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Abstract—In this paper, a compact finite difference method
to solve the Rosenau–RLW equation is proposed. A numerical
tool is applied to the model by using a three–level average
implicit finite difference technique. The fundamental conser-
vative property of the equation is preserved by the presented
numerical scheme, and the existence and uniqueness of the
numerical solution are proved. Moreover, the convergence
and stability of the numerical solution are also shown. The
new method gives second– and fourth–order accuracy in time
and space, respectively. The algorithm uses five–point stencil
to approximate the derivatives for the space discretization.
The numerical experiments show that the proposed method
improves the accuracy of the solution significantly.

Index Terms—finite difference method, Rosenau–RLW equa-
tion.

I. INTRODUCTION

A nonlinear wave phenomenon is the important area
of scientific research, which many scientists in the

past have studied about mathematical models explaining
the wave behavior. There are mathematical models which
describe the dynamic of wave behaviors–for example, the
KdV equation, the RLW equation, the Rosenau equation,
and many others [1]–[10]. The KdV equation has been used
in very wide applications, such as magnetic fluid waves, ion
sound waves, and longitudinal astigmatic waves [4]–[6]. The
RLW equation, which was first proposed by Peregrine [7], [8]
provides an explanation on a different situation of a nonlinear
dispersive wave from the more classical KdV equation. The
RLW equation is one of models which are encountered in
many areas, e.g. ion–acoustic plasma waves, magnetohydro-
dynamic plasma waves, and shallow water waves. Since the
case of wave–wave and wave–wall interactions cannot be
described by the KdV equation, Rosenau [9], [10] proposed
an equation for describing the dynamic of dense discrete
systems; it is known as the Rosenue equation. The existence
and uniqueness of the solution for the Rosenau equation were
proved by Park [11], [12]. For the further consideration of
the nonlinear wave, a viscous term uxxt needs to be included:

ut − uxxt + uxxxxt + ux + (up)x = 0, (1)

where p ≥ 2 is an integer and u0(x) is a known smooth
function. This equation is usually called the Rosenua–RLW
equation. If p = 2, then Eq. (1) is called the usual Rosenau–
RLW equation. Moreover, if p = 3, then Eq. (1) is called
the modified Rosenau–RLW equation. The behavior of the
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solution to the Rosenau–RLW equation with the Cauchy
problem has been well studied for the past years [13]–[18].
It is known that the solitary wave solution for Eq. (1) is

u(x, t) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p+1)×

sech4/(p+1)

[
p− 1√

4p2 + 8p + 20
(x− ct)

]
,

where p ≥ 2 is an integer and c = (p4 +4p3 +14p2 +20p+
25)/(p4 + 4p3 + 10p2 + 12p + 21).

The Rosenau–RLW equation has been solved numerically
by various methods (for example, see [13]–[18]). Zuo et
al. [13] have proposed the Crank–Nocolson finite difference
scheme for the equation. The convergence and stability of
the proposed method were also discussed. Obviously, the
scheme in [13] requires heavy iterative computations because
the scheme is nonlinear implicit. Pan and Zhang [14], [15]
developed linearized difference schemes which are three–
level and conservative implicit for both the usual Rosenau–
RLW (p = 2) and the general Rosenau–RLW (p ≥ 2)
equations. The second–order accuracy and unconditional
stability were also proved.

In this paper, we consider the following initial–boundary
value problem of the general Rosenau–RLW equation with
an initial condition:

u(x, 0) = u0(x), (xl ≤ x ≤ xr), (2)

and boundary conditions

u(xl, t) = u(xr, t) = 0,

uxx(xl, t) = uxx(xr, t) = 0, (0 ≤ t ≤ T ). (3)

The initial–boundary value problem possesses the following
conservative properties:

Q(t) =
∫ xr

xl

u(x, t)dx =
∫ xr

xl

u0(x, 0)dx = Q(0),

and

E(t) = ‖u‖2L2
+ ‖ux‖2L2

+ ‖uxx‖2L2
= E(0).

When −xl À 0 and xr À 0, the initial–boundary value
problem (1)–(3) is consistent, so the boundary condition (3)
is reasonable.

By observation, the total accuracy of a specific method is
affected by not only the order of accuracy of the numerical
method but also other factors. That is, the conservative
approximation property of the method is another factor that
has the same or possibly even more impact on results. Better
solutions can be expected from numerical schemes which
have effective conservative approximation properties rather
than the ones which have nonconservative properties [19],
[20]. To create the discretization equation, a finite difference
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method is applied in the present research since conservative
approximation analysis by the mathematical tools has been
developing until now.

