TAENG International Journal of Applied Mathematics, 44:4, [JAM 44 4 07

General Parametrization of Stabilizing Controllers
with Doubly Coprime Factorizations over
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Abstract—In this paper, we consider the factorization ap- stabilization problem.
proach to control systems with plants admitting coprime fac-
torizations. Further, the set of stable causal transfer functions A. Notations

is a general commutative ring. The objective of this paper . . . .
is to present that even in the case where the set of stable a) Commutative RingsWe will consider thatthe set

causal transfer functions is a general commutative ring, the Of all stable causal transfer functions a commutative ring,
parametrization of stabilizing controllers is achieved by the denoted byA. Again, we are considering that may include
Youla-parametrization. zero divisors. The total ring of fractions ofl is denoted
Index Terms—Linear systems, Feedback stabilization, Co- by F; that is,F = {n/d|n,d € A, d is a nonzerodivisdr.
prime factorization over commutative rings Parametrization of  This will be considered to bthe set of all possible transfer

stabilizinng controllers functions If the commutative ringd is an integral domairnfF
becomes a field of fractions ofl. However, if A is not an
. INTRODUCTION integral domain, thet¥ is not a field, because any nonzero
N the factorization approach[1], [2], [3], [4], a transferzerodivisor of F is not a unit.
function is given as the ratio d¥vo stable causal transfer b) Matrices: Suppose thatr and y denote sizes of
functionsand the set of stable causal transfer functions formsatrices.
a commutative ring The set of matrices oved of size z x y is denoted

Since stabilizing controllers are not unique in general, thgy A**Y. A square matrix is calledingular over A if its
choice of stabilizing controllers is important for the resultingleterminant is a zerodivisor of, andnonsingularotherwise.
closed loop. In the classical case such as continuous-tiffiiee identity and the zero matrices are denoted/byand
LTI systems and discrete-time LTI systems, the stabilizing. ., respectively, if the sizes are required, otherwise they
controllers can be parametrized by the method called “Youlare denoted simply by andO.
parametrization”[1], [2], [4], [5], [6] (also called Youla- Matrices A and B over A are right-coprime overA if
Kutera-parametrization). We note that in these cases, thetberre exist matrice&’ andY over A such thatX A+ Y B =
of stable causal transfer functions over an integral domain Analogously, matricesl and B over A are left- coprime
such as a Euclidean domain and a unique factorizatiomer A if there exist matrices{ andY" over A such that
domain. AX + BY = I. Further, pair(N, D) of matricesN and D

However, there exist models in which some stabilizablever.A is said to be aight-coprime factorization oP over.A
transfer matrices do not have their right-/left-coprime factoif (i) the matrix D is nonsingular over4, (i) P = ND~!
izations in general[7], [8]. In such models, we cannot emplayer F, and (iii) V and D are right-coprime ovei. Also,
the Youla-parametrization in general. pair (N, D) of matricesN and D over A is said to be a

It has also investigated the parametrization of theft-coprime factorization of’ over A if (i) Dis nonsingular
case where plants admits either right- or left-coprimever A, (i) P = D~'N overF, and (iii) N andD are left-
factorizations[9]. coprime ovetd. As we have seen, in the case where a matrix

In this paper, the commutative ring, the set of stable causalpotentially used to expressft fractional form and/ofeft
transfer functions, includes a commutitative ring with zerooprimeness, we usually attach a tilde' to a symbol; for
divisors, that is, we considgreneralcommutative rings. exampleN, D for P = D~ IN andY, X for VN+XD = I.

The contribution of this paper is to present that in the c) Causality: We also define the causality of transfer
factorization approach, if a plant admits both right-/lefttunctions, which is an important physical constraint, used
coprime factorizations (even if some other stabilizable plants this paper. We employ the definition of causality from
in the same model do not have right-/left-coprime factorizd/dyasagaret al[4, Definition 3.1] and Mori and Abe[10].
tions), we can still employ the Youla-parametrization for the Definition 1: Let Z be a prime ideal of4, with Z # A,
parametrization of stabilizing controllers of the plant. including all zerodivisors. Define the subs&tsandPs of 7

as follows:
. . PREI-_IMINA.RIES | . P = [njdeFlne A de A\Z),

In the following we begin by introducing notations used
in this paper. Then we give the formulation of the feedback Ps = {n/deF|ne 2, de A\Z}.

