘ,

(13)

where f(Znew|Θ,Zobs,Xobs,Xnew) has a conditional nor-
mal distribution arising from the joint multivariate normal
distribution defined in Equation (12).

Once Znew is obtained, the values observed at location
Snew, i.e., Ynew, can be easily achieved by using

Ynew = F−1
(

Φ
(
Znew

))
, (14)

where function F−1(·) is the marginal inverse c.d.f., and the
parameter for function F−1(·) are updated by the Metropolis-
Hastings procedure specified before.

Given the target distribution π(Θ|Y ,X) from Equation
(10), the Metropolis algorithm produces a sequence of ran-
dom points (Θ(1),Θ(2), . . .), which have a distribution that
converges to the target distribution.

The specific prediction process in MCMC can be described
as follows:

1) Draw the starting points Θ(0) from the prior distribu-
tion;

2) For m = 1, 2, . . . ;
a. Use the Metropolis-Hastings algorithm and Yobs

to obtain the current value Θ(m) and Z(m)
obs ;

b. Z(m)
new are sampled from the multivariate Gaussian

distribution (Z
(m)
new|Z(m)

obs , θ
(m)
0 , θ

(m)
1 ) given in

Equation (12);
c. Using Equation (14) to invert Z(m)

new back to the
c.d.f. of variable Y (m)

new , then we use the Neg-
ative Binomial with parameters (β(m), φ(m))

to obtain Y (m)
new .

In practice, the collection (Y
(N+1)
new , Y

(N+2)
new , . . .) after

dropping the first N burn-in iterations is a sample from
the posterior predictive density. It is known that in such
hierarchical models (see, e.g., Diggle et al. [9] for an explicit
example), even proper prior/likelihood models with finite
moments, the posterior or the predictive distribution may not
have finite first order moments. Thus we use the median
of the simulated sample for both the inference and the

prediction, and the interval
[
ξ2.5%(Ynew); ξ97.5%(Ynew)

]
as

the prediction interval, where ξν(Ynew) is the νth quantile
of Ynew.

We adopt the common mean squared prediction error
(MSPE) to measure the prediction performance. The MSPE
is defined as

MSPE(Ŷ ) = E(Y − Ŷ )2; (15)

where Y and Ŷ are the observed value and the predictor
of the random variable, respectively. The MSPE can be
efficiently estimated by M̂SPE = 1

k

∑k
i=1(yi − ŷi)2, ŷi is

the predicted value and yi is the true value.

IV. EMPIRICAL ANALYSIS OF JAPANESE BEETLE GRUB
1961, SOUTH NEW JERSEY

A. The Data

The Japanese beetle grub, which was first found in the
United States in a nursery in southern New Jersey in 1916,
is a highly destructive plant pest of foreign origin. Large
number of grub counts can lead to turfgrass damage. Grub
dispersion patterns depend on the locations of adult feeding
aggregations and the soil properties (Dalthorp et al. [7];
Dalthorp [6]; Madsen [21]). To study the spatial heterogene-
ity of grub counts, we model the grub counts collected on a
golf course near Geneva, New York. More details about the
data can be found in Dalthorp [6]. The research goal is to
investigate how the number of beetle is related to the soil
properties, i.e., the soil organic matter, and to predict the
beetle occurrence from observations of soil texture and soil
properties. We restrict attention to the connection between
grub counts and organic matter as well as the location
determined by longitude and latitude.

Grub counts
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Fig. 1: Left: The observed counts at location s, where the size
of the dots corresponds to the grub count (values between 0
and 6). Right: Soil organic matter at location s, where the
size of the dots corresponds to the grub count (values from
3.2108 to 9.5146)
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The grub data consists of a set of 142 observations of grub
counts with the following variables: longitude, latitude, grub
counts and soil organic matter. Figure 1 displays the grub
counts (left) and soil organic matter (right) with respect to the
given location. An overall negative correlation between the
two measures is noticeable, however, the standard regression
analysis might be inappropriate as addressed in previous
literature.
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Fig. 2: Scatter Plot of Grub Counts and Organic Matter.

The grub counts take integer values ranging from 0 to 6
and these counts are over-dispersed with an inflated number
of zeros. Madsen [21] suggested a negative binomial model
for over-dispersed counts and used it to model the ecolog-
ical count data under the different biological assumptions
(Solomon [25]). Furthermore, Madsen [21] also suggested
to use a generalized linear model to estimate regression
parameters.