The content of this paper is organized as follows. In
the next section, we describe a conservative implicit finite
difference scheme for the general Rosenau–RLW equation
(1) with the initial and boundary conditions (2)–(3). Some
preliminary lemmas and discrete norms are given and the
invariant property Qn is proved. We discuss about the
solvability of the finite difference scheme, and the existence
and uniqueness of the solution are also proved in the Section
3. Section 4 presents complete proofs on the convergence
and stability of the proposed method with convergence rate
O(τ2 +h4). The results of validation for the finite difference
scheme are presented in Section 5, where we make a detailed
comparison with available data, to confirm and illustrate
our theoretical analysis. Finally, we finish our paper by
concluding remarks in Section 6.

II. FINITE DIFFERENCE SCHEME

In this section, we introduce a finite difference scheme
for the formulation of Eqs. (1)–(3). The solution domain
Ω = {(x, t)| xl ≤ x ≤ xr, 0 ≤ t ≤ T} is covered by a
uniform grid:

Ωh = {(xi, tn)| xi = xl + ih, tn = nτ, 0 ≤ i ≤ M,

0 ≤ n ≤ N},
with spacings h = (xr − xl)/M and τ = T/N . Denote
un

i ≈ u(xi, tn),

Ω̄h = {(xi, tn)| xi = xl + ih, tn = nτ, −1 ≤ i ≤ M +1,

0 ≤ n ≤ N},
and Z0

h = {un = (un
i )| u0 = uM = 0, −1 ≤ i ≤ M + 1}.

We use the following notations for simplicity:

u
n+ 1

2
i =

un+1
i + un

i

2
, ūn

i =
un+1

i + un−1
i

2
,

(un
i )t =

un+1
i − un

i

τ
, (un

i )t̂ =
un+1

i − un−1
i

2τ
,

(un
i )x =

un
i+1 − un

i

h
, (un

i )x̄ =
un

i − un
i−1

h
,

(un
i )x̂ =

un
i+1 − un

i−1

2h
, (un, vn) = h

M−1∑

i=1

un
i vn

i ,

‖un‖2 = (un, un), ‖un‖∞ = max
1≤i≤M−1

|un
i |.

By setting w = uxxt − ux − uxxxxt − (up)x, Eq. (1) can be
written as w = ut. By the Taylor expansion, we obtain

wn
i = (∂tu)n

i = (un
i )t̂ + O

(
τ2

)
, (4)

and

wn
i =

[
(un

i )xx̄t̂ −
h2

12
(
∂4

x∂tu
)n

i

]
−

[
(un

i )x̂ −
h2

6
(
∂3

xu
)n

i

]

−
[
(un

i )xxx̄x̄t̂ −
h2

6
(
∂6

x∂tu
)n

i

]

−
[
[(un

i )p]x̂ −
h2

6
(
∂3

xup
)n

i

]
+ O

(
h4

)
. (5)

From Eq. (4), we have
(
∂6

x∂tu
)n

i
=

(
∂4

x∂tu
)n

i
−(

∂3
xu

)n

i
−(

∂3
xup

)n

i
−(

∂2
xw

)n

i
. (6)

Then,

wn
i =

[
(un

i )xx̄t̂ −
h2

12
(
∂4

x∂tu
)n

i

]
−

[
(un

i )x̂ −
h2

6
(
∂3

xu
)n

i

]

−
[
[(un

i )p]x̂ −
h2

6
(
∂3

xup
)n

i

]
−

[
(un

i )xxx̄x̄t̂

− h2

6

[(
∂4

x∂tu
)n

i
− (

∂3
xu

)n

i
− (

∂3
xup

)n

i
− (

∂2
xw

)n

i

] ]

+ O
(
h4

)
. (7)

This implies that

wn
i = (un

i )xx̄t̂ +
h2

12
(
∂4

x∂tu
)n

i
− (un

i )x̂ − [(un
i )p]x̂

− (un
i )xxx̄x̄t̂ −

h2

6
(
∂2

xw
)n

i
+ O

(
h4

)
. (8)

Using second–order accuracy for approximation, we obtain
(
∂4

xu
)n

i
=(un

i )xxx̄x̄ + O
(
h2

)
,

(
∂2

xw
)n

i
=(wn

i )xx̄ + O
(
h2

)
.