A transfer function is called¢tausal(strictly causa) if it is

K. Mori is with School of Computer Science and Englneerlnq n P (Ps). Similarly, a transfer matrix ove?yls calle)dcausal
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Uz which is overA. Thus,W (P, C) can be expressed in terms
of FandH(P,C):

U _Q C y1+ + & P Y, W(P,C) = F~!(Insn — H(P,C)).

Note 1: Instead of Definition 2, we can describe the defini-
tion of the stabilify by usingV (P, C) rather thanH (P, C)
as follows: ForP ¢ F*»*™ and C € F™*", the matrix

Fig. 1. Feedback systein.
W(P,C) € Flmtmx(min)is as in (2) provided P,C) €
FLq. If (i) (P,C) € Foq and (i)W (P, C) € Alm+n)x(min),

. then we say that the plamt is stabilizable C stabilizesP,

P is stabilizedby C, andC is astabilizing controllerof P.

B. Feedbacl:l-< Stlab|||zat|on Proble.m o It should be noted that when using “a stabilizing con-
The stabilization problem considered in this paper foIIow§o||er,n we do not guarantee the causality. However, in
that of Sule in [11] and Mori and Abe in [10] who considefne classical case of the factorization approach, once we
the feedback syster®i [3, Ch.5, Figure5.1] as in Figure 1. restrict ourselves to strictly proper plants, it is known that

For further details the reader is referred to 3], [10]. Throughmy stapilizing controller of strictly causal plant is causal

out this paper, the plant we consider hasinputs andn  (cf. Corollary5.2.20 of [3], Theorem4.1 of [4], and Propo-

outputs, and its transfer matrix, which itself is also callegition 6.2 of [10]). One can see, in fact, that many practical

simply aplant, is denoted by” and belongs toP" ™. systems are strictly causal.
Definition 2: Define F,q by

Fua = {(X)Y) e F7Y x Foxe| [1l. PARAMETRIZATION WITHOUT COPRIME
det(I, + XY) is a unit of F, FACTORIZABILITY

x andy are positive integels ) o )
Here we review the parametrization method without con-

For P ¢ F»*™ and C € F™*", the matrix H(P,C) € sidering the coprime factorizability[12], [13]. Lét be the
Flmtn)x(m+n) js defined by set of H(P, C')’s with all stabilizing controllers> of the plant
(I, + PC)~'  —P(I,, + CP)~! . P This set?—_{ and all stabilizing controllers are obtained as
C(I, + PC)~! (I + CP)~1 (1) in the following way. _ -
Let Hy be H(P,Cy), whereCj is a stabilizing controller
provided (P, C) € F,q. This H(P,C) is the transfer matrix of P. Let Q(Q) be a matrix defined as follows:
from[u! ul]"to[el eh]" of the feedback system. If (i)

H(P,C) =

(P,C) € Faq and (i) H(P,C) € Amtm)x(m+n) then we QQ) = (Hy — [I" O] )Q 3)
say that the plantP is stabilizable C' stabilizesP, P is 0 0
stabilizedby C, andC is astabilizing controllerof P. . « (Ho — [O 0 ]) 4 Hy

In (1), there are two kind of inverse matricés, +PC) "1, o I,

(I, + CP)~'. We can make them describe with only one . .
inverse matrix as follows: with a stable causal and square matghof size (m +n) x

. . (m+n). Using this matrix)), we have the following theorem,
H(P,C) = I =P(Ly, +CP)C —=P(l +CP) the controller parametrization, as follows.
! (I, + CP)~'C (I + CP)~! . <
Theorem 1 ([12], [13]): The set of allH (P, C)’s with all
B { (I, + PC)~1 —(I, + PO)~'P ] stabilizing controllers is given as follows

~|Ce(, + PC)"Y I, —C(I, + PC)"'P
H={Q is stable causal and is nonsingula
It is known thatWW (P, C') defined below is ove# if and {e@e (@) 9 (‘}1)
only if H(F,€) s overA: Furthermore, any stabilizing controller has the following
C(I,+PC)~r —CP(I, + CP)l} form:

