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Abstract—This paper deals with a delayed three-level food
chain model with Beddington-DeAngelis functional response.
By using the differential inequality theory, a set of sufficient
conditions are obtained for the permanence of the system. By
constructing a suitable Liapunov function, we derive that the
system has a unique asymptotically periodic solution which is
globally asymptotically stable. An example is given to illustrate
the effectiveness of the results. The paper ends with a brief
conclusion.
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I. INTRODUCTION

IN recent years, predator-prey systems which model some
biological phenomena and relationship between predators

and preys in the real world play a crucial role in math-
ematics. They have been extensively investigated in many
ways by numerous researches [1]. For example, Dai et al.
[2] analyzed the multiple periodic solutions for impulsive
Gause-type ratio-dependent predator-prey systems with non-
monotonic numerical responses. Wang and Fan [3] made a
discussion about the multiple periodic solutions for a non-
autonomous delayed predator-prey model with harvesting
terms. Li and Ye [4] investigated the multiple positive almost
periodic solutions to an impulsive non-autonomous Lotka-
Volterra predator-prey system with harvesting terms. Zhang
and Luo [5] focused on the multiple periodic solutions of
a delayed predator-prey system with stage structure for the
predator. Zhang et al. [6] considered the multiplicity of
positive periodic solutions to a generalized delayed predator-
prey system with stocking. For more work about predator-
prey models, one can see [7-15]. It shall be pointed out
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that all the papers mentioned above are concerned with the
predator-prey models with periodic coefficients. However, the
asymptotically periodic systems describe our real word more
realistic and more accurate than the periodic ones, but the
research work about asymptotically periodic predator-prey
models is scare at present(see e.g.,[16-17,23-25]).

In this paper, we will consider the following delayed
predator-prey system that is given by Li and Wang [18]:





du1

dt
= u1(t)

[
a1 − b1u1(t)

− s1u2(t)
A1 + u1(t) + B1u2(t)

]
,

du2

dt
= u2(t)

[
− a2 − b2u2(t)

+
s3u1(t− τ)

A1 + u1(t− τ) + B1u2(t− τ)

− s2u3(t)
A2 + u2(t) + B2u3(t)

]
,

du3

dt
= u3(t)

[
− a3 − b3u3(t)

+
s4u2(t− τ)

A2 + u2(t− τ) + B2u3(t− τ)

]
,

(1)

with the initial condition u0(0) ≥ 0, u2(0) ≥ 0, u3(0) ≥ 0,
where u1(t), u2(t) and u3(t) denote the population density
of prey, predator and top-predator at time t, respectively.
ai, bi, sj(i = 1, 2, 3; j = 1, 2, 3, 4) are positive constants.
In detailed biologically meaning, one can see [18]. By
choosing the time delay as bifurcation parameter, Li and
Wang [18] found that Hopf bifurcation occurs as the delay
passes through a sequence of critical values.

In real word, any biological or environmental parameters
are naturally subject to fluctuation in time [19]. In 1977,
Cushing [20] pointed out that it is necessary and important
to consider models with periodic ecological parameters or
perturbations which might be quite naturally exposed (for
example, those due to season effects of weather, food supply,
mating habits, hunting or harvesting seasons, etc.). Thus the
assumption of periodicity of the parameters is a way of
incorporating the periodicity of the environment. Further,
to describe the real word more accurate, the assumption
of asymptotically periodic parameters shall be considered.
Motivated by the discussion above, we modify system (1) as
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follows:




du1

dt
= u1(t)

[
a1(t)− b1(t)u1(t)

− s1(t)u2(t)
A1(t) + u1(t) + B1(t)u2(t)

]
,

du2

dt
= u2(t)

[
− a2(t)− b2(t)u2(t)

+
s3(t)u1(t− τ)

A1(t) + u1(t− τ) + B1(t)u2(t− τ)

− s2(t)u3(t)
A2(t) + u2(t) + B2(t)u3(t)

]
,

du3

dt
= u3(t)

[
− a3(t)− b3(t)u3(t)

+
s4(t)u2(t− τ)

A2(t) + u2(t− τ) + B2(t)u3(t− τ)

]
.

(2)

Now we define R+ = [0, +∞) and introduce the concept of
the asymptotically function.

Definition 1.1. If f ∈ C(R+, R), where f(t) = g(t)+α(t),
g(t) is continuous T -periodic function and limt→+∞ α(t) =
0, then f(t) is called asymptotically T -periodic function.