The following method is a proposed finite difference scheme
to solve the problem (1)–(3):

(un
i )t̂ −

(
1− h2

6

)
(un

i )xx̄t̂ +
(

1− h2

12

)
(un

i )xxx̄x̄t̂

+ (un
i )x̂ + [(un

i )p]x̂ = 0;
1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1, (9)

where

u0
i = u0(xi), 0 ≤ i ≤ M, (10)

un
0 = un

M = 0, (un
0 )xx̄ = (un

M )xx̄ = 0, 1 ≤ n ≤ N.
(11)

A three–step method is used for the time discretization of
the above described scheme. After the new time discretiza-
tion of Eq. (9) is performed, three– and five–point stencils
approximating the derivatives for the space discretization are
used to obtain an algebraic system. The matrix system of
Eq. (9) is banded with penta–diagonals and we use a standard
routine of the MATLAB to solve the system (9)–(11). The
nonlinear term of Eq. (1) is handled by using the linear
implicit scheme. Therefore, the equations are solved easily
by using the presented method since it does not require extra
effort to deal with the nonlinear term.

Lemma 1: (Pan and Zhang [15]) For any two mesh func-
tions u, v ∈ Z0

h, we have

(ux̂, v) = −(u, vx̂),
(ux, v) = −(u, vx̄),

(v, uxx̄) = −(vx, ux),

(u, uxx̄) = −(ux, ux) = −‖ux‖2.
Furthermore, if (un

0 )xx̄ = (un
M )xx̄ = 0, then it implies

(u, uxxx̄x̄) = ‖uxx̄‖2.
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Theorem 2: Suppose that u0 ∈ H2
0 , then the scheme (9)–

(11) is conservative in sense:

Qn =
h

2

M−1∑

i=1

(
un+1

i + un
i

)
= Qn−1 = . . . = Q0, (12)

under assumptions u−1 = u1 = 0 and uM−1 = uM+1 = 0.
Proof: By multiplying Eq. (9) by h, summing up for i

from 0 to M − 1, considering the boundary conditions, and
assuming u−1 = u1 = 0 and uM−1 = uM+1 = 0, we get

h

2

M−1∑

i=1

(
un+1

i − un−1
i

)
= 0.

Then, this gives Eq. (12).
Lemma 3: (Discrete Sobolev’s inequality [21]) There exist

two constants C1 and C2 such that

‖un‖∞ ≤ C1‖un‖+ C2‖un
x‖.

Theorem 4: Suppose u0 ∈ H2
0 [xl, xr], then the solution

un satisfies ‖un‖ ≤ C and ‖un
xx‖ ≤ C, which yields

‖un‖∞ ≤ C .
Proof: It follows from the initial condition (10) that

u0 ≤ C. The first level u1 is computed by the fourth–order
method. Hence, the following estimates are gotten about∥∥u1

∥∥ ≤ C and
∥∥u1

∥∥
∞ ≤ C. Now, we use the induction

argument to prove the estimate. We assume that
∥∥uk

∥∥
∞ ≤ C for k = 0, 1, 2, . . . , n. (13)

Taking the inner product of Eq. (9) with 2ūn and using
Lemma 1, we obtain

∥∥un+1
∥∥2−∥∥un−1

∥∥2
+

(
1− h2

6

) (∥∥un+1
x

∥∥2 − ∥∥un−1
x

∥∥2
)

+
(

1− h2

12

) (∥∥un+1
xx̄

∥∥2 −
∥∥un−1

xx̄

∥∥2
)

= −2τ ((un)x̂, 2ūn)− 2τ ([(un)p]x̂, 2ūn) .

According to the Cauchy–Schwarz inequality and direct
calculation, it gives

‖un
x̂‖ ≤ ‖un

x‖,
and

((un)x̂, 2ūn) ≤
(
‖un

x‖2 +
1
2

∥∥un+1
∥∥2

+
1
2

∥∥un−1
∥∥2

)
.

From Eq. (13), the Cauchy–Schwarz inequality, and Lemma
1, we get

([(un)p]x̂, 2ūn) = −h
M−1∑

i=1

(un
i )p(

un+1
i + un−1

i

)
x̂

≤ C

(
‖un‖2 +

1
2

∥∥un+1
x

∥∥ 2 +
1
2

∥∥un−1
x

∥∥ 2

)
.