B. Priors for Gaussian Copula Model

For the Japanese Beetle grub data, we use the soil or-
ganic matter as the explanatory variable. The explanatory
variable X(s) are obtained from the location s given in
figure 1. Dalthorp [6] found that a cubic function of the
soil organic matter fitted the observed mean grub counts
consistently; we will follow the cubic function to model the
mean of grub counts. We further include an intercept β0

in the regression parameters β = (β0, β1, β2, β3)T so that
(1, x(s), x2(s), x3(s))T is the co-variate vector associated to
variable X(s).

The grub data are modeled by using the Gaussian cop-
ula, as defined in Equation(6), to derive the spatially joint
distributions with the negative binomial marginal distribu-
tions specified in Equation (2). We run Metropolis-Hastings
algorithm on the grub data-set with the independent non-
informative priors. The priors are

• πβ ∼ N4((0, 0, 0, 0)T ,Σ4×4)
• πθ0 ∼ Uniform(0, 1)

• πθ1 ∼ Gamma(0.0001, 1000)
• πφ ∼ Gamma(0.0001, 1000)
• πUi

∼ Uniform(0, 1)

where the diagonal entries are 104 and the off-diagonal
entries are zero for matrix Σ4×4, and i = 1, . . . , n. For
posterior simulations, the algorithm is run 12,000 iterations
with 6,000 burn-in. On a 3.4 GHz desktop computer, the time
with 12,000 iterations is about 6.5 hours. The Gelman-Rubin
Statistics in Equation (11) of all the parameters are less than
1.05, indicating that we have a well-defined model and the
iterations are sufficiently large.

C. Estimation Performance

Figure 3 shows that the data with the fitted mean function
from the Bayesian estimation as well as from the MML esti-
mation. The two curves have very similar shapes. The aver-
age squared difference in the fitted values is 1

142

∑142
i=1(ŷB−

ŷMML)2 = 0.00053, where ŷB represents the fitted mean
from the Bayesian approach and ŷMML represents the fitted
mean from the MML approach.
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Fig. 3: Plot of observed grub counts as a function of percent
soil organic matter. Superimposed is the fitted mean function
from both estimation procedures.

The point estimates of the regression coefficients, β, from
both the Bayesian approach and the MML method in Madsen
[21] are given in Table I. Meanwhile, the numbers in paren-
thesis are 95% highest posterior density (HPD) interval (see,
i.g., Banerjee et al. [2]) for our Bayesian approach, and a
95% confidence interval for the MML approach, accordingly.
The Bayesian analysis concludes that a quadratic function
of organic matter is necessary, which is consistent with the
result achieved by using the MML method. According to
this result, the expected number of grubs given a partic-
ular percent organic matter x0 may be best predicted as
exp(−22.37 + 10.88× x0 − 1.65× x2

0 + 0.08× x3
0). Hence,

if there is no soil organic matter, then the Japanese Beetle
grub count may be best predicted as exp(β0), which is
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close to zero. This result is coincident with the actual facts.
The point estimate of the parameter φ is 1.2, which gives
var(Y (s)) = 1.83µ(s). The fitted correlation parameters
(θ0, θ1) gives a residual correlogram, which is comparable
to that in Dalthorp [6].

TABLE I: Estimation of the regression coefficients for grub
dataset from the Bayesian approach and the MML method,
where the MML results are come from Madsen [21] directly.

Generalized Regression Coefficient with 95% interval

Parameter Bayesian approach MML

β0 -22.37 (-48.31, -2.32) -24.34(-47.6, -1.08)
β1 10.88(0.98, 23.20) 11.96(0.54, 23.38)
β2 -1.65(-3.58, -0.04) -1.84(-3.66, -0.02)
β3 0.08(0, 0.17) 0.09(-0.01, 0.19)

By comparing the estimation results of Bayesian approach
and MML method, we conclude that:

• Point estimates from the Bayesian approach have small-
er absolute values than the estimates from the MML
approach. In addition, all intervals from the Bayesian
approach are consistently narrower than corresponding
intervals from the MML method.;

• Unlike the MML intervals, all the intervals from our
Bayesian approach are “significant” in the sense that
they do not span over zero;

• In Bayesian approach, Bayesian updating is widely used
and computationally convenient; while in MML method,
the computational complexity from using the maximum
likelihood (ML) algorithm to obtain the ML estimates
of the variance components and their derivatives signif-
icantly increase the computational burden.

