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Abstract

The multi-level distance labeling for a network G is a
function f : V (G)→ {0, 1, 2, · · · } so that

|f(u)− f(v)| ≥ diam(G) + 1− d(u, v)

for any u, v ∈ V (G), where diam(G) is the diameter
of G and d(u, v) is the distance between u and v. The
span of f is defined as max{f(u)− f(v) | u, v ∈ V (G)}.
The multi-level distance number of G is the minimum
span of all multi-level distance labelings for G. In the
present paper, a class of symmetric lobster-like trees
about the weight center is studied, and its multi-level
distance number is obtained.

Keywords: multi-level distance number; multi-level dis-
tance labeling; symmetric lobster-like tree about the
weight center; the minimum span; network

1 Introduction

In recent years, many parameters and classes of graphs
are consideried. For example, in [9], different proper-
ties of the intrinsic order graph were obtained, namely
those dealing with its edges, chains, shadows, neighbors
and degrees of its vertices, and some relevant subgraphs,
as well as the natural isomorphisms between them. In
[17], the n-dimensional cube-connected complete graph
is studied. In [22], the linear (n−1)-arboricity ofKn(m) is
obtained. In [23, 24], the hamiltonicity, path t-coloring,
and the shortest paths of Sierpiński-like graphs are re-
searched. In [25], the vertex arboricity of integer distance
graph G(Dm,k) is obtained. In [26], it is obtained that
la4(Kn,n) = d5n/8e for n ≡ 0( mod 5).

Multi-level distance labeling (or radio labeling) is moti-
vated by the channel assignment problem introduced by
Hale[1]. Given a set of stations (or transmitters) in a
communication network, a valid channel assignment is
a function that assigns to each station with a channel
(nonnegative integer) such that interference is avoided.
The level of interference is related to the locations of
the stations–the closer the two stations, the stronger the
interference that might occur. In order to avoid inter-
ference, the separation between the channels assigned a
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pair of near-by stations must be large enough, and the
amount of the required separation depends on the dis-
tance between the two stations. The task is to find a valid
channel assignment with the minimum span of channels
used.

A graph model for this problem is to represent each sta-
tion by a vertex, and connect any pair of close stations
by an edge. A multi-level distance labeling (radio label-
ing) of a connected graph G is a function f : V (G) →
{0, 1, 2, · · · }, such that for any u, v ∈ V (G),

|f(u)− f(v)| ≥ diam(G) + 1− d(u, v),

where diam(G) is the diameter (the maximum distance
over all pairs of vertices) of G. The span of f is defined
as max{f(u) − f(v) | u, v ∈ V (G)}. The multi-level
distance number for a graph G, denoted by rn(G), is
the minimum span of all multi-level distance labeling for
G. Multi-level distance labeling is a generalization of the
distance-two labeling which has been studied extensively
([2]-[12]), and multi-level distance labeling can be better
to reflect the nature of radio channels assignment. In [14,
15, 18, 19], it was studied that the multi-level distance
labeling of paths and cycles, square of paths and square
of cycles, and in [13], it was determined the radio number
of the complete m-ary tree. In [16], it was studied the
multi-level distance labeling of trees, and got a lower
bound for trees’ radio number.

Let T be a tree rooted at a vertex r. For any two vertices
u and v, if u is on the (r, v)-path, then u is called an
ancestor of v, and v is called a descendent of u. Define
the level function on V (T ) by lr(u) = d(r, u) for any
u ∈ V (T ). For any u, v ∈ V (T ), define

ϕ(u, v) = max{lr(t) : t is a common
ancestor of u and v}.

For each vertex w in a tree T , the weight of T rooted at
w is defined by

ωT (w) =
∑

u∈V (T )

lw(u).

The weight of T is the smallest weight among all possible
roots of T

ω(T ) = min
w∈V (T )

{ωT (w)}.

A vertex w′ is called a weight center of T if ωT (w′) =
ω(T ). It can be abbreviated as l(u) = lw′(u) if there is
no confusion. It is obvious that the weight center cut the
tree into a number of branches.
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Lemma 1.1. [16] Suppose that w′ is the weight center
of T . For any u, v ∈ V (T ), the following two conclusions
hold:

(1) d(u, v) = l(u) + l(v)− 2ϕ(u, v), and

(2) ϕ(u, v) = 0 if and only if u and v belong to different
branches (unless one of them is w′).

Lemma 1.2. [16] Let T be an n-vertex tree with diam-
eter d. Then

rn(T ) ≥ (n− 1)(d+ 1) + 1− 2ω(T ).