Setting

Bn = ‖un‖2+
∥∥un−1

∥∥2
+

(
1− h2

6

) (
‖un

x‖2 +
∥∥un−1

x

∥∥2
)

+
(

1− h2

12

) (
‖un

xx̄‖2 +
∥∥un−1

xx̄

∥∥2
)

,

then
Bn+1 −Bn ≤ τC

(
Bn+1 + Bn

)
.

If τ is sufficiently small, which satisfies τ ≤ k − 2
kC

and
k > 2, then

Bn+1 ≤ (1 + τC)
(1− τC)

Bn ≤ (1 + τkC)Bn ≤ exp (kCT )B0.

Hence
∥∥un+1

∥∥ ≤ C,
∥∥un+1

x

∥∥ ≤ C, and
∥∥un+1

xx̄

∥∥ ≤ C, which
yield

∥∥un+1
∥∥
∞ ≤ C by Lemma 3.

III. SOLVABILITY

In this section, we prove the existence and uniqueness of
our proposed scheme that implies the unique solvability.

Theorem 5: The finite difference scheme (9)–(11) is
uniquely solvable.

Proof: By using the mathematical induction, we can
determine u0 uniquely by an initial condition and then
choose a fourth–order method to compute u1. Now, suppose
u0, u1, u2, ..., un to be solved uniquely. By considering Eq.
(9) for un+1, we have

1
2τ

un+1
i − 1

2τ

(
1− h2

6

) (
un+1

i

)
xx̄

+

1
2τ

(
1− h2

12

) (
un+1

i

)
xxx̄x̄

= 0. (14)

By taking an inner product of Eq. (14) with un+1, we obtain

1
2τ

∥∥un+1
∥∥2 − 1

2τ

(
1− h2

6

) ∥∥un+1
x

∥∥2

+
1
2τ

(
1− h2

12

) ∥∥un+1
xx̄

∥∥2
= 0.

By the Cauchy–Schwarz inequality and Lemma 1, we have
∥∥un+1

x

∥∥2
= (un+1, un+1

xx̄ ) ≤ 1
2

∥∥un+1
∥∥2

+
1
2

∥∥un+1
xx̄

∥∥2
.

Then,

1
2

∥∥un+1
∥∥2

+
(

1
2
− h2

12

) ∥∥un+1
xx̄

∥∥2
= 0.

Therefore, Eq. (14) has the only one solution and Eq. (9)
un+1 is uniquely solvable. This completes the proof of
Theorem 5.

IV. CONVERGENCE AND STABILITY

In this section, we prove the convergence and stability of
the scheme (9)–(11). Let en

i = vn
i − un

i , where vn
i and un

i

are the solutions of (1)–(3) and (9)–(11), respectively. Then,
we obtain the following error equations:

rn
i = (en

i )t̂ −
(

1− h2

6

)
(en

i )xx̄t̂ +
(

1− h2

12

)
(en

i )xxx̄x̄t̂

+ (en
i )x̂ + [(vn

i )p]x̂ − [(un
i )p]x̂, (15)

where rn
i denotes the truncation error. By using the Taylor

expansion, it is easy to see that rn
i = O(τ2 + h4) holds as

τ, h → 0. The following lemmas are essential for the proof
of convergence and stability of our scheme.

Lemma 6: (Discrete Gronwall’s inequality [21]) Suppose
that ω(k) and ρ(k) are nonnegative functions and ρ(k) is
nondecreasing. If C > 0 and

ω(k) ≤ ρ(k) + Cτ
k−1∑

l=0

ω(l), ∀k,
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then
ω(k) ≤ ρ(k)eCτk, ∀k.

Lemma 7: (Pan and Zhang [15]) Suppose that u0 ∈
H2

0 [xl, xr], then the solution un of Eqs. (1)–(3) satisfies

‖u‖L2 ≤ C, ‖ux‖L2 ≤ C,

‖uxx‖L2 ≤ C, ‖u‖L∞ ≤ C.

The following theorem shows that our scheme converges to
the solution with convergence rate O(τ2 + h4).

Theorem 8: Suppose u0 ∈ H2
0 [xl, xr], then the solution

un converges to the solution for the problem in the sense of
‖·‖∞ and the rate of convergence is O(τ2 + h4).