D. Prediction Performance

To assess the accuracy of Bayesian prediction, we also
implemented the GAM prediction as a comparison. Gen-
erally, GAM gives us a non-integer fitted mean as the
prediction, and we call this non-integer prediction as the
GAM mean prediction; while Bayesian prediction yields the
integer prediction. In order to make a sensible comparison
among them, we introduce two common methods to get the
GAM integer prediction:

Method 1: Rounding the fitted mean to the closest integer;
Method 2: Using the fitted median as the prediction.

For simplicity, we will call method 1 and method 2 as
“GAM rounding prediction” and “GAM median prediction”,
respectively.

TABLE II: MSPE values from both Bayesian prediction and
two common GAM integer predictions with 10%, 20% and
44% of missing data.

MSPEs

Bayesian Two common GAM integer predictions

Missing prediction rounding median

10% 1.71 1.71 1.79
20% 1.18 1.21 1.32
44% 1.68 1.48 1.74

In the application to the grub data set, we randomly hold
out 10%, 20% and 44% of the data and use the remainder to

make prediction. And we use the MSPE defined in Equation
(15) as the performance criterion. Table II gives us the MSPE
values between the predicted values and the true values for
both Bayesian prediction and two common GAM integer
predictions (i.e., GAM rounding prediction and GAM median
prediction). Bayesian prediction (2nd column) is close to the
GAM rounding prediction (3rd column). However, Bayesian
prediction gives a more accurate prediction than the GAM
median prediction (4th column), since all the MSPE values
from Bayesian prediction are less than the corresponding
values from GAM median prediction.

TABLE III: Decomposition of comparison between Bayesian
prediction and GAM mean prediction to zero and non-zero
group

Category 1: Y = 0 Category 2: Y > 0

Bayesian GAM mean Bayesian GAM mean

Missing prediction prediction prediction prediction

10% 0.20 0.52 5.50 4.74
20% 0.20 0.38 2.31 1.82
44% 0.14 0.30 3.67 2.81

It is notable that about 50% of the counts are 0 in grub
data. Therefore, it seems sensible to divide the missing count
data into two groups, zeros and non-zeros. The performance
of Bayesian prediction is explored separately in each of these
two groups. For the sake of simplicity, here we only discuss
the comparison between Bayesian prediction and traditional
non-integer GAM prediction, i.e., GAM mean prediction.
Table III gives MSPEs for both zeros and non-zeros group.
Obviously, for the zero-count data, Bayesian prediction is
significantly better than the GAM mean prediction.

V. SIMULATION

We further evaluate the performance of Bayesian predic-
tion against the GAM prediction with the simulated data.
We generate the data on a regular square grid with unit
spacing. Two sample sizes are simulated (n = 144 and
n = 225). For each sample size, two levels of spatial
dependence (moderate and strong) are simulated, where the
spatial dependence is specified by the effective range (see,
Madsen [21]). The moderate and strong dependence have
the effective ranges R = 8.3 and R = 14, respectively. In
this simulation study, all the target means are set to be a
constant, i.e., exp(1). Hence, the dependence in the data is
not from the spatial pattern of the co-variate, but from spatial
proximity ( Madsen [21]). As before, we randomly hold out
10%, 20% and 44% of the observations, and use the re-
mainders to predict them. Therefore, there are altogether 2×
2×3 (the number of observation× the number of R level×
the number of holdout percent) scenarios. For each scenario,
50 data sets are generated for each scheme, then the mean
of MSPE is used as the criterion of measure prediction
performance. Furthermore, in each scenario, the locations of
the missing data are set to be the same for all 50 simulated
data sets.

Accordingly, the priors are specified as πβ ∼ N(0, 104),
πθ0 ∼ Uniform(0, 1), πθ1 ∼ Gamma(0.0001, 1000), πφ ∼
Gamma(0.0001, 1000), πU ∼ Uniform(0, 1). And 20,000
iterations with 10,000 burn-in are run for each scenario.
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TABLE IV: Comparison of Bayesian prediction and two common
GAM integer predictions, predicting 10%, 20% and 44% missing
from simulated data

mean of MSPEs (sd)

Sample Effective Percent Bayesian GAM integer predictions

Size Range Missing prediction rounding median

10% 1.28 (0.48) 1.45 (0.67) 1.52 (0.65)
R=14 20% 1.27 (0.38) 1.42 (0.45) 1.45 (0.44)