C(I, + PC)~! m+CP)H ] -1 | I
PC(I, + PC) P(I, +CP) 2) — [0 I1,]19(Q) 1[0}, (5)

This W (P, C) is the transfer matrix from:; and us to y;

W(P,C) = [

andys,. Then, we have provided that2(@) is nonsingular. .
The parametrization above is given by a parameter ma-
H(P,C) = Iy, — FW(P,C), trix Q without the coprime factorizabilitpf the plant. This
parametrization method is applicable to the stabilizable plant
where : . - .
o I, with no coprime factorization (of course, any plant which
= -1, O admits coprime factorization can also applied to).

The parameter matrix) is of size (m + n) x (m + n).
That s, in order to archive the parametrization, we nged-
J A {O Im} n)? parameters. On the other hand, the Youla-parametrization
L, O |’ needs onlymn parameters.

The matrix F' is unimodular; in fact,

(Advance online publication: 28 November 2014)
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IV. MAIN RESULT In the termY N(D + CN)~1, Y is over A, and N(D +
e . :
The following is the parametrization of stabilizing conCV) ™" 1S the negatlve_lof the (1,2)-block of (6). Furth_elr, in
trollers presented as a Youla-parametrization. the termX D(D+CN)~*, X is overA, andD(D+CN)

Theorem 2:(cf. Theorems5.2.1 and 8.3.12 of [3]) SupiS the (2,2)-block of (6). Hencs'is A.
pose that the planP € P"*™ is stabilizable. Suppose fur- Analogously we show thal is of A. We now have
ther thatP admits right-/left-coprime factorizations ovet T = (D+CN)C
of P. Let (N, D) and (N, D) be right-/left-coprime factor- S _1 S _1
izations, respectively, ovet of P and(Y,, Xo) and(Yy, Xo) = YN(D+CN)" C+XD(D+CN)™C.
be right-/left-coprime factorizations, respectively, ov&érof |n the termf/N(D + CN)"'C, Y is over A, andN (D +

Co, a stabilizing controller of?, such that CN)~'C is a part of the (1,1)-block of (6). Further, in the
~ ~ ~ ~ Y -1 X i -1
YoN + XoD = Iy, NYo+ DXo = I,. FermXD(DJrCN) C, X is overA, andD(D+CN)~'C

o is the (2,1)-block of (6). Henc# is also.A.
Then all matricesX, Y, X, Y over A satisfying In the following, we show thatT, S) is a left-coprime
factorization overA of C. It is obviousC = ((D +

YN+ XD =1In, NY+DX=1I CN)"H)~YD + CN)~'C = S~'T. Now considerSD +

are expressed aX¥ = X, — NS, Y = Y, + DS, X = TN, whichis
Xo— RN andY =Yy + RD for R andS in A™*™,

— -1 -1
Further the set of all stabilizing controllers, denoted by SD+TN = (D+ CN)le +(D+CN)TCN
S(P), is given as = (D+CN)"(D+CN) =In.
S(P) = {(Xo—RN)"\(Yy+ RD)| Hence(T, S) is a left-coprime factorization oved of C.

> ~ . . The discussion of the case whePeadmits a left-coprime

R € A™*", Xo — RN is nonsingulay factorization overd can be achieved entirely analogopusq.
= {(Yo+D9)(Xo—NS)™'| Theorem 3:(cf. Theorem 4.1.60 of [3]) Suppose thate

S e A" Xo— NS is nonsingulay. F"*™ and let(N, D) and (N, D) be a right- and a left-

coprime factorizations, respectively, ovet. Suppose that

) ) ) *  matricesY and X over A satisfy YN + XN = I,,.
The “integral domain version” of Theorem2 was already Then there exist matriceg and X over A such that
shown in Section8 of [3] without the proof. Nevertheless,

considering general commutative rings as the set of stable X Y |D -Y|_ I ... 7
: : N D N X m+n ( )
causal transfer functions, we need to give the proof because

the proofks h;?_ve Some dlffelrfences._ q i Proof: BecauseN and D are left-coprime factorization
To make this paper as self-contained as we can, we inlucde, 1 of p, there exist matrices; and X; over A such