Throughout this paper, we always assume that
(H1) ai(t), di(t), αi(t), βi(t)(i = 1, 2), r(t), γ(t),K(t) and
δ(t) are all continuous positive, bounded asymptotically
periodic functions.

This paper is organized as follows. In Section 2, the
permanence of system (2) is investigated by using the dif-
ferential inequality theory. In Section 3, the existence and
uniqueness of asymptotically periodic solution are analyzed
by constructing a suitable Liapunov function. An example is
given to illustrate the effectiveness of the results is Section
4. A brief conclusion is given in Section 5.

II. PERMANENCE

For convenience in the following discussion, we always
use the notations:

f l = inf
t∈R

f(t), fu = sup
t∈R

f(t),

where f(t) is a continuous function. The initial value con-
dition of system (2) is u1(0) = φ1(0) > 0, u2(0) = φ2(0) >
0, u3(0) = φ3(0) > 0. In order to obtain the main results of
this paper, we shall first state some definitions and several
lemmas which will be useful in proving the main results.

Definition 2.1. We say that system (2) is permanence if there
are positive constants mi,Mi(i = 1, 2, 3) such that for each
positive solution (u1(t), u2(t), u3(t)) of system (2) satisfies

mi ≤ lim
t→+∞

inf ui(t) ≤ lim
t→+∞

supui(t) ≤ Mi(i = 1, 2, 3).

Definition 2.2. The solution X(t, t0, φ) is called ulti-
mately bounded. If there exists B > 0 such that for any
t0 ≥ 0, φ ∈ C, there exists T = T (t0, φ) > 0 when
t ≥ t0 + T, |X(t, t0, φ)| ≤ B.

Lemma 2.1. [21] If a > 0, b > 0 and ẋ ≥ x(b− ax), when
t ≥ 0 and x(0) > 0, we have

lim
t→+∞

inf x(t) ≥ b

a
.

If a > 0, b > 0 and ẋ ≤ x(b− ax), when t ≥ 0 and x(0) >
0, we have

lim
t→+∞

supx(t) ≤ b

a
.

Now we state our permanence result for system (2).

Lemma 2.2. The set R3
+ = {(u1, u2, u3)|u1 > 0, u2 >

0, u3 > 0} is the positively invariant set of system (2).

Proof It follows from the initial value condition u1(0) =
φ1(0 > 0, u2(0) = φ2(0) > 0 and u3(0) = φ3(0) > 0 that




u1(t) = u1(0) exp
{∫ t

0

[
a1(s)− b1(s)u1(s)

− s1(s)u2(s)
A1(s) + u1(s) + B1(s)u2(s)

]
ds

}
,

u2(t) = u2(0) exp
{∫ t

0

[
− a2(s)− b2(s)u2(s)

+
s3(s)u1(s− τ)

A1(s) + u1(s− τ) + B1(s)u2(s− τ)

− s2(s)u3(s)
A2(s) + u2(s) + B2(t)u3(s)

]
ds

}
,

u3(t) = u3(0) exp
{∫ t

0

[
− a3(s)− b3(s)u3(s)

+
s4(s)u2(s− τ)

A2(s) + u2(s− τ) + B2(s)u3(s− τ)

]
ds

}
.

(3)
The proof of Lemma 2.2 is complete.

Theorem 2.1. Let M1,M2,M3,m1,m2 and m3 be defined
by (4), (6), (8), (10), (15) and (19), respectively. In addition
to the condition (H1), suppose that the following conditions

(H2) su
3 > al

2, s
u
4 > al

3, a
l
1B

l
1 > su

1 ,

sl
4m2 > au

3 (Au
2 + M2 + Bu

2 M3);
(H3) sl

3m1B
l
2 > su

2 (Au
1 + M1 + Bu

1 M2)
+ au

2Bl
2(A

u
1 + M1 + Bu

1 M2)

hold, then system (2) is permanent, that is, there exist positive
constants mi,Mi(i = 1, 2, 3) which are independent of the
solution of system (2), such that for any positive solution
(u1(t), u2(t), u3(t)) of system (2) with the initial condition

u1(0) ≥ 0, u2(0) ≥ 0, u3(0) ≥ 0,

one has

mi ≤ lim
t→+∞

inf ui(t) ≤ lim
t→+∞

supui(t) ≤ Mi(i = 1, 2, 3).