An arrangement for V (G) can be derived from the
radio labeling f , denoted by V (G) = U(f) =
{u0, u1, · · · , u|V |−1}, which satisfies

0 = f(u0) < f(u1) < f(u2) < · · · < f(u|V |−1). (1)

If f is a radio labelling, then the span of f is f(u|V |−1).

If deleting all suspension vertices and associated edges
of T we get a road or an isolated vertex, then we call
T a "caterpillar". If deleting all suspension vertices and
associated edges of T we get a caterpillar, then we call
T a "lobster tree". In 2009, Guo and Zuo gave the exact
value of multi-level distance number for a special class of
caterpillars in [20]. In 2011, Hou and Zuo [21] obtained
the exact value of the multi-level distance number of a
class of symmetric lobster trees about weight center. In
[13], it was given the following concept.

Definition 1.3. Let f be a multi-level distance labeling
for G, and the vertices of G about f have the sequence
as (1). For every 0 ≤ i ≤ |V | − 2, let

Jf (ui, ui+1) = f(ui+1)− f(ui)
− [diam(G) + 1− d(ui, ui+1)] .

We call Jf (ui, ui+1) a k-jump from ui to ui+1 if
Jf (ui, ui+1) = k ≥ 0 and say that f has a k-jump from
ui to ui+1. Define the total number of jumps as

J(f) =

|V |−2∑
i=0

Jf (ui, ui+1).

If deleting all suspension vertices and edges associated of
T we can get a lobster tree, then we call it a "lobster-like
tree". In the present paper, we mainly study the multi-
level distance labeling of lobster-like trees, and obtain the
multi-level distance number for a special class of lobster-
like trees.

2 A lower bound of the radio number of
a class of symmetric lobster-like trees
about weight center

In the following, we denote a lobster-like tree’s all sus-
pension vertices as the C layer points, the correspond-
ing lobster tree’s all suspension vertices as the B layer
points, and all suspension vertices of its corresponding
caterpillar as A layer points.

Let T = (t4, t5, t6, · · · , ti, · · · , tk−4, tk−3), and

R = (r2,0, r3,0, r4,1, r4,2, · · · , r4,2t4−4, · · · ,
ri,j , · · · , rk−3,1, · · · , rk−3,2tk−3−4, rk−2,0, rk−1,0),

where k ≥ 7, ti ≥ 3, r2,0, r3,0, ri,j , rk−2,0, rk−1,0 ≥ 1, 1 ≤
j ≤ 2ti − 4, and 4 ≤ i ≤ k − 3.

Using symbol Pk,T,R to represent the lobster-like tree
that the diameter is k − 1, the degree of the ith vertex
vi,0 on the longest path Pk is ti, and the others’ degree
are

r2,0 + 1, r3,0 + 1, · · · , ri,j + 1, · · · , rk−2,0 + 1, rk−1,0 + 1,

respectively, except the suspension vertices, that is, the
degree of v3,0, vk−2,0 are r3,0 + 1, rk−2,0 + 1, respectively,
the degree of its descendant vertices that belong to B
layers are r2,0 + 1, rk−1,0 + 1, respectively, and among A
layer points, the degree of each vi,j is ri,j + 1, and the
degree of its descendant vertices that belong to B layers
is ri,j+ti−2 +1 for 1 ≤ j ≤ ti−2 and 4 ≤ i ≤ k−3. Thus
the number of vertices of Pk,T,R is

|V (Pk,T,R)| =
k−3∑
i=4

[
ti−2∑
j=1

ri,j(ri,j+ti−2 + 1) + (ti − 2)]

+(r2,0 + 1)r3,0 + (rk−2,0 + 1)rk−1,0 + k − 4.

(2)

If r2,0 = r3,0 = ri,j = rk−2,0 = rk−1,0 = r(≥ 1), we will
denote the lobster-like tree that the degree of all vertices
are r + 1 except for the k − 6 vertices in the middle of
Pk and the suspension vertices as Pk,(t4,··· ,ti,··· ,tk−3),r. If
r = 1, then it is denoted by Pk,(t4,··· ,ti,··· ,tk−3), and we
have

A = {(v3,0, vi,j , vk−2,0) | 1 ≤ j ≤ ti − 2, 4 ≤ i ≤ k − 3} ,

B = {(v2,0, vi,j , vk−1,0) | ti−1 ≤ j ≤ 2ti−4, 4 ≤ i ≤ k−3},

and

C = {(v1,0, vi,j , vk,0) | 2ti−3 ≤ j ≤ 3ti−6, 4 ≤ i ≤ k−3}.

