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Pricing Dual Spread Options by the Lie-Trotter
Operator Splitting Method
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Abstract — In this paper, based upon the Lie-
Trotter operator splitting method proposed by
Lo (2014), we present a simple closed-form ap-
proximation for pricing the (three-asset) dual
spread options. Illustrative numerical exam-
ples show that the proposed approximation is
not only extremely fast and robust, but also
it is very accurate for typical volatilities and
maturities up to two years. Moreover, for the
case of a vanishing strike the proposed approx-
imation becomes exact.
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I. INTRODUCTION

A spread option is an option whose payoff is
linked to the price difference of two underlying as-
sets and forms the simplest type of multi-asset op-
tions. Spread options are very popular in interest
rate markets, currency and foreign exchange mar-
kets, commodity markets, and energy markets nowa-
days.[1] Unlike pricing single-asset options, pricing
spread options is a very challenging task. The major
difficulty stems from the lack of knowledge about the
distribution of the spread of two correlated lognormal
random variables. The simplest approach is to eval-
uate the expectation of the final payoff over the joint
probability distribution of the two correlated lognor-
mal underlyings by means of numerical integration.
However, practitioners often prefer to use analyti-
cal approximations rather than numerical methods
because of their computational ease. ~Among vari-
ous analytical approximations, Kirk’s approximation
seems to be the most popular and is the current mar-
ket standard, especially in the energy markets.[2] It
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is well known that Kirk’s approximation extends from
Margrabe’s exchange option formula with no rigorous
derivation.[3] Recently, Lo (2013) applied the idea of
WKB method to provide a derivation of Kirk’s ap-
proximation and discuss its validity.[4] Nevertheless,
it is not straightforward to apply Lo’s approach either
to provide a generalization of Kirk’s approximation
for the multi-asset case or to improve Kirk’s approx-
imation while retaining its favourable features.

In order to overcome these shortcomings, Lo
(2014) subsequently presented a simple unified ap-
proach,[5,6] namely the Lie-Trotter operator splitting
method,[7-12] not only to rigorously derive Kirk’s ap-
proximation but also to obtain a generalization for the
case of multi-asset spread option in a straightforward
manner. The derived price formula for the multi-
asset spread option bears a striking resemblance to
Kirk’s approximation in the two-asset case. Illustra-
tive numerical examples have demonstrated that the
multi-asset generalization retains all the favourable
features of Kirk’s approximation. More importantly,
the proposed approach is able to provide a new per-
spective on Kirk’s approximation and the general-
ization; that is, they are simply equivalent to the
Lie-Trotter operator splitting approximation to the
Black-Scholes equation.

It is the aim of this communication to ap-
ply the Lie-Trotter operator splitting method pro-
posed by Lo (2014) to derive a closed-form ap-
proximate price formula for the (three-asset) dual
spread options,[5,6] whose final payoff has the form
max (S1 — S3 — K, S2 — S3 — K,0) with S; being the
price of the asset ¢ and K being the strike price. The
final payoff is a generalisation of the case of a stan-
dard three-asset spread option and closely resembles
the payoff of a European “best of two” option.[13]
The derived approximate price formula bears a great
resemblance to that of a European “best of two” op-
tion as well. Illustrative numerical examples are also
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shown to demonstrate both the accuracy and effi-
ciency of the proposed approximation. Furthermore,
it should be noted that for K = 0 the proposed ap-
proximation becomes exact.

II. PRICING DUAL SPREAD OPTIONS BY
LIE-TROTTER SPLITTING APPROXIMATION

To price a European three-asset dual call spread
option, we need to solve the three-dimensional Black-
Scholes equation
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where F; is the future price of the underlying asset ¢
with the volatility o;, p;; is the correlation between
the assets ¢ and j, K is the strike price, and 7 is the
time-to-maturity.

Main result:

The price of the dual call spread option can be
approximated by
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and N (+) is the cumulative bivariate normal distrib-
ution function.

Derivation:

In terms of the new variables
F Fy
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we can express Eq.(1) as
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The final payoff condition now becomes
P (R1,R3,R3,0) = Rgmax (R —1,R2 — 1,0) . (8)
It is obvious that Eq.(6) has the formal solution
P (R, Ry, R3, 1)
= e ""Texp {’T (ﬁo + I:l + ﬁg) }
xRgmax (Ry —1,Re — 1,0) . (9)

Then, applying the Lie-Trotter operator splitting
method to Eq.(9) yields an approximate solution,[7,8]
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namely (see the Appendix)

P (Ry, Ry, Rs,7)
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Here C (Rp, Ry, 7) satisfies the partial differential
equation

