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Abstract—In this paper, we consider the factorization ap-
proach to control systems with plants admitting coprime fac-
torizations. Further, the set of stable causal transfer functions
is a general commutative ring. The objective of this paper
is to present that even in the case where the set of stable
causal transfer functions is a general commutative ring, the
parametrization of stabilizing controllers is achieved by the
Youla-parametrization.

Index Terms—Linear systems, Feedback stabilization, Co-
prime factorization over commutative rings Parametrization of
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I. I NTRODUCTION

I N the factorization approach[1], [2], [3], [4], a transfer
function is given as the ratio oftwo stable causal transfer

functionsand the set of stable causal transfer functions forms
a commutative ring.

Since stabilizing controllers are not unique in general, the
choice of stabilizing controllers is important for the resulting
closed loop. In the classical case such as continuous-time
LTI systems and discrete-time LTI systems, the stabilizing
controllers can be parametrized by the method called “Youla-
parametrization”[1], [2], [4], [5], [6] (also called Youla-
Kučera-parametrization). We note that in these cases, the set
of stable causal transfer functions over an integral domain
such as a Euclidean domain and a unique factorization
domain.

However, there exist models in which some stabilizable
transfer matrices do not have their right-/left-coprime factor-
izations in general[7], [8]. In such models, we cannot employ
the Youla-parametrization in general.

It has also investigated the parametrization of the
case where plants admits either right- or left-coprime
factorizations[9].

In this paper, the commutative ring, the set of stable causal
transfer functions, includes a commutitative ring with zero
divisors, that is, we considergeneralcommutative rings.

The contribution of this paper is to present that in the
factorization approach, if a plant admits both right-/left-
coprime factorizations (even if some other stabilizable plants
in the same model do not have right-/left-coprime factoriza-
tions), we can still employ the Youla-parametrization for the
parametrization of stabilizing controllers of the plant.

II. PRELIMINARIES

In the following we begin by introducing notations used
in this paper. Then we give the formulation of the feedback
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stabilization problem.

A. Notations

a) Commutative Rings:We will consider thatthe set
of all stable causal transfer functionsis a commutative ring,
denoted byA. Again, we are considering thatA may include
zero divisors. The total ring of fractions ofA is denoted
by F ; that is,F = {n/d |n, d ∈ A, d is a nonzerodivisor}.
This will be considered to bethe set of all possible transfer
functions. If the commutative ringA is an integral domain,F
becomes a field of fractions ofA. However, ifA is not an
integral domain, thenF is not a field, because any nonzero
zerodivisor ofF is not a unit.

b) Matrices: Suppose thatx and y denote sizes of
matrices.

The set of matrices overA of size x × y is denoted
by Ax×y. A square matrix is calledsingular over A if its
determinant is a zerodivisor ofA, andnonsingularotherwise.
The identity and the zero matrices are denoted byIx and
Ox×y, respectively, if the sizes are required, otherwise they
are denoted simply byI andO.

Matrices A and B over A are right-coprime overA if
there exist matrices̃X andỸ overA such thatX̃A+ Ỹ B =
I. Analogously, matrices̃A and B̃ over A are left-coprime
over A if there exist matricesX and Y over A such that
ÃX + B̃Y = I. Further, pair(N, D) of matricesN andD
overA is said to be aright-coprime factorization ofP overA
if (i) the matrix D is nonsingular overA, (ii) P = ND−1

overF , and (iii) N andD are right-coprime overA. Also,
pair (Ñ , D̃) of matricesÑ and D̃ over A is said to be a
left-coprime factorization ofP overA if (i) D̃ is nonsingular
overA, (ii) P = D̃−1Ñ overF , and (iii) Ñ andD̃ are left-
coprime overA. As we have seen, in the case where a matrix
is potentially used to expressleft fractional form and/orleft
coprimeness, we usually attach a tilde ‘˜ ’ to a symbol; for
exampleÑ , D̃ for P = D̃−1Ñ andỸ , X̃ for Ỹ N+X̃D = I.

c) Causality: We also define the causality of transfer
functions, which is an important physical constraint, used
in this paper. We employ the definition of causality from
Vidyasagaret al.[4, Definition 3.1] and Mori and Abe[10].