In this paper, we mainly study the multi-level
distance number of Pk,(t4,··· ,ti,··· ,tk−3). Note that
diam(Pk,(t4,··· ,ti,··· ,tk−3)) = k − 1.

Define the vertices of Pk,(t4,··· ,ti,··· ,tk−3) successively
v1,0, v2,0, · · · , vk,0, vi,p(1 ≤ p ≤ ti − 2, 4 ≤ i ≤ k − 3) is
the pth vertex of vi,0 that belong to A layer, vi,q(ti−1 ≤
q ≤ 2ti − 4, 4 ≤ i ≤ k − 3) is the (q − ti + 2)th vertex
of vi,0 that belong to B layer, and vi,s (2ti − 3 ≤ s ≤
3ti − 6, 4 ≤ i ≤ k− 3) is the (s− 2ti + 4)th vertex of vi,0
that belong to C layer. Please see Fig. 1.

If Pk,T,R is symmetric about the weight center, then
v k+1

2 ,0 is the weight center when k is odd, vi,0(1 ≤ i ≤
k−1
2 ) and its descendent vertices and the associated edges

are called "upper branch" of Pk,T,R, vi,0(k+3
2 ≤ i ≤ k)

and its descendent vertices and the associated edges are
called "lower branch" of Pk,T,R, and v k+1

2 ,0 and its de-
scendent vertices and the associated edges are called
"middle" of Pk,T,R. "Middle" belong to both the up-
per branch and lower branch. In this paper, we always
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assume that they belong to the upper branch. To dis-
tinguish them from the upper branch vertices and refer
to them as "upper middle" of Pk,T,R. When k is even,
both v k

2 ,0
and v k

2+1,0 are the weight centers. In this
paper, we select v k

2 ,0
for the weight center for even k,

vi,0 (1 ≤ i ≤ k
2 ) and its descendent vertices and the

associated edges are called "upper branch" of Pk,T,R,
vi,0 (k

2 + 1 ≤ i ≤ k) and its descendent vertices and
the associated edges are called "lower branch" of Pk,T,R,
v k

2 ,0
and its descendent vertices and the associated edges

are called "upper middle" of Pk,T,R, and v k
2+1,0 and its

descendent vertices and the associated edges are called
"lower middle" of Pk,T,R.
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Figure 1. A special symmetric lobster-like tree

Theorem 2.1. Let G = Pk,T,R be a symmetric lobster-
like tree about the weight center. By direct calculation,
we can obtain that

|V (G)| =



2

k−1
2∑

i=4

[
ti−2∑
j=1

ri,j(ri,j+ti−2 + 1) + (ti − 1)]

+

t k+1
2
−2∑

l=1

r k+1
2 ,l(r k+1

2 ,l+t k+1
2
−2 + 1)

+t k+1
2

+ 2r2,0[r3,0 + 1] + 1 for odd k ≥ 9,

2

k
2∑

i=4

[
ti−2∑
j=1

ri,j(ri,j+ti−2 + 1) + (ti − 1)]

+2r2,0(r3,0 + 1) + 2 for even k,

and

ω(G) =



k−1
2∑

i=4

{
ti−2∑
j=1

ri,j [(k + 7− 2i)ri,j+ti−2

+(k + 5− 2i)] + (k + 3− 2i)(ti − 1)}

+

t k+1
2
−2∑

l=1

r k+1
2 ,l(3r k+1

2 ,l+t k+1
2
−2+2)

+t k+1
2

+ [(k − 1)r3,0 + (k − 3)]r2,0
for odd k ≥ 9,

k
2∑

i=4

{
ti−2∑
j=1

ri,j [(k + 7− 2i)ri,j+ti−2

+(k + 5− 2i)] + (k + 3− 2i)(ti − 1)}
+[(k − 1)r3,0 + (k − 3)]r2,0 + 1

for even k.

Similarly, the following conclusions can be obtained.

Corollary 2.2. Let G = Pk,(t4,··· ,ti,··· ,tk−3),r. Then

|V (G)| =



[2

k−1
2∑

i=4

(ti − 2) + t k+1
2

](r2 + r + 1)

+k − 6 for odd k ≥ 9,

[2

k
2∑

i=4

(ti − 2) + 2](r2 + r + 1)

+k − 6 for even k,

and

ω(G) =



k−1
2∑

i=4

{[(k + 7− 2i)r2 + (k + 5− 2i)r](ti − 2)

+(k + 3− 2i)(ti − 1)}
+(t k+1

2
− 2)(3r2 + 2r) + t k+1

2

+(k − 1)r2 + (k − 3)r for odd k ≥ 9,
k
2∑

i=4

{[(k + 7− 2i)r2 + (k + 5− 2i)r](ti − 2)

+(k + 3− 2i)(ti − 1)}+ (k − 1)r2

+(k − 3)r + 1 for even k.