Proof Obviously, system (2) with the initial value
condition (u1(0), u2(0), u3(0)) has positive solution
(u1(t), u2(t), u3(t)) passing through (u1(0), u2(0), u3(0)).
Let (u1(t), u2(t), u3(t)) be any positive solution of system
(2) with the initial condition (u1(0), u2(0), u3(0)). It follows
from the first equation of system (2) that

du1(t)
dt

= u1(t)
[
a1(t)− b1(t)u1(t)

− s1(t)u2(t)
A1(t) + u1(t) + B1(t)u2(t)

]

≤ u1(t)
[
au
1 − bl

1u1(t)
]
.
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It follows from Lemma 2.1 that

lim
t→+∞

supu1(t) ≤ au
1

bl
1

:= M1. (4)

For any positive constant ε1 > 0, it follows (4) that there
exists a T1 > 0 such that for all t > T1,

u1(t) ≤ M1 + ε1. (5)

By the second equation of system (2), we have

du2(t)
dt

= u2(t)
[
− a2(t)− b2(t)u2(t)

+
s3(t)u1(t− τ)

A1(t) + u1(t− τ) + B1(t)u2(t− τ)

− s2(t)u3(t)
A2(t) + u2(t) + B2(t)u3(t)

]

≤ u2(t)
[−al

2 − bl
2u2(t) + su

3

]
.

It follows from Lemma 2.1 that

lim
t→+∞

supu2(t) ≤ su
3 − al

2

bl
2

:= M2. (6)

For any positive constant ε2 > 0, it follows from (6) that
there exists a T2 > 0 such that for all t > T2,

u2(t) ≤ M2 + ε2. (7)

By the third equation of system (2), we have

du3(t)
dt

= u3(t)
[
− a3(t)− b3(t)u3(t)

+
s4(t)u2(t− τ)

A2(t) + u2(t− τ) + B2(t)u3(t− τ)

]

≤ u3(t)
[−al

3 − bl
3u3(t) + su

4

]
.

It follows from Lemma 2.1 that

lim
t→+∞

supu3(t) ≤ su
4 − al

3

bl
3

:= M3. (8)

For any positive constant ε3 > 0, it follows from (8) that
there exists a T3 > 0 such that for all t > T3,

u3(t) ≤ M3 + ε3. (9)

In view of the first equation of system (2), we have

du1(t)
dt

= u1(t)
[
a1(t)− b1(t)u1(t)

− s1(t)u2(t)
A1(t) + u1(t) + B1(t)u2(t)

]

≥ u1(t)
[
a1(t)− b1(t)u1(t)− s1(t)

B1(t)

]

≥ u1(t)
[
al
1 − bu

1u1(t)− su
1

Bl
1

]
.

Thus, as a direct corollary of Lemma 2.1, one has

lim
t→+∞

inf u1(t) ≥ al
1B

l
1 − su

1

bu
1Bl

1

:= m1. (10)

For any positive constant ε4 > 0, it follows from (10) that
there exists a T4 > 0 such that for all t > T4,

u1(t) ≥ m1 − ε4. (11)

For t ≥ max{T1, T2, T4}, from (5),(7),(11) and the second
equation of system (1.2), we have

du2(t)
dt

= u2(t)
[
− a2(t)− b2(t)u2(t)

+
s3(t)u1(t− τ)

A1(t) + u1(t− τ) + B1(t)u2(t− τ)

− s2(t)u3(t)
A2(t) + u2(t) + B2(t)u3(t)

]

≥ u2(t)
[
− au

2 − bu
2u2(t)

+
sl
3(m1 − ε4)

Au
1 + (M1 + ε1) + Bu

1 (M2 + ε2)

− su
2

Bl
2

]
. (12)

It follows form Lemma 2.1 and (12) that

lim
t→+∞

inf u2(t)

≥ Θ
Bl

2b
u
2 [Au

1 + (M1 + ε1) + Bu
1 (M2 + ε2)]

, (13)

where

Θ = sl
3(m1 − ε4)Bl

2

−su
2 [Au

1 + (M1 + ε1) + Bu
1 (M2 + ε2)]

−au
2Bl

2[A
u
1 + (M1 + ε1) + Bu

1 (M2 + ε2)].(14)

Setting εi → 0(i = 1, 2, 4) in (13) leads to

lim
t→+∞

inf u2(t) ≥ sl
3m1B

l
2

Bl
2b

u
2 (Au

1 + M1 + Bu
1 M2)