Proof: By taking an inner product on both sides of Eq.
(15) with 2ēn ≡ (en+1 + en−1), we get

(∥∥en+1
∥∥2 −

∥∥en−1
∥∥2

)
+

(
1− h2

6

) (∥∥en+1
x

∥∥2 −
∥∥en−1

x

∥∥2
)

+
(

1− h2

12

) (∥∥en+1
xx̄

∥∥2 − ∥∥en−1
xx̄

∥∥2
)

= 2τ (rn, 2ēn)

− 2τ (en
x̂ , 2ēn)− 2τ ([(vn)p]x̂ − [(un)p]x̂, 2ēn) . (16)

According to the Schwarz inequality, Lemma 1, Theorem 2,
and Lemma 7, we obtain(

[(vn)p]x̂ − [(un)p]x̂, 2ēn

)

= 2h
M−1∑

i=1

[
[(vn

i )p]x̂ − [(un
i )p]x̂

]
ēn
i

= −2h
M−1∑

i=1

[
(vn

i )p − (un
i )p

]
(ēn

i )x̂

= 2h
M−1∑

i=1

[
en
i

p−2∑

k=1

(vn
i )p−k−2 (un

i )k

]
(ēn

i )x̂

≤ C
(
‖en‖2 + ‖ēn

x̂‖2
)

≤ C

(
‖en‖2 +

∥∥en−1
x̂

∥∥2
+

∥∥en+1
x̂

∥∥2
)

. (17)

By the Cauchy–Schwarz inequality, Lemma 1, and a direct
calculation, we obtain

‖en
x̂‖ ≤ ‖en

x‖, (18)

‖en
x‖ = − (en, en

xx̄) ≤ 1
2

(
‖en‖2 + ‖en

xx̄‖2
)

, (19)

(en
x̂ , 2ēn) ≤ ‖en

x̂‖2 +
1
2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)

, (20)

(rn, 2ēn) ≤ ‖rn‖2 +
1
2

(∥∥en+1
∥∥2

+
∥∥en−1

∥∥2
)

. (21)

From Eqs.(16)–(21), they yield
(∥∥en+1

∥∥2 − ∥∥en−1
∥∥2

)

+
(

1− h2

6

) (∥∥en+1
x

∥∥2 −
∥∥en−1

x

∥∥2
)

+
(

1− h2

12

) (∥∥en+1
xx̄

∥∥2 − ∥∥en−1
xx̄

∥∥2
)

≤ 2τ‖rn‖2 + τC

(∥∥en−1
∥∥2

+ ‖en‖2 +
∥∥en+1

∥∥2

+
∥∥en−1

x

∥∥2
+ ‖en

x‖2 +
∥∥en+1

x

∥∥2
)

. (22)

Setting

En = ‖en‖2+
∥∥en−1

∥∥2
+

(
1− h2

6

) (
‖en

x‖2 +
∥∥en−1

x

∥∥2
)

+
(

1− h2

12

) (
‖en

xx̄‖2 +
∥∥en−1

xx̄

∥∥2
)

,

then Eq. (22) can be rewritten as

En+1 − En ≤ 2τ‖rn‖2 + τC
(
En+1 + En

)
,

and

(1− 2τC)
(
En+1 − En

) ≤ τ‖rn‖2 + 2τCEn.

If τ is sufficiently small, which satisfies 1− 2Cτ > 0, then

En+1 − En ≤ τC‖rn‖2 + τCEn. (23)

Summing up Eq. (23) from 1 to n, we have

En+1 ≤ E1 + Cτ
n∑

k=1

∥∥rk
∥∥2

+ Cτ
n∑

k=1

Ek. (24)

Thus, we can use a fourth–order method to compute u1 such
that

E1 ≤ O(τ2 + h4)
2
,

and

τ
n∑

k=1

∥∥rk
∥∥2 ≤ nτ max

0≤l≤n−1

∥∥rl
∥∥2 ≤ T ·O(τ2 + h4)2.

By Lemma 6, we obtain En ≤ O(τ2 + h4)2, that is

‖en‖ ≤ O(τ2 + h4), ‖en
xx̄‖ ≤ O(τ2 + h4).

From Eq. (20), we obtain

‖en‖ ≤ O(τ2 + h4), ‖en
x‖ ≤ O(τ2 + h4),

and
‖en

xx̄‖ ≤ O(τ2 + h4).

By Lemma 3,

‖en‖∞ ≤ O(τ2 + h4).