Definition 1: Let Z be a prime ideal ofA, with Z 6= A,
including all zerodivisors. Define the subsetsP andPs of F
as follows:

P = {n/d ∈ F |n ∈ A, d ∈ A\Z},
Ps = {n/d ∈ F |n ∈ Z, d ∈ A\Z}.

A transfer function is calledcausal (strictly causal) if it is
in P (Ps). Similarly, a transfer matrix overF is calledcausal
(strictly causal) if all entries of the matrix inP (Ps).
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Fig. 1. Feedback systemΣ.

B. Feedback Stabilization Problem

The stabilization problem considered in this paper follows
that of Sule in [11] and Mori and Abe in [10] who consider
the feedback systemΣ [3, Ch.5, Figure 5.1] as in Figure 1.
For further details the reader is referred to [3], [10]. Through-
out this paper, the plant we consider hasm inputs andn
outputs, and its transfer matrix, which itself is also called
simply aplant, is denoted byP and belongs toPn×m.

Definition 2: Define F̂ad by

F̂ad = {(X, Y ) ∈ Fx×y ×Fy×x |
det(Ix + XY ) is a unit ofF ,
x andy are positive integers}.

For P ∈ Fn×m and C ∈ Fm×n, the matrixH(P, C) ∈
F (m+n)×(m+n) is defined by

H(P, C) =

[
(In + PC)−1 −P (Im + CP )−1

C(In + PC)−1 (Im + CP )−1

]
(1)

provided(P, C) ∈ F̂ad. This H(P, C) is the transfer matrix
from [ ut

1 ut
2 ]t to [ et

1 et
2 ]t of the feedback systemΣ. If (i)

(P, C) ∈ F̂ad and (ii) H(P, C) ∈ A(m+n)×(m+n), then we
say that the plantP is stabilizable, C stabilizesP , P is
stabilizedby C, andC is a stabilizing controllerof P .

In (1), there are two kind of inverse matrices,(In+PC)−1,
(Im + CP )−1. We can make them describe with only one
inverse matrix as follows:

H(P, C) =

[
I − P (Im + CP )−1C −P (Im + CP )−1

(Im + CP )−1C (Im + CP )−1

]

=

[
(In + PC)−1 −(In + PC)−1P

C(In + PC)−1 Im − C(In + PC)−1P

]
.

It is known thatW (P, C) defined below is overA if and
only if H(P, C) is overA:

W (P, C) :=

[
C(In + PC)−1 −CP (Im + CP )−1

PC(In + PC)−1 P (Im + CP )−1

]
.

(2)
This W (P, C) is the transfer matrix fromu1 and u2 to y1

andy2. Then, we have

H(P, C) = Im+n − FW (P, C),

where

F =

[
O In

−Im O

]
.

The matrixF is unimodular; in fact,

F−1 =

[
O −Im

In O

]
,

which is overA. Thus,W (P, C) can be expressed in terms
of F andH(P, C):

W (P, C) = F−1(Im+n − H(P, C)).

Note 1: Instead of Definition 2, we can describe the defini-
tion of the stabilify by usingW (P, C) rather thanH(P, C)
as follows: ForP ∈ Fn×m and C ∈ Fm×n, the matrix

W (P, C) ∈ F (m+n)×(m+n) is as in (2) provided(P, C) ∈
F̂ad. If (i) (P, C) ∈ F̂ad and (ii)W (P, C) ∈ A(m+n)×(m+n),
then we say that the plantP is stabilizable, C stabilizesP ,
P is stabilizedby C, andC is a stabilizing controllerof P .

It should be noted that when using “a stabilizing con-
troller,” we do not guarantee the causality. However, in
the classical case of the factorization approach, once we
restrict ourselves to strictly proper plants, it is known that
any stabilizing controller of strictly causal plant is causal
(cf. Corollary 5.2.20 of [3], Theorem4.1 of [4], and Propo-
sition 6.2 of [10]). One can see, in fact, that many practical
systems are strictly causal.