some lemmas which has even appeared in some Iiteratutrlx'-:-a NY; + DX, = I,,. Define

already. ~ o~
Lemma 1:(cf.8.3.12 of [3]) Suppose thaP € Fmxm E = [ X Z] )
admits a right- (left-) coprime factorization ad € F™*" -N D

is any stabilizing controller of”. Then the stabilizing con- Then
troller C admits a left- (right-) coprime factorization. £ [D Yl] B [Im A] ®)
Proof: Suppose thaP admits a right-coprime factoriza- N X | |0 I
tion. Let (IV, D) be a right-coprime factorization ovet of ~ ~ ] ]
P. Then existy’ and X over A such thaW N + XD = [,,. WhereA = —XV; +Y X, € A™*". Since the right hand
Let C be a stabilizing controller of?. Then H(P,C) is side of (8) is unimodular, so i&, whose inverse is

as follows:

p _ [D N [In A -1
H(P,C) N X, ||0 I
= H(ND™',0) _[D Yl] [Im A]
(InJrND*lC)*l :N X, o I,
_ ~ND (I, + CND~1)~! _ [D -(mi+DA4)
B C(I, + ND-'C)~* N X, -NA |
—1y—-1
(Im +CND™Y) Then (7) is satisfied with” = V1 + DA andX = X; — NA.
_ [I,—=N([D+CN)"'C —N(D+CN)™? ) m
D(D+CN)~'C DD +CN)™ |7 The following corollary is the parallel result of Theorem 3.
The matrix above is overd becauseC is a stabilizing ~ Corollary 1. Suppose that? € F"*™ and let (N, D)
controller. Now letS andT be and (N, D) be a right- and a left-coprime factorizations,
) ) respectively, oveid. Suppose that matricés and X over.A
§S=([D+CN)", T=(D+CN)"C, satisfyNY + DX =1I,.
respectively. Thens holds ho'll'dhsen there exist matriceX andY over A such that (7)
S = (D+CN)™! N Theorem 4:(cf. Corollary 4.1.67 of [3]) Suppose that
= YNMD+CN) '+ XD(D+CN)™ . P ¢ F»*™ and (N, D) and (N, D) be a right- and a
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left-coprime factorizations, respectively, ovdrof P. Then
for every matricesY, X, Y, and X over A such that
YN+ XD=1,, NY + DX = I,,, the matrices

- 5] w[2 7]

-N D
are unimodular. Moreovet/;! is a complementation of
[ D' N'] inthatU; ! is of the form

(9)

D
Uyt = G (10)
N
for some matrixG_over A. Analogously,U; ! is a comple-
mentation off — N D ], in thatU, ' is of the form
1 _F

for some matrixF' over A.

Proof: Using the right-coprimeness ofN, D) over
over A, consider matrice¥” and X such that N +XD =
I,. Then by Theorem 3, there exist matric§sandY over

A such that
2 ]

|

Xy
-N D

D -Y

N X (12)

By using these relation and (14), we have
NATY NAT'X|[R
DALY DA;U?] [S} '
All matrices of the right hand side of (15) is over Hence
Afl is also overA and soA; is unimodular. [ |
Theorem 5:(cf. Corollary 5.1.30 of [3]) Suppose that €
Fr*m and let(N, D) and (N, D) be any right- and left-
coprime factorization, respectively, ovdr Suppose also that
C admits right- and left-coprime factorizations ovér Then
the following are equivalent:
(i) C stabilizesP. o
(i) C has a left-coprime factorizatioft”, X') over.A with
YN+ XD = 1I,.
(iii) C has a right-coprime factorizatidfY, X') over.A with
NY + NX = I,,.
Proof: (i)—(ii): Suppose thatC' stabilizesP. Suppose
that (Y1, X1) is a left-coprime factorization oved of C,
which may be different fron{Y’, X'). Then by Lemma?2,

AT'=[A B] (15)

A, =Y,N + X,D

is a unimodular ofA. By letting Y = Al_lffl and X =
ATTX,, we have (ii).