− su
2 (Au

1 + M1 + Bu
1 M2)

Bl
2b

u
2 (Au

1 + M1 + Bu
1 M2)

−au
2Bl

2(A
u
1 + M1 + Bu

1 M2)
Bl

2b
u
2 (Au

1 + M1 + Bu
1 M2)

:= m2. (15)

For any positive constant ε5 > 0, it follows from (15) that
there exists a T5 > max{T1, T2, T4} > 0 such that for all
t > T5,

u2(t) ≥ m2 − ε5. (16)

For t ≥ max{T2, T3, T5}, from (7),(9),(16) and the third
equation of system (2), we have

du3(t)
dt

= u3(t)
[
− a3(t)− b3(t)u3(t)

+
s4(t)u2(t− τ)

A2(t) + u2(t− τ) + B2(t)u3(t− τ)

]

≥ u3(t)
[
− au

3 − bu
3u3(t)

+
sl
4(m2 − ε5)

Au
2 + (M2 + ε2) + Bu

2 (M3 + ε3)

]
. (17)

It follows from Lemma 2.1 and (17) that

lim
t→+∞

inf u3(t) ≥
sl
4(m2 − ε5)

bu
3 [Au

2 + (M2 + ε2) + Bu
2 (M3 + ε3)]

−au
3 [Au

2 + (M2 + ε2) + Bu
2 (M3 + ε3)]

bu
3 [Au

2 + (M2 + ε2) + Bu
2 (M3 + ε3)]

(18)
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Setting εi → 0(i = 2, 3, 5) in (18) leads to

lim
t→+∞

inf u3(t) ≥ sl
4m2 − au

3 (Au
2 + M2 + Bu

2 M3)
bu
3 (Au

2 + M2 + Bu
2 M3

:= m3.

(19)
By (4),(6),(8),(10),(15) and (19), we can conclude that sys-
tem (2) is permanent. The proof of Theorem 2.1 is complete.

Denote

Ω = {(u1, u2, u3)T ∈ R+|mi ≤ ui ≤ Mi(i = 1, 2, 3)}.

Corollary 2.1. The set Ω is the ultimately bounded set of
system (2).

III. EXISTENCE AND UNIQUENESS OF ASYMPTOTICALLY
PERIODIC SOLUTION

Let us consider the asymptotically periodic system as follows

dx

dt
= f(t, xt), (20)

where f ∈ C([−r, 0], Rn) and for any xt ∈ C. De-
fine xt(θ) = x(t + θ), θ ∈ [−r, 0]. For any x =
(x1, x2, · · · , xn) ∈ Rn, we define |x| = ∑n

i=1 |xi|, from the
above proof, we can see that there exists H > 0 such that
|x| < H . For any φ ∈ C, define ||φ|| = sup−r≤θ≤0 |φ(θ)|.
Let CH = {φ ∈ C, ||φ|| < H} and SH = {x ∈ Rn, |x| <
H}. In order to focus on the existence and uniqueness of
asymptotically periodic solution of system (20), we consider
the adjoint system





dx

dt
= f(t, xt),

dy

dt
= f(t, yt).

(21)

Then we begin with our analysis with Lemma 3.1.

Lemma 3.1.( Yuan [22]) Let V ∈ C(R+×SH ×SH , R+)
satisfy
(i) a(|x− y| ≤ V (t, x, y) ≤ b(|x− y|), where a(r) and b(r)
are continuously positively increasing functions;
(ii) |V (t, x1, y1) − V (t, x2, y2)| ≤ l(|x1 − x2| + |y1 − y2|),
where l is a constant and satisfies l > 0;
(iii) there exists continuous non-increasing function P (s),
such that for s > 0, P (s) > s. And as P (V (t, φ(0), φ(0))) >
V (t + θ, φ(θ), φ(θ)), θ ∈ [−r, 0], it follows that

V
′
(3.2)(t, φ(0), φ(0)) ≤ −δV (t, φ(0), φ(0)),

where δ is a constant and satisfies δ > 0. Furthermore,
system (20) has a solution ξ(t) for t ≥ t0 and satisfies
||ξt|| ≤ H . Then system (20) has a unique asymptotically
periodic solution, which is uniformly asymptotically stable.

Theorem 3.1. Let σ1, σ2, σ3 and ρ be defined by (32),
(33),(34) and (35), respectively. In addition to the conditions
(H1)-(H3), assume further that µ > 0 is fulfilled, then there
exists a unique asymptotically periodic solution of system (2)
wich is uniformly asymptotically stable.