III. PARAMETRIZATION WITHOUT COPRIME

FACTORIZABILITY

Here we review the parametrization method without con-
sidering the coprime factorizability[12], [13]. LetH be the
set ofH(P, C)’s with all stabilizing controllersC of the plant
P . This setH and all stabilizing controllers are obtained as
in the following way.

Let H0 be H(P, C0), whereC0 is a stabilizing controller
of P . Let Ω(Q) be a matrix defined as follows:

Ω(Q) := (H0 −
[

In O
O O

]
)Q (3)

×(H0 −
[

O O
O Im

]
) + H0

with a stable causal and square matrixQ of size(m + n)×
(m+n). Using this matrixQ, we have the following theorem,
the controller parametrization, as follows.

Theorem 1 ([12], [13]): The set of allH(P, C)’s with all
stabilizing controllers is given as follows

H = {Ω(Q) |Q is stable causal andΩ(Q) is nonsingular}
(4)

Furthermore, any stabilizing controller has the following
form:

− [ O Im ] Ω(Q)−1

[
In

O

]
, (5)

provided thatΩ(Q) is nonsingular.
The parametrization above is given by a parameter ma-

trix Q without the coprime factorizabilityof the plant. This
parametrization method is applicable to the stabilizable plant
with no coprime factorization (of course, any plant which
admits coprime factorization can also applied to).

The parameter matrixQ is of size (m + n) × (m + n).
That is, in order to archive the parametrization, we need(m+
n)2 parameters. On the other hand, the Youla-parametrization
needs onlymn parameters.
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IV. M AIN RESULT

The following is the parametrization of stabilizing con-
trollers presented as a Youla-parametrization.

Theorem 2:(cf. Theorems5.2.1 and 8.3.12 of [3]) Sup-
pose that the plantP ∈ Pn×m is stabilizable. Suppose fur-
ther thatP admits right-/left-coprime factorizations overA
of P . Let (N, D) and (Ñ , D̃) be right-/left-coprime factor-
izations, respectively, overA of P and(Y0, X0) and(Ỹ0, X̃0)
be right-/left-coprime factorizations, respectively, overA of
C0, a stabilizing controller ofP , such that

Ỹ0N + X̃0D = Im, ÑY0 + D̃X0 = In.

Then all matricesX , Y , X̃, Ỹ overA satisfying

Ỹ N + X̃D = Im, ÑY + D̃X = In

are expressed asX = X0 − NS, Y = Y0 + DS, X̃ =
X̃0 − RÑ and Ỹ = Ỹ0 + RD̃ for R andS in Am×n.

Further the set of all stabilizing controllers, denoted by
S(P ), is given as

S(P ) = {(X̃0 − RÑ)−1(Ỹ0 + RD̃) |
R ∈ Am×n, X̃0 − RÑ is nonsingular}

= {(Y0 + DS)(X0 − NS)−1 |
S ∈ Am×n, X0 − NS is nonsingular}.

The “integral domain version” of Theorem 2 was already
shown in Section 8 of [3] without the proof. Nevertheless,
considering general commutative rings as the set of stable
causal transfer functions, we need to give the proof because
the proofs have some differences.

To make this paper as self-contained as we can, we inlucde
some lemmas which has even appeared in some literatures
already.

Lemma 1: (cf. 8.3.12 of [3]) Suppose thatP ∈ Fn×m

admits a right- (left-) coprime factorization andC ∈ Fm×n

is any stabilizing controller ofP . Then the stabilizing con-
troller C admits a left- (right-) coprime factorization.

Proof: Suppose thatP admits a right-coprime factoriza-
tion. Let (N, D) be a right-coprime factorization overA of
P . Then existỸ andX̃ overA such thatỸ N + X̃D = Im.