Let U; andU, as in (9). Then by (12), they are unimodular(ii) —(i): Suppose that”' has a left-coprime factorization

Applying G = [-Y" X*]", we have (10). Analogously,
applyingFF =[N Y] we have (11). [ |

Lemma 2:(cf.Lemma3.1 of [4]) Suppose thaP €
Frxmoand C € F™*" and let(NV, D) be a right-coprime
factorization overA of P and (Y, X) a left-coprime fac-
torization over.A of C. Under these conditions) is a
stabilizing controller ofP if and on ly if

Ai=YN+ XD

is a unimodular ofA.
Proof: “If": Suppose thatA; is a unimodular. Ther !
is over.A. First, sincel,, + CP = X~ 'A; D™, we see that
det(I,,+CP) = det(I,+ PC) is a nonzerodivisor. Next, we
showH (P, C) is over.A. By direct substitution id (P, C'),
we have
|

lc

I,

BecauseA; !

H(P,0)
[ I, — P(L,, + CP)~ —P(I,, + CP)~
(I, + CP)~tC (I, + CP)~1
— PDA{'XC —PDA'X
| DAV Xc DAT'X
1 —1v
[In = NALTY —NATXT (13)
DAT'Y DAT'X
is unimodular, thisH (P, C) is over A.
“Only If”: Suppose thatC is a stabilizing controller ofP.
Thendet(I,, + CP) # 0 and H(P,C) is over A.
BecauseH (P, C) is over A. the following matrix, which
is modified from (13), is also oveA.
NATY NAT'X
DAY DAT'X (14)
Recall that(N, D) is a right-coprime factorization oved
of P and (Y, X) a left-coprime factorization oved of C.
Then there exist matriced, B, R, S over. A such that
AN+BD=1,, YR+XS=1I,.

(Y, X) over A with YN + XD = I,,,. From this identity,
we haveCP + I, = X~'D~!, which is nonsingular. Now

H(P,C)is
H(P,C)
_ [I-P(I,+CP)~'C —P(I,+CP)™"
| Um+CP)C (I, + CP)~1
_ [I-PDXC -PDX
- | Dbxc DX
(I, —NY —NX
B DY DX } ’ (16)

which is overA. ThusC stabiliziesP.

The equivalence of (i) and (iii) is proved analogousm.

Before presenting the generalization of Lemma4.1.32
of [3], we should give a lemma which is a generalization
of Corollary 4.1.26 of [3].

Lemma 3:(cf. Corollary4.1.26 of [3]) Suppose® <
Frxm and thatP = ND~' = D~ 1N with the matrices
NDND over A. Let I = [— -N D] and F,
[ Dt Nt]t. Then the following are equivalent:

(i) N and D are right-coprime overA, and N and D
left-coprime overA.

(i) There exist unimodular matrice#’; and U, of the
formsU, =[Gt F!]' andU, = [F, G;] for some
matricesG; and G, over A.

__Proof: “(i) —(ii)". By Theorem3, there exist matrices

Y, X, Y, andX over.A such that (7) holds. Theb; is the

first matrix of the left hand side of (7). Alsb; is the second

matrix of the left hand side of (7). Thati§; = [X Y]

andGy = [-Yt X*']"

“(ii) —(i)”. Let V beU;*

and decompose it into 4 blocks as

follows:
m n
1, m | Vi1 Vio
tr=Vv=, [Vm V22]'

(Advance online publication: 28 November 2014)
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Becausel;V = I,,i,, We haveN(—Viy) + DVay = I,,. To prove (i), suppose that’ and X’ satisfiesNY’+ DX’ =

HenceN and D are left-coprime factorization oveA. I,,. Decomposéd/; as follows:
The right-coprimeness can be proved analogously.Wet G Gio
be U; ' and decompose it into 4 blocks as follows: [N D } = U1.
mon Then, defineS = -G, Y’ + G12X’. Now we have
_ Wi W,
Ul—w = m 11 12| _y!
2 n {Wm Waso Uiy
BecauseWUs = I1pn, We haveWis N + W11 D = I,,. G G _y
HenceN and D are right-coprime factorization ovet. = = {_}%{ 52} { X/ }