0C (Ry, Ra, )
or
02 . 0?
— { R% 8R2 + P120102R1R2m+
) 07
R28R2 T}C(Rl,RQ,T) (11)

with the initial condition: C (Ry, Ry, 7=0) =
max (Ry — 1, Re — 1,0).  Since &1, 62 and py, are
independent of R; and Ry, we have a problem of pric-
ing a European “best-of-two” option.[13] The desired
solution of Eq.(11) is simply given by
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After carrying out the integrals in Eq.(12), the solu-
tion can be determined in closed form as follows:
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As a  result, the approximate  solution
PLT (Rl, RQ, Rg, T) = RgC (Rl, RQ, T) yields the
approximate price formula given in Eq.(3).
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It should be noted that the Lie-Trotter operator
splitting approximation is particularly applicable for
those dual spread options with short maturities, i.e.
&fr < 1 and 5%7 < 1. Furthermore, for K = 0,
the operators ﬁo, ﬁl and ﬁg commute so that the
Lie-Trotter splitting approximation becomes exact.

III. ILLUSTRATIVE NUMERICAL EXAMPLES

In this section illustrative numerical examples are
presented to demonstrate the accuracy of the pro-
posed approximation for the dual spread options. We
examine a simple dual spread option with the final
payoff max (S; —S3 — K,Sy — S5 — K,0). Table I
tabulates the approximate option prices for differ-
ent values of the strike price K and time-to-maturity
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T. Other input model parameters are set as follows:
r = 0.05, 01 =02 =03 = 0.3, p;g = 0.2, pys =04,
p1z = 0.8, §1 = 150, S = 60 and S3 = 50. Monte
Carlo estimates and the corresponding standard de-
viations are also presented for comparison. It is ob-
served that the computed errors of the approximate
option prices are capped at 0.2% (in magnitude). In
fact, most of them are less than 0.1%. Then, in Table
IT the effect of increasing the three volatilities (from
0.3 to 0.6) upon the approximate estimation of the
option prices is investigated. Obviously only a small
increase occurs in the computed errors, and these er-
rors are still less than 0.7% (in magnitude).

Table I: Prices of a European dual call spread
option. Other input parameters are: 7 = 0.05, o7 =
09 = 03 = 03, P12 = 02, P23 = 04, P13 = 08, Sl =
150, Sy = 60 and S3 = 50. Here “LT” refers to the
proposed approximation based upon the Lie-Trotter
operator splitting method while “MC” denotes the
Monte Carlo estimates with 900, 000, 000 replications.
The relative errors of the “LT” option prices with
respect to the “MC” estimates are also presented.

(KT 025 [ 05 | 1 [ 2 ]

30 70.3727 | 70.7428 | 71.5561 | 73.7670 LT

0.0% 0.0% 0.0% 0.0% error

70.3732 | 70.7422 | T1.5578 | 73.7724 || MC

0.0104 0.0168 0.0227 0.0333 oMC

35 65.4348 | 65.8662 | 66.8025 | 69.2787 LT

0.0% 0.0% 0.0% 0.0% error

65.4351 | 65.8669 | 66.8025 | 69.2917 MC

0.0119 0.0168 0.0215 0.0334 oMC

40 60.4969 | 60.9899 | 62.0562 | 64.8309 LT

0.0% 0.0% 0.0% —0.1% error

60.4971 | 60.9899 | 62.0581 | 64.8664 | MC

0.0107 0.0160 0.0220 0.0324 oMC

45 55.5590 | 56.1146 | 57.3291 | 60.4500 LT

0.0% 0.0% 0.0% —0.1% || error

55.5685 | 56.1165 | 57.3421 | 60.5071 MC

0.0110 0.0147 0.0228 0.0301 oMC

50 50.6212 | 51.2440 | 52.6426 | 56.1672 LT

0.0% 0.0% —0.1% —0.2% error

50.6213 | 51.2469 | 52.6677 | 56.2557 || MC

0.0108 0.0140 0.0200 0.0303 oMC

Finally, we study a case in which all the three
volatilities are different, namely o; = 0.3, 02 = 0.4
and o3 = 0.5, while the other parameters remain
the same. According to Table III, the computed er-
rors are generally reduced a little bit in this case and
they do not exceed 0.4% (in magnitude). Moreover,

since the approximate option price formula is given
in closed form, its evaluation is instantaneous. As a
result, it can be concluded that the proposed closed-
form approximation for the dual spread options are
found to be very accurate and efficient.

IV. CONCLUSION

In this paper, based upon the Lie-Trotter oper-
ator splitting method proposed by Lo (2014),[5,6]
we have presented a simple closed-form approxima-
tion for pricing the (three-asset) dual spread options.
The derived price formula bears a close resemblance
to that of a European “best of two” option. As
demonstrated by illustrative numerical examples for
the dual spread options, the proposed approximation
is not only extremely fast and robust, but also it is
very accurate for typical volatilities and maturities of
up to two years. Moreover, for the case of a vanish-
ing strike, i.e. K = 0, the proposed approximation
becomes exact.