Let C be a stabilizing controller ofP . ThenH(P, C) is
as follows:

H(P, C)

= H(ND−1, C)

=




(In + ND−1C)−1

−ND−1(Im + CND−1)−1

C(In + ND−1C)−1

(Im + CND−1)−1




=

[
In − N(D + CN)−1C −N(D + CN)−1

D(D + CN)−1C D(D + CN)−1

]
.(6)

The matrix above is overA becauseC is a stabilizing
controller. Now letS andT be

S = (D + CN)−1, T = (D + CN)−1C,

respectively. Then,S holds

S = (D + CN)−1

= Ỹ N(D + CN)−1 + X̃D(D + CN)−1.

In the term Ỹ N(D + CN)−1, Ỹ is over A, and N(D +
CN)−1 is the negative of the (1,2)-block of (6). Further, in
the termX̃D(D+CN)−1, X̃ is overA, andD(D+CN)−1

is the (2,2)-block of (6). HenceS is A.
Analogously we show thatT is of A. We now have

T = (D + CN)−1C

= Ỹ N(D + CN)−1C + X̃D(D + CN)−1C.

In the termỸ N(D + CN)−1C, Ỹ is overA, andN(D +
CN)−1C is a part of the (1,1)-block of (6). Further, in the
termX̃D(D+CN)−1C, X̃ is overA, andD(D+CN)−1C
is the (2,1)-block of (6). HenceT is alsoA.

In the following, we show that(T, S) is a left-coprime
factorization overA of C. It is obvious C = ((D +
CN)−1)−1(D + CN)−1C = S−1T . Now considerSD +
TN , which is

SD + TN = (D + CN)−1D + (D + CN)−1CN

= (D + CN)−1(D + CN) = Im.

Hence(T, S) is a left-coprime factorization overA of C.
The discussion of the case whereP admits a left-coprime

factorization overA can be achieved entirely analogously.
Theorem 3:(cf. Theorem4.1.60 of [3]) Suppose thatP ∈

Fn×m and let (N, D) and (Ñ , D̃) be a right- and a left-
coprime factorizations, respectively, overA. Suppose that
matricesỸ andX̃ overA satisfy Ỹ N + X̃N = Im.

Then there exist matricesY andX overA such that
[

X̃ Ỹ
−Ñ D̃

] [
D −Y
N X

]
= Im+n. (7)

Proof: BecauseÑ andD̃ are left-coprime factorization
over A of P , there exist matricesY1 and X1 over A such
that ÑY1 + D̃X1 = In. Define

E =

[
X̃ Ỹ
−Ñ D̃

]
.

Then

E

[
D −Y1

N X1

]
=

[
Im ∆
O In

]
, (8)

where∆ = −X̃Y1 + Ỹ X1 ∈ Am×n. Since the right hand
side of (8) is unimodular, so isE, whose inverse is

E−1 =

[
D −Y1

N X1

] [
Im ∆
O In

]
−1

=

[
D −Y1

N X1

] [
Im −∆
O In

]

=

[
D −(Y1 + D∆)
N X1 − N∆

]
.

Then (7) is satisfied withY = Y1+D∆ andX = X1−N∆.

The following corollary is the parallel result of Theorem 3.
Corollary 1: Suppose thatP ∈ Fn×m and let (N, D)

and (Ñ , D̃) be a right- and a left-coprime factorizations,
respectively, overA. Suppose that matricesY andX overA
satisfy ÑY + D̃X = In.

Then there exist matrices̃X and Ỹ overA such that (7)
holds.