44% 1.44 (0.38) 1.57 (0.44) 1.62 (0.42)
N=225

10% 2.12 (0.92) 2.25 (0.96) 2.26 (1.02)
R=8.3 20% 2.14 (0.60) 2.20 (0.58) 2.25 (0.67)

44% 2.24 (0.49) 2.33 (0.541) 2.33 (0.537)

10% 1.44 (0.74) 1.72 (1.08) 1.73 (1.18)
R=14 20% 1.35 (0.54) 1.56 (0.63) 1.63 (0.66)

44% 1.58 (0.61) 1.74 (0.65) 1.78 (0.72)
N=144

10% 2.17 (0.92) 2.22 (0.98) 2.31 (1.04)
R=8.3 20% 2.29 (0.95) 2.33 (0.96) 2.42 (1.00)

44% 2.30 (0.60) 2.43 (0.72) 2.51 (0.75)

Table IV lists the mean of 50 MSPEs with the standard
deviation for both Bayesian prediction and two common
GAM integer predictions. All the values obtained from
Bayesian prediction (4th column) are significantly smaller
than the values obtained from two common GAM integer
predictions, i.e., GAM rounding prediction (6th column)
and GAM median prediction (7th column). Hence, Bayesian
prediction is thus much better than two common GAM
integer predictions. Moreover, most standard deviations for
MSPEs from Bayesian prediction are less than the values
from two common GAM integer predictions, which indicates
Bayesian prediction is more efficient than two common GAM
integer predictions. Moreover, the MSPEs from Bayesian
prediction decrease as the effective range increases (from
R = 8.3 to R = 14) or as the sample size increases (from
n = 144 to n = 225).

Like the method used in the real-life data analysis, we
divide the simulated count data into two categories, one
with counts less than or equal to 2 and the other with
counts over 2. The reason for using 2 as the cut-off point
is that the simulated count data are typically larger than 0.
For simplicity, we do the comparison between the Bayesian
prediction and the GAM mean predictions only.

TABLE V: Decomposition of comparison between Bayesian pre-
diction and GAM mean prediction to two groups: no more than 2
and more than 2

Sample Effective Percent mean of MSPEs

Category 1: Category 2:
Y ∈ [0, 2] Y > 2

Size Range Missing Bayesian GAM Bayesian GAM
prediction (mean) prediction (mean)

10% 0.90 1.15 1.87 1.85
R=14 20% 1.00 1.21 1.69 1.68

44% 1.11 1.31 2.01 1.94
N=225 10% 1.38 1.70 3.01 2.83

R=8.3 20% 1.61 1.87 2.82 2.56
44% 1.65 1.95 3.00 2.74

10% 1.35 2.00 1.85 1.88
R=14 20% 1.89 2.07 1.75 1.84

44% 1.68 1.98 2.14 2.07
N=144 10% 1.87 2.00 2.94 2.70

R=8 20% 2.14 2.26 3.33 3.08
44% 1.76 2.12 3.23 2.98

Table V lists the mean of 50 MSPEs for both Bayesian
prediction and GAM mean prediction by firstly splitting

the missing count into two groups. As seen from Table V,
Bayesian prediction and the GAM mean prediction come to
a tie for large count category, i.e., Y > 2. However, Bayesian
prediction performs consistently better than the GAM mean
prediction for the smaller count category, i.e., Y ≤ 2. Hence,
Bayesian approach may give better prediction in application
to predict the small-count data.

VI. DISCUSSION AND CONCLUSION

We develop a Bayesian approach which performs parame-
ter estimation and spatial prediction simultaneously. Building
on top of a copula model, an MCMC scheme (Metropolis-
Hastings Algorithm plus rejection sampling) is adopted to
iteratively update parameter estimates. Upon convergence the
parameters are then used for spatial (missing count data)
prediction.

As for parameter estimation, we compare to the MML
method in Madsen [21] in the same real-life data-set (Grub
Data). Our Bayesian approach yields narrower confidence
intervals, which always do not span over zero. This implies
that our results are more precise and robust.

Moreover, we compare the spatial (missing count) predic-
tion to the common Generalized Additive Models (GAM).
We carry out experiments on the real-life data-set, as well
as a simulated data-set with many different settings. For
practical considerations, we categorize the missing counts
into small value and large-value groups. The experiment
results demonstrate that our approach outperforms GAMs in
almost all settings, especially when the missing data is small.

Although we demonstrate the usage of our Bayesian ap-
proach in spatially correlated discrete data, the methodology
is general and can be easily applied in other correlated
(count) data, including temporally correlated data.
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