Lemma 4:(cf.Lemma4.1.32 of [3]) Suppose® ¢
Frxm_ Let (N, D) and (N, D) be right-/left-coprime fac- = {S] )
torizations, respectively, oved of P. Let U; andU; be the Iy
unimodular matrices of the form in (ii) of Lemma3. Then
the set of all matrice” € A™*™ and X € A™*™ with
YN+ XD = I, is given by Proof of Theorem 2:

[)} 57] — (I, RIU;" (17) We prove the first representation only. The second one is
proved analogously.

where R € A™*". Similarly the set of all matrice§” € . By Lammal, any stabilizing controller has both right-
A™*" and X € A"*™ with NY + DX = I, is given by  /right-coprime factorizations oveA.
vy S It is shown in Theorem5 that' is stabilized byP if and
2] 2)

Now we can prove Theorem 2.

X I, (18) onlyif C has a left-coprime factorizatidiy”, X) over.4 such
thatYN + XD = I,,. Now consider another left-coprime

whereS € A™*™, _ factorization(Y”, X') such that

The proof of Lemma4 is analogous to that of ~, -,
Lemma4.1.32 of [3], in which Lemma3 above is used YN+ XN =In (19)
instead of Corollary 4.1.26 of [3]. in the unknown matrice¥” and X’. Then, again by Theo-

Proof of Lemmad4: It is necessary to show that (i) rem5,C stabilizesP if and only if C is of the form)?/—lf//

everyY and X of the form (17) satisfies N + ND = I,,, o X' c Am*m andY’ € A™*" such that (19) holds and

and (i) everyY” and X satisfyY N + XD = I,, are of the - X7 i nonsingular. From Theorem 4, the matrix
form (17) for someR.

To prove (i), observe that, U, = I,,,,. Hence U = { )%7 %] (20)
= = < o.[D
YN+XD = [X Y] [N] is unimodular, and moreovéf, ! is of the form
1| D D
= [Im R]U21|:N:| Uflz G ,
I N
= m R [ 0] } whereG is a matrix over overd. By Lemma4, we have all
= 1I,. solutions for(Y’, X’) of (19) are of the form
To prove (i), suppose that’ and X' satisfiesy’ N+ X'D = (X' Y'|=[I R|Ui=[X—-RN Y +RD)]
I,,. Decomposéd/, as follows: for someR € A™X". -
D Gu| U
N Gypl| 7% V. EXAMPLE
' = = Let us consider Anantharam’s example. Anantharam [7]
— / /
Define B = Y'G; + X'Ga. Then considered the casé = Z[v/—5| = {u+vV/=5|u,v € Z},
[)N(/ 57/] Uy = [)N(/ 17,] [D GQI] —[I. R]. Wher_eZ denotes_ the set of integers (_This _ring [14, pp.1_34—
N Ga 135] is isomorphic t&[z]/(z*+5) and is an integral domain

The proof concerning” and X can be given analogously.but not a unique factorization domain. In fa6te Z[y 5]
It is necessary to show that (i) eveky and X of the form has two faCtOfIZ&thﬂSQ_ -3 a_nd (1 + v=5) - (1 —+/-=5)).
(18) satisfiesVY + DX = I,,, and (i) everyy” andX satisfy He showed that a single-input single-output plant=

NY + DX = I,, are of the form (18) for somé. (1 + +/-5)/2 does not admit a coprime factorization but
To prove (i), observe that; *U; = I,,,,,. Hence is stabilizable and: = (1 — /—5)/(—2) is a stabilizing
B B Ty controller.
NY+DX = [-N D] { ¥ ] Let us considep = 5/2, then we have coprime factoriza-
tion
= [-N E]Ull[f} y-54x-2=1,
" wherey = 1 andx = —2. Thus the set of all stbilizing
S o
= [0 I,] [I ] controllers is given as
= I {(y+2r)/(z—5r)[reA}.

(Advance online publication: 28 November 2014)
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VI. CONCLUSIONS

In this paper, we consider the factorization approach to
control systems with plants admitting coprime factoriza-
tions and with the set of stable causal transfer functions
being a general commutative ring. We have shown that the
parametrization of stabilizing controllers is still achieved by
the Youla-parametrization.
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