Theorem 4:(cf. Corollary 4.1.67 of [3]) Suppose that
P ∈ Fn×m and (N, D) and (Ñ , D̃) be a right- and a
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left-coprime factorizations, respectively, overA of P . Then
for every matricesỸ , X̃, Y , and X over A such that
Ỹ N + X̃D = Im, ÑY + D̃X = In, the matrices

U1 =

[
X̃ Ỹ
−Ñ D̃

]
, U2 =

[
D −Y
N X

]
(9)

are unimodular. MoreoverU−1
1 is a complementation of

[ Dt N t ]t, in thatU−1
1 is of the form

U−1
1 =




D
G

N


 (10)

for some matrixG overA. Analogously,U−1
2 is a comple-

mentation of[ − Ñ D̃ ], in thatU−1
2 is of the form

U−1
2 =

[
F

−Ñ D̃

]
(11)

for some matrixF overA.
Proof: Using the right-coprimeness of(N, D) over

overA, consider matrices̃Y andX̃ such thatỸ N + X̃D =
Im. Then by Theorem3, there exist matricesX andY over
A such that[

X̃ Ỹ
−Ñ D̃

] [
D −Y
N X

]
= Im+n. (12)

Let U1 andU2 as in (9). Then by (12), they are unimodular.
Applying G = [−Y t Xt ]

t, we have (10). Analogously,
applyingF = [ Ñ Ỹ ] we have (11).

Lemma 2: (cf. Lemma 3.1 of [4]) Suppose thatP ∈
Fn×m and C ∈ Fm×n and let (N, D) be a right-coprime
factorization overA of P and (Ỹ , X̃) a left-coprime fac-
torization overA of C. Under these conditions,C is a
stabilizing controller ofP if and on ly if

∆1 = Ỹ N + X̃D

is a unimodular ofA.
Proof: “If”: Suppose that∆1 is a unimodular. Then∆−1

1

is overA. First, sinceIm +CP = X̃−1∆1D
−1, we see that

det(Im+CP ) = det(In+PC) is a nonzerodivisor. Next, we
showH(P, C) is overA. By direct substitution inH(P, C),
we have

H(P, C)

=

[
In − P (Im + CP )−1C −P (Im + CP )−1

(Im + CP )−1C (Im + CP )−1

]

=

[
In − PD∆−1

1 X̃C −PD∆−1
1 X̃

D∆−1
1 X̃C D∆−1

1 X̃

]

=

[
In − N∆−1

1 Ỹ −N∆−1
1 X̃

D∆−1
1 Ỹ D∆−1

1 X̃

]
. (13)

Because∆−1
1 is unimodular, thisH(P, C) is overA.

“Only If”: Suppose thatC is a stabilizing controller ofP .
Thendet(Im + CP ) 6= 0 andH(P, C) is overA.

BecauseH(P, C) is overA. the following matrix, which
is modified from (13), is also overA.

[
N∆−1

1 Ỹ N∆−1
1 X̃

D∆−1
1 Ỹ D∆−1

1 X̃

]
. (14)

Recall that(N, D) is a right-coprime factorization overA
of P and (Ỹ , X̃) a left-coprime factorization overA of C.
Then there exist matricesA, B, R, S overA such that

ÃN + B̃D = Im, Ỹ R + X̃S = In.

By using these relation and (14), we have

∆−1
1 = [ Ã B̃ ]

[
N∆−1

1 Ỹ N∆−1
1 X̃

D∆−1
1 Ỹ D∆−1

1 X̃

] [
R
S

]
. (15)

All matrices of the right hand side of (15) is overA. Hence
∆−1

1 is also overA and so∆1 is unimodular.
Theorem 5:(cf. Corollary 5.1.30 of [3]) Suppose thatP ∈

Fn×m and let (N, D) and (Ñ , D̃) be any right- and left-
coprime factorization, respectively, overA. Suppose also that
C admits right- and left-coprime factorizations overA. Then
the following are equivalent:
(i) C stabilizesP .
(ii) C has a left-coprime factorization(Ỹ , X̃) overA with

Ỹ N + X̃D = Im.
(iii) C has a right-coprime factorization(Y, X) overA with

ÑY + ÑX = In.

Proof: (i)→(ii): Suppose thatC stabilizesP . Suppose
that (Ỹ1, X̃1) is a left-coprime factorization overA of C,
which may be different from(Ỹ , X̃). Then by Lemma 2,

∆1 = Ỹ1N + X̃1D

is a unimodular ofA. By letting Ỹ = ∆−1
1 Ỹ1 and X̃ =

∆−1
1 X̃1, we have (ii).