Proof. It follows from Theorem 2.1 (or Corollary 2.1) that
the solution of system (2) is ultimately bounded. Ω is the

region of ultimately bounded. We consider the adjoint system
of system (2) as follows




du1

dt
= u1(t)

[
a1(t)− b1(t)u1(t)

− s1(t)u2(t)
A1(t) + u1(t) + B1(t)u2(t)

]
,

du2

dt
= u2(t)

[
− a2(t)− b2(t)u2(t)

+
s3(t)u1(t− τ)

A1(t) + u1(t− τ) + B1(t)u2(t− τ)

− s2(t)u3(t)
A2(t) + u2(t) + B2(t)u3(t)

]
,

du3

dt
= u3(t)

[
− a3(t)− b3(t)u3(t)

+
s4(t)u2(t− τ)

A2(t) + u2(t− τ) + B2(t)u3(t− τ)

]
,

dv1

dt
= v1(t)

[
a1(t)− b1(t)v1(t)

− s1(t)v2(t)
A1(t) + v1(t) + B1(t)v2(t)

]
,

dv2

dt
= v2(t)

[
− a2(t)− b2(t)v2(t)

+
s3(t)v1(t− τ)

A1(t) + v1(t− τ) + B1(t)v2(t− τ)

− s2(t)v3(t)
A2(t) + v2(t) + B2(t)v3(t)

]
,

dv3

dt
= v3(t)

[
− a3(t)− b3(t)v3(t)

+
s4(t)v2(t− τ)

A2(t) + v2(t− τ) + B2(t)v3(t− τ)

]
.

(22)
For

X(t) = (u1(t), u2(t), u3(t))

and
U(t) = (v1(t), v2(t), v3(t))

are the solutions of system (22) in Ω× Ω. Let

u∗i (t) = lnui(t), v∗i (t) = ln vi(t)(i = 1, 2, 3).

Now we construct a Lyapunov functional as follows

V (t) = V1(t)+V2(t)+V3(t)+V4(t)+V5(t)+V6(t), (23)

where

V1(t) = |u∗1(t)− v∗1(t)|,
V2(t) = |u∗2(t)− v∗2(t)|,
V3(t) = |u∗3(t)− v∗3(t)|,
V4(t) =

su
3 (Au

1 + Bu
1 M2)

(Al
1 + m1 + Bl

1m2)2

×
∫ t

t−τ

|u1(s)− v1(s)|ds,

V5(t) =
[

su
3Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

]

×
∫ t

t−τ

|u2(s)− v2(s)|ds,

V6(t) =
su
4Bu

2 M2

(Al
2 + m2 + Bl

2m3)2

×
∫ t

t−τ

|u3(s)− v3(s)|ds.
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Taking a(r) = b(r) = V1(t)+V2(t)+V3(t)+V4(t)+V5(t)+
V6(t) and using the inequality ||a| − |b|| ≤ |a − b|, we can
easily prove that (i) and (ii) in Lemma 3.1 hold true. In the
sequel, we will investigate (iii) of Lemma 3.1. It follows
from (20) that

D+V1(t) =
(

u̇1(t)
u1(t)

− v̇1(t)
v1(t)

)
sign(u1(t)− v1(t))

≤ −bl
1|u1(t)− v1(t)|

+
su
1 (Au

1 + Bu
1 M2)|u1(t)− v1(t)|

(Al
1 + m1 + Bl

1m2)2

+
su
1Bu

1 M1|u2(t)− v2(t)|
(Al

1 + m1 + Bl
1m2)2

,

D+V2(t) =
(

u̇2(t)
u2(t)

− v̇2(t)
v2(t)

)
sign(u2(t)− v2(t))

≤ −bl
2|u2(t)− v2(t)|

+
su
3 (Au

1 + Bu
1 M2)

(Al
1 + m1 + Bl

1m2)2

×|u1(t− τ)− v1(t− τ)|
+

su
3Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

×|u2(t− τ)− v2(t− τ)|,
D+V3(t) =

(
u̇3(t)
u3(t)

− v̇3(t)
v3(t)

)
sign(u3(t)− v3(t))

≤ −bl
3|u3(t)− v3(t)|

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

×|u2(t− τ)− v2(t− τ)|
+

su
4Bu

2 M2

(Al
2 + m2 + Bl

2m3)2

×|u3(t− τ)− v3(t− τ)|,
D+V4(t) =

su
3 (Au

1 + Bu
1 M2)