Table II: Prices of a European dual call spread
option. Other input parameters are: © = 0.05, o7 =
o2 =03 =0.6, p1o =0.2, py3 =04, p;3 =038, 5 =
150, So = 60 and S3 = 50. Here “LT” refers to the
proposed approximation based upon the Lie-Trotter
operator splitting method while “MC” denotes the
Monte Carlo estimates with 900, 000, 000 replications.
The relative errors of the “LT” option prices with
respect to the “MC” estimates are also presented.

[K\T [ 025 | 05 | 1 | 2 |
30 70.4659 | 71.6660 | 75.5696 | 84.3876 LT
0.0% 0.0% —0.1% —0.3% error

70.4663 | 71.6745 | 75.6231 | 84.6051 MC

0.0223 0.0306 0.0473 0.0749 oMC

35 65.5319 | 66.8473 | 71.0669 | 80.4493 LT

0.0% 0.0% —0.2% —0.4% error

65.5335 | 66.8692 | 71.1709 | 80.7580 || MC

0.0215 0.0341 0.0476 0.0731 oMC

40 60.6083 | 62.0915 | 66.7001 | 76.6848 LT

0.0% —0.1% | —02% | —0.5% || error

60.6151 | 62.1381 | 66.8578 | 77.0725 MC

0.0216 0.0331 0.0466 0.0800 oMC

45 55.7114 | 57.4357 | 62.5004 | 73.1061 LT

0.0% —-0.1% | —0.3% —0.6% || error

55.7275 | 57.5148 | 62.7155 | 73.5664 || MC

0.0221 0.0320 0.0391 0.0658 oMC

50 50.8689 | 52.9202 | 58.4926 | 69.7183 LT

—0.1% —0.2% —0.5% —0.7% || error

50.8995 | 53.0358 | 58.7584 | 70.2351 MC

0.0218 0.0292 0.0528 0.0727 oMC
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Table III: Prices of a European dual call spread
option. Other input parameters are: 7 = 0.05, o1 =
0.3, 02 =04, 03 = 0.5, pjg = 0.2, py3 = 0.4, p13 =
0.8, 51 = 150, S; = 60 and S3 = 50. Here “LT”
refers to the proposed approximation based upon the
Lie-Trotter operator splitting method while “MC” de-
notes the Monte Carlo estimates with 900,000,000
replications. The relative errors of the “LT” option
prices with respect to the “MC” estimates are also
presented.

(KT 025 [ 05 | 1 [ 2 ]
30 70.3728 | 70.7578 | 71.7849 | 74.8637 LT
0.0% 0.0% 0.0% —-0.2% error

70.3726 | 70.7577 | 71.7923 | 74.9890 || MC

0.0093 0.0135 0.0210 0.0254 oMC

35 65.4351 | 65.8813 | 67.0308 | 70.3651 LT

0.0% 0.0% 0.0% —0.2% error

65.4351 | 65.8810 | 67.0426 | 70.5045 MC

0.0105 0.0143 0.0213 0.0298 oMC

40 60.4970 | 61.0048 | 62.2798 | 65.8854 LT

0.0% 0.0% 0.0% —0.2% error

60.4972 | 61.0050 | 62.2946 | 66.0457 | MC

0.0092 0.0138 0.0196 0.0288 oMC

45 55.5591 | 56.1286 | 57.5358 | 61.4321 LT

0.0% 0.0% 0.0% —0.3% || error

55.5597 | 56.1302 | 57.5556 | 61.6195 | MC

0.0093 0.0146 0.0191 0.0293 oMC

50 50.6212 | 51.2535 | 52.8076 | 57.0343 LT

0.0% 0.0% —0.1% —0.4% error

50.6216 | 51.2539 | 52.8346 | 57.2514 MC

0.0100 0.0126 0.0216 0.0286 oMC

APPENDIX:

Suppose that one needs to exponentiate an oper-
ator C' which can be split into two different parts,
namely A and B. For simplicity, let us assume that

C=A+ B, where the exponential operator exp (C‘)

is difficult to evaluate but exp (A) and exp (B) are
either solvable or easy to deal with. Under such cir-
cumstances the exponential operator exp (Eé>7 with

€ being a small parameter, can be approximated by
the Lie-Trotter operator splitting formula:[7-12]

exp <5C’) = exp (5[1) exp (53) +0 (52) . (A1)

The Lie-Trotter splitting approximation is particu-
larly useful for studying the short-time behaviour of
the solutions of evolutionary partial differential equa-
tions of parabolic type because for this class of prob-
lems it is sensible to split the spatial differential op-
erator into several parts each of which corresponds to

a different physical contribution (e.g., reaction and
diffusion).
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