(ii)→(i): Suppose thatC has a left-coprime factorization
(Ỹ , X̃) over A with Ỹ N + X̃D = Im. From this identity,
we haveCP + Im = X̃−1D−1, which is nonsingular. Now
H(P, C) is

H(P, C)

=

[
I − P (Im + CP )−1C −P (Im + CP )−1

(Im + CP )−1C (Im + CP )−1

]

=

[
I − PDX̃C −PDX̃

DX̃C DX̃

]

=

[
In − NỸ −NX̃

DỸ DX̃

]
, (16)

which is overA. ThusC stabiliziesP .
The equivalence of (i) and (iii) is proved analogously.
Before presenting the generalization of Lemma 4.1.32

of [3], we should give a lemma which is a generalization
of Corollary 4.1.26 of [3].

Lemma 3: (cf. Corollary 4.1.26 of [3]) SupposeP ∈
Fn×m and thatP = ND−1 = D̃−1Ñ with the matrices
N, D, Ñ , D̃ over A. Let F1 = [−Ñ D̃ ] and F2 =
[ Dt N t ]

t. Then the following are equivalent:

(i) N and D are right-coprime overA, and Ñ and D̃
left-coprime overA.

(ii) There exist unimodular matricesU1 and U2 of the
forms U1 = [ Gt

1 F t
1 ]

t andU2 = [ F2 G2 ] for some
matricesG1 andG2 overA.
Proof: “(i)→(ii)”. By Theorem 3, there exist matrices

Ỹ , X̃, Y , andX overA such that (7) holds. ThenU1 is the
first matrix of the left hand side of (7). AlsoU2 is the second
matrix of the left hand side of (7). That is,G1 = [ X̃ Ỹ ]
andG2 = [−Y t Xt ]t.

“(ii) →(i)”. Let V beU−1
1 and decompose it into 4 blocks as

follows:

U−1
1 = V =

[ m n

m V11 V12

n V21 V22

]
.
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BecauseU1V = Im+n, we haveÑ(−V12) + D̃V22 = In.
HenceÑ andD̃ are left-coprime factorization overA.

The right-coprimeness can be proved analogously. LetW
be U−1

2 and decompose it into 4 blocks as follows:

U−1
2 = W =

[ m n

m W11 W12

n W21 W22

]
.

BecauseWU2 = Im+n, we haveW12N + W11D = Im.
HenceN andD are right-coprime factorization overA.

Lemma 4: (cf. Lemma 4.1.32 of [3]) SupposeP ∈
Fn×m. Let (N, D) and (Ñ , D̃) be right-/left-coprime fac-
torizations, respectively, overA of P . Let U1 andU2 be the
unimodular matrices of the form in (ii) of Lemma 3. Then
the set of all matrices̃Y ∈ Am×n and X̃ ∈ Am×m with
Ỹ N + X̃D = Im is given by

[ X̃ Ỹ ] = [ Im R ] U−1
2 , (17)

where R ∈ Am×n. Similarly the set of all matricesY ∈
Am×n andX ∈ An×n with ÑY + D̃X = In is given by

[
−Y
X

]
= U−1

1

[
S
In

]
, (18)

whereS ∈ Am×n.
The proof of Lemma 4 is analogous to that of

Lemma 4.1.32 of [3], in which Lemma 3 above is used
instead of Corollary 4.1.26 of [3].

Proof of Lemma 4: It is necessary to show that (i)
every Ỹ andX̃ of the form (17) satisfies̃Y N + ÑD = Im,
and (ii) everyỸ andX̃ satisfy Ỹ N + X̃D = Im are of the
form (17) for someR.

To prove (i), observe thatU−1
2 U2 = Im+n. Hence

Ỹ N + X̃D = [ X̃ Ỹ ]

[
D
N

]

= [ Im R ] U−1
2

[
D
N

]

= [ Im R ]

[
Im

O

]

= Im.