(Al
1 + m1 + Bl

1m2)2

×|u1(t)− v1(t)|
− su

3 (Au
1 + Bu

1 M2)
(Al

1 + m1 + Bl
1m2)2

×|u1(t− τ)− v1(t− τ)|,
D+V5(t) =

[
su
3Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

]

×|u2(t)− v2(t)|
−

[
su
3Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

]

×|u2(t− τ)− v2(t− τ)|,
D+V6(t) =

su
4Bu

2 M2

(Al
2 + m2 + Bl

2m3)2

×|u3(t)− v3(t)|
− su

4Bu
2 M2

(Al
2 + m2 + Bl

2m3)2

×|u3(t− τ)− v3(t− τ)|.
Thus

D+V (t) ≤ −bl
1|u1(t)− v1(t)|

−bl
2|u2(t)− v1(t)|

−bl
3|u3(t)− v3(t)|

+
2su

1 (Au
1 + Bu

1 M2)
(Al

1 + m1 + Bl
1m2)2

×|u1(t)− v1(t)|
+

su
4Bu

2 M2

(Al
2 + m2 + Bl

2m3)2

×|u3(t)− v3(t)|
+

[
(su

1 + su
3 )Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

]

×|u2(t)− v2(t)|. (24)

Nothing that

|u1(t)− v1(t)| = | exp(u∗1(t))− exp(v∗1(t))|
= exp(ξ(t))|u∗1(t)− v∗1(t)|, (25)

|u2(t)− v2(t)| = | exp(u∗2(t))− exp(v∗2(t))|
= exp(η(t))|u∗2(t)− v∗2(t)|, (26)

|u3(t)− v3(t)| = | exp(u∗3(t))− exp(v∗3(t))|
= exp(ζ(t))|u∗3(t)− v∗3(t)|, (27)

where ξ(t) lies between u∗1(t) and v∗1(t), η(t) lies between
u∗2(t) and v∗2(t) and ζ(t) lies between u∗3 and v∗3 , we have

m1|u∗1(t)− v∗1(t)| ≤ |u1(t)− v1(t)|
≤ M1|u∗1(t)− v∗1(t)|, (28)

m2|u∗2(t)− v∗2(t)| ≤ |u2(t)− v2(t)|
≤ M2|u∗2(t)− v∗2(t)|, (29)

m3|u∗3(t)− v∗3(t)| ≤ |u3(t)− v3(t)|
≤ M3|u∗3(t)− v∗3(t)|. (30)

By (24), (28), (29) and (30), we have

D+V (t) ≤ −bl
1m1|u∗1(t)− v∗1(t)|

−bl
2m2|u∗2(t)− v∗1(t)|

−bl
3m3|u∗3(t)− v∗3(t)|

+
2su

1M1(Au
1 + Bu

1 M2)
(Al

1 + m1 + Bl
1m2)2

×|u∗1(t)− v∗1(t)|
+

su
4Bu

2 M2M3

(Al
2 + m2 + Bl

2m3)2

×|u∗3(t)− v∗3(t)|
+M2

[
(su

1 + su
3 )Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

]

×|u∗2(t)− v∗2(t)|
= −σ1|u1 ∗ (t)− v∗1(t)|

−σ2|u∗2(t)− v∗2(t)|
−σ3|u∗3(t)− v∗3(t)|, (31)
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where

σ1 = bl
1m1 − 2su

1M1(Au
1 + Bu

1 M2)
(Al

1 + m1 + Bl
1m2)2

, (32)

σ2 = bl
2m2 −M2

[
(su

1 + su
3 )Bu

1 M1

(Al
1 + m1 + Bl

1m2)2

+
su
4 (Au

2 + Bu
2 M3)

(Al
2 + m2 + Bl

2m3)2

]
, (33)

σ3 = bl
3m3 − su

4Bu
2 M2M3

(Al
2 + m2 + Bl

2m3)2
. (34)

Let
µ = min{σ1, σ2, σ3}. (35)

It follows from (31) and (35) that

D+V (t) ≤ −µV (t). (36)

Then (iii) of Lemma 3.1 is fulfilled. Therefore system (2) has
a unique positive asymptotically periodic solution in domain
Ω, which is uniformly asymptotically stable. The proof is
complete.