This completes the proof.
Theorem 9: Under the conditions of Theorem 8, the so-

lution un of Eqs. (9)–(11) is stable in norm ‖ · ‖∞.

V. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments on a
test problem to confirm and illustrate the accuracy of our
proposed method. The accuracy of the method is measured
by the comparison of numerical solutions with exact solu-
tions as well as other numerical solutions from the method
in the literature [15] by using ‖ · ‖ and ‖ · ‖∞ norm. The
initial condition associated for the Rosenau–RLW equation
takes the form:

u0(x) = eln{(p+3)(3p+1)(p+1)/[2(p2+3)(p2+4p+7)]}/(p+1)×

sech4/(p+1)

[
p− 1√

4p2 + 8p + 20
(x)

]
.
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TABLE I
COMPARISON OF ERRORS WITH τ = 0.1, h = 0.25, xl = −60, AND

xr = 120 AT t = 40.

‖e‖ × 10−2 ‖e‖∞ × 10−3

p Present Pan&Zhang Present Pan&Zhang

2 0.23608 0.78777 0.88670 2.88972
4 0.47254 1.73066 1.81252 6.47969
8 0.46713 1.80583 1.75739 6.66740
16 0.38438 1.37857 1.30630 5.05919

TABLE II
COMPARISON OF ERRORS WITH τ = 0.1, h = 0.5, xl = −60, AND

xr = 120 AT t = 40.

‖e‖ × 10−2 ‖e‖∞ × 10−2

p Present Pan&Zhang Present Pan&Zhang

2 0.230294 3.25288 0.086284 1.19460
4 0.447881 7.45173 0.171122 2.78712
8 0.431841 8.03730 0.161891 2.95337
16 0.357253 6.13044 0.118759 2.25471
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Fig. 1. Absolute error distribution at p = 4, h = 0.5, τ = h2, and t = 40.

For u1, we employ a two–level method to estimate the
solution by

(un
i )t −

(
1− h2

6

)
(un

i )xx̄t +
(

1− h2

12

)
(un

i )xxx̄x̄t

+
(
u

n+ 1 2
i

)
x̂

+ [(un
i )p]x̂ = 0;

1 ≤ i ≤ M − 1, 1 ≤ n ≤ N − 1. (25)

We make a comparison between the scheme (9)–(11) and
the scheme proposed in [15]. The rate of convergence is
computed using two grids, according to the formula:

Rate = log2

‖eh‖
‖eh/2‖

.

The results in term of errors at t = 40, τ = 0.1, and
different p, by using xl = −60 and xr = 120, with h = 0.25
and h = 0.5 are reported in Tables I and II. It is clear that the
results obtained by the scheme (9)–(11) are more accurate
than the ones obtained by the scheme in [15].

Absolute error distributions for the two methods with τ =
0.25, h = 0.5, and t = 40 are drawn at p = 4 and 8 in Figs. 1
and 2, respectively. The results obtained by the scheme (9)–
(11) are greatly improved when compared to those by the
scheme in [15]. It can be easily observed that the maximum
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Fig. 2. Absolute error distribution at p = 8, h = 0.5, τ = h2, and t = 40.
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Fig. 3. Error ‖e‖ versus t at p = 4, h = 0.5, and τ = h2.
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Fig. 4. Error ‖e‖∞ versus t at p = 4, h = 0.5, and τ = h2.

error is taken place around the peak amplitude of the solitary
wave and then the scheme (9)–(11) is applied in this area.

Figs. 3–6 show errors at t ∈ [0, 60] with τ = 0.25, h =
0.5, and p = 4, 8 by comparing with the Pan&Zhang method
[15]. It is observed that both errors increase with time quite
linearly but the error of the present method is less than that
of the Pan&Zhang method [15].

As shown in Tables III and IV, on one particular choice of
the parameters, the estimated rate is close to the theoretically
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Fig. 5. Error ‖e‖ versus t at p = 8, h = 0.5, and τ = h2.
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Fig. 6. Error ‖e‖∞ versus t at p = 8, h = 0.5, and τ = h2.

predicted fourth–order rate of convergence. We can also say
that when we use smaller time and space steps, numerical
values are almost the same as exact values. The CPU time
for two methods are listed in Tables III and IV. It can be seen
that the computational efficiency of the present method are
slightly better than that of Pan&Zhang method [15], in term
of CPU time. However, the construction of the novel scheme
requires only a regular five–point stencil at a higher time
level, which is similar to the standard second–order Crank–
Nicolson scheme and Pan&Zhang scheme [15].