To prove (ii), suppose that̃Y ′ andX̃ ′ satisfiesỸ ′N+X̃ ′D =
Im. DecomposeU2 as follows:

[
D G21

N G22

]
:= U2.

DefineR = Ỹ ′G22 + X̃ ′G21. Then

[ X̃ ′ Ỹ ′ ] U2 = [ X̃ ′ Ỹ ′ ]

[
D G21

N G22

]
= [ Im R ] .

The proof concerningY andX can be given analogously.
It is necessary to show that (i) everyY andX of the form
(18) satisfiesÑY +D̃X = In, and (ii) everyY andX satisfy
ÑY + D̃X = In are of the form (18) for someS.

To prove (i), observe thatU−1
1 U1 = Im+n. Hence

ÑY + D̃X = [−Ñ D̃ ]

[
−Y
X

]

= [−Ñ D̃ ] U−1
1

[
S
In

]

= [ O In ]

[
S
In

]

= In.

To prove (ii), suppose thatY ′ andX ′ satisfiesÑY ′+D̃X ′ =
In. DecomposeU1 as follows:

[
G11 G12

−Ñ D̃

]
:= U1.

Then, defineS = −G11Y
′ + G12X

′. Now we have

U1

[
−Y ′

X ′

]

=

[
G11 G12

−Ñ D̃

] [
−Y ′

X ′

]

=

[
S
In

]
.

Now we can prove Theorem 2.

Proof of Theorem 2:
We prove the first representation only. The second one is

proved analogously.
⊂. By Lamma 1, any stabilizing controller has both right-
/right-coprime factorizations overA.

It is shown in Theorem5 thatC is stabilized byP if and
only if C has a left-coprime factorization(Ỹ , X̃) overA such
that Ỹ N + X̃D = Im. Now consider another left-coprime
factorization(Ỹ ′, X̃ ′) such that

Ỹ ′N + X̃ ′N = Im (19)

in the unknown matrices̃Y ′ and X̃ ′. Then, again by Theo-
rem 5,C stabilizesP if and only if C is of the formX̃ ′−1Ỹ ′

for X̃ ′ ∈ Am×m and Ỹ ′ ∈ Am×n such that (19) holds and
X̃ ′ is nonsingular. From Theorem 4, the matrix

U1 =

[
X̃ Ỹ
−Ñ D̃

]
(20)

is unimodular, and moreoverU−1
1 is of the form

U−1
1 =




D

G
N



 ,

whereG is a matrix over overA. By Lemma 4, we have all
solutions for(Ỹ ′, X̃ ′) of (19) are of the form

[ X̃ ′ Ỹ ′ ] = [ I R ] U1 = [ X̃ − RÑ Ỹ + RD̃ ]

for someR ∈ Am×n.

V. EXAMPLE

Let us consider Anantharam’s example. Anantharam [7]
considered the caseA = Z[

√
−5] = {u+ v

√
−5 |u, v ∈ Z},

whereZ denotes the set of integers (This ring [14, pp.134–
135] is isomorphic toZ[x]/(x2+5) and is an integral domain
but not a unique factorization domain. In fact,6 ∈ Z[

√
−5]

has two factorizations,2 · 3 and (1 +
√
−5) · (1 −

√
−5)).

He showed that a single-input single-output plantp =
(1 +

√
−5)/2 does not admit a coprime factorization but

is stabilizable andc = (1 −
√
−5)/(−2) is a stabilizing

controller.
Let us considerp = 5/2, then we have coprime factoriza-

tion
y · 5 + x · 2 = 1,

where y = 1 and x = −2. Thus the set of all stbilizing
controllers is given as

{ (y + 2r)/(x − 5r) | r ∈ A }.
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VI. CONCLUSIONS

In this paper, we consider the factorization approach to
control systems with plants admitting coprime factoriza-
tions and with the set of stable causal transfer functions
being a general commutative ring. We have shown that the
parametrization of stabilizing controllers is still achieved by
the Youla-parametrization.
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