IV. AN EXAMPLE

In this section, we give an example to illustrate our main
results obtained in previous sections. We consider the follow-
ing delayed three-level food chain model with Beddington-
DeAngelis functional response




du1

dt
= u1(t)

[
a1(t)− b1(t)u1(t)

− s1(t)u2(t)
A1(t) + u1(t) + B1(t)u2(t)

]
,

du2

dt
= u2(t)

[
− a2(t)− b2(t)u2(t)

+
s3(t)u1(t− τ)

A1(t) + u1(t− τ) + B1(t)u2(t− τ)

− s2(t)u3(t)
A2(t) + u2(t) + B2(t)u3(t)

]
,

du3

dt
= u3(t)

[
− a3(t)− b3(t)u3(t)

+
s4(t)u2(t− τ)

A2(t) + u2(t− τ) + B2(t)u3(t− τ)

]
,

(37)
where




a1(t) = 7 + cos t, b1(t) = 17 + cos t
s1(t) = 2 + sin t, A1(t) = 0.05 + 0.01 cos t,
B1(t) = 18 + cos t, a2(t) = 1 + 0.2 cos t,
s2(t) = 0.5 + 0.2 sin t, s3(t) = 1 + 0.2 sin t,
s4(t) = 1 + 0.2 cos t, A2(t) = 0.01 + 0.04 sin t,
B2(t) = 2 + sin t, b2(t) = 111 + sin t,
b3(t) = 111 + sin t.

Then we get au
1 = 8, al

1 = 6, bu
1 = 18, bl

1 = 16, su
1 =

3, sl
1 = 1, Au

1 = 0.06, Bu
1 = 19, au

2 = 1.2, al
2 = 0.8, su

2 =
0.7, sl

2 = 0.3, su
3 = 1.2, sl

2 = 0.3, su
3 = 1.2, sl

3 = 0.8, su
4 =

1.2, sl
4 = 0.8, Au

2 = 0.05, Bu
2 = 3, bl

2 = 110, bl
3 = 110.

Hence we have M1 ≈ 0.5,M2 ≈ 0.003,M3 ≈ 0.009,m1 ≈
0.05,m2 ≈ 0.00001,m3 ≈ 0.0009, σ1 ≈ 0.04728, σ2 ≈
0.03402, σ3 ≈ 0.03866, µ ≈ 0.03402. Thus we can easily
check that all the conditions of Theorem 2.1 and Theorem
3.1 are fulfilled. Therefore system (37) has a unique positive
asymptotically periodic solution, which is uniformly asymp-
totically stable(see Fig.1-3).
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Fig. 1. Dynamical behavior of system (37): time series of u1.
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Fig. 2. Dynamical behavior of system (37): time series of u2.
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Fig. 3. Dynamical behavior of system (37): time series of u3.

V. CONCLUSIONS

In this paper, we have investigated a delayed predator-prey
system with Holling-type II functional response. Applying
the differential inequality theory, some sufficient condi-
tions for the permanence of the system are established.
By constructing a suitable Liapunov function, we find that
under some suitable conditions, the system has a unique
asymptotically periodic solution which is globally asymp-
totically stable. Here we would like to point out that the
discrete time delayed predator-prey system with Holling-type
II functional response is more appropriate to describe the
dynamics relationship among populations than continuous
ones when the populations have non-overlapping generations.
Moreover, discrete time models can also provide efficient
models of continuous ones for numerical simulations. Thus
it is reasonable and interesting to investigate the discrete time
delayed predator-prey system with Holling-type II functional
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response. Following the idea and method in [26], one can
easily derive the following discrete analogue of system (2),
which takes the form of




u1(k + 1) = u1(k) exp
{

a1(k)− b1(k)u1(k)

− s1(k)u2(k)
A1(k) + u1(k) + B1(t)u2(k)

}
,

u2(k + 1) = u2(k) exp
{
− a2(k)− b2(k)u2(k)

+
s3(k)u1(k − τ)

A1(k) + u1(k − τ) + B1(k)u2(t− τ)

− s2(k)u3(k)
A2(k) + u2(k) + B2(k)u3(k)

}
,

u3(k + 1) = u3(k) exp
{
− a3(k)− b3(t)u3(k)

+
s4(k)u2(k − τ)

A2(k) + u2(k − τ) + B2(k)u3(k − τ)

}
.

(38)
It is interesting for us to establish the sufficient criteria for
the existence of positive periodic solutions of system (38).
This topic will be our future work.
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