As in Tables V and VI, the values of Qn and En at any
time t ∈ [0, 40], which results from the present method,
coincide with the theory. The quantities Qn and En seem
to be conserved on the average, i.e. they are contained in a
small interval but there are fluctuations.

Figs. 7 and 8 show numerical solutions at t = 200 with
p = 4 and 8. The results from the Pan&Zhang method [15]
are slightly oscillate at the left side of the solitary wave in
case of p = 8. However, the results from the present method
are almost perfectly sharp in both cases p = 4 and 8. From
the point of view for the long time behavior of the resolution,
the present method can be seen to be much better than the
method in [15].

The solitary waves obtained by the present scheme are
plotted in Figs. 9 and 10 using τ = 0.25, h = 0.5, xl =
−60, xr = 200, and p = 4, 8. The solitons at t = 60 and

TABLE III
RATE OF CONVERGENCE AND CPU TIME WITH p = 4 AND t = 40.

τ = 0.25, h = 0.5

τ, h τ
4
, h

2
τ
16

, h
4

Present

‖e‖ × 10−2 3.20548 0.197080 0.0123084
Rate 4.02369 4.00106

‖e‖∞ × 10−2 1.22483 0.0752290 0.00469781
Rate 4.02515 4.00123

CPU time (s) 1.153389 12.866165 155.967273

Pan&Zhang

‖e‖ × 10−2 6.41825 1.85385 0.479643
Rate 1.79165 1.95050

‖e‖∞ × 10−2 2.38960 0.696030 0.180409
Rate 1.77955 1.94788

CPU time (s) 1.251865 13.534488 157.561488

TABLE IV
RATE OF CONVERGENCE AND CPU TIME WITH p = 8 AND t = 40.

τ = 0.25, h = 0.5

τ, h τ
4
, h

2
τ
16

, h
4

Present

‖e‖ × 10−2 3.18080 0.194284 0.0121337
Rate 4.03315 4.00108

‖e‖∞ × 10−2 1.19513 0.0727869 0.00454621
Rate 4.03734 4.00094

CPU time 1.21464 13.868260 174.397644

Pan&Zhang

‖e‖ × 10−2 6.44908 1.99919 0.525426
Rate 1.68968 1.92785

‖e‖∞ × 10−2 2.35870 0.739615 0.194938
Rate 1.67314 1.92376

CPU time 1.371416 14.862871 175.068007

TABLE V
DISCRETE MASS Qn .

τ = 0.25, h = 0.5
t p = 4 p = 8

t = 10 6.26580620079700 9.74208591413665
t = 20 6.26580620078861 9.74208595412127
t = 30 6.26580619948382 9.74208578472995
t = 40 6.26580617252808 9.74208558745239
Q(0) 6.26580620079328 9.74208618205024

TABLE VI
DISCRETE ENERGY En .

τ = 0.25, h = 0.5
t p = 4 p = 8

t = 10 2.86723006370139 4.73479863443071
t = 20 2.86725271321602 4.73481771538282
t = 30 2.86726739317968 4.73483391314363
t = 40 2.86727839480750 4.73485101919594
E(0) 2.86718872840474 4.73477831492679

120 agree with the soliton at t = 0 quite well, which also
shows the accuracy of the scheme.

VI. CONCLUSIONS

The new conservative finite difference scheme for the
Rosenau–RLW equation is introduced and analyzed. The
present method gives an implicit linear system, which can
be easily implemented. This method shows the second– and
fourth–order accuracy in time and space, respectively. In
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Fig. 7. Numerical solutions at p = 4, xl = −60, xr = 300, h = 0.5,
τ = h2, and t = 200.
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Fig. 8. Numerical solutions at p = 8, xl = −60, xr = 300, h = 0.5,
τ = h2, and t = 200.
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Fig. 9. Numerical solutions at p = 4.

addition, the numerical experiments show that the present
method supports the analysis of convergence rate.

It is obvious from numerical experiments that the present
method, the scheme (9)–(11), gives the well resolution for
the Rosenau–RLW equation. It is possible that the solitary
wave obtained by this novel method can be smoothed out,
at long time, by type of the high–order accuracy.
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Fig. 10. Numerical solutions at p = 8.
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