Corollary 2.3. Let G = Pk,(t4,··· ,ti,··· ,tk−3). Then

|V (G)| =


6

k−1
2∑

i=4

(ti − 2) + 3t k+1
2

+ k − 6

for odd k ≥ 9,

6

k
2∑

i=4

(ti − 2) + k for even k,

and

ω(G) =



k−1
2∑

i=4

[(3k + 15− 6i)(ti − 2)] + 6t k+1
2

+k2

4 −
49
4 for odd k ≥ 9,

k
2∑

i=4

[(3k + 15− 6i)(ti − 2)] + k2

4 for even k.

By Lemma 1.2 and equation (2), it is easy to verify that

rn(G) ≥ (3k − 12)t k+1
2

+ k2 − 7k + 1 for k = 7. (3)

By Theorem 2.1, Corollaries 2.2-2.3, and Lemma 1.2, we
have the following conclusions.
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Theorem 2.4. Let G = Pk,T,R be a symmetric lobster-
like tree about the weight center. Then

rn(G) ≥



k−1
2∑

i=4

{
ti−2∑
j=1

ri,j [(4i− 14)ri,j+ti−2 + (4i− 10)]

+(4i− 6)(ti − 1)}

+

t k+1
2
−2∑

l=1

r k+1
2 ,l[(k − 6)r k+1

2 ,l+t k+1
2
−2

+(k − 4)] + (k − 2)t k+1
2

+2r2,0(r3,0 + 3) + 1 for odd k ≥ 9,
k
2∑

i=4

{
ti−2∑
j=1

ri,j [(4i− 14)ri,j+ti−2 + (4i− 10)]

+(4i− 6)(ti − 1)}+2r2,0(r3,0 + 3)
+k − 1 for even k.

Theorem 2.5. Let G = Pk,(t4,··· ,ti,··· ,tk−3),r. Then

rn(G) ≥



k−1
2∑

i=4

{[(4i− 14)r2 + (4i− 10)r](ti − 2)

+(4i− 6)(ti − 1)}
+[(k − 6)r2 + (k − 4)r](t k+1

2
− 2)

+(k − 2)t k+1
2

+ 2r2 + 6r + 1

for odd k ≥ 9,
k
2∑

i=4

{[(4i− 14)r2 + (4i− 10)r](ti − 2)

+(4i− 6)(ti − 1)}
+2r2 + 6r + k − 1 for even k.

Theorem 2.6. Let G = Pk,(t4,··· ,ti,··· ,tk−3). Then

rn(G) ≥



6

k−1
2∑

i=4

[(2i− 5)(ti − 2)] + (3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 1 for odd k ≥ 9,

6

k
2∑

i=4

[(2i− 5)(ti − 2)]

+k2

2 − k + 1 for even k.

In order to improve the lower bound of the multi-level
distance number ofG for odd k ≥ 9, we give the following
lemma.

Lemma 2.7. Suppose that G = Pk,(t4,··· ,ti,··· ,tk−3), f is
a one-to-one non-negative integer function on V (G), and
the vertices in G about f have the sequence as (1). Then
f is a radio labeling of G if and only if for any consecutive
subset of vertices {ui, ui+1, · · · , uj}, 0 ≤ i < j ≤ |V |−1,
the following results hold:

(1) if ui, uj belong to different branches of G, then

j−1∑
t=i

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥ 2
j−1∑

t=i+1

l(ut)− k(j − i− 1),

(2) If ui, uj belong to the same branches of G, then

(i)when any one isn’t the ancestor of another one, we

have
j−1∑
t=i

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥



2
j−1∑

t=i+1

l(ut)− k(j − i− 1)

+2 min{l(ui)− 1, l(uj)− 1}
if ui ∈ A or deg(ui) = ti, uj ∈ A,

2
j−1∑

t=i+1

l(ut)− k(j − i− 1)

+2 min{l(ui)− 1, l(uj)− 2}
if ui ∈ A or deg(ui) = ti, uj ∈ B,

2
j−1∑

t=i+1

l(ut)− k(j − i− 1)

+2 min{l(ui)− 1, l(uj)− 3}
if ui ∈ A or deg(ui) = ti, uj ∈ C,

2
j−1∑

t=i+1

l(ut)− k(j − i− 1)

+2 min{l(ui)− 2, l(uj)− 2} if ui, uj ∈ B,

2
j−1∑

t=i+1

l(ut)− k(j − i− 1)

+2 min{l(ui)− 2, l(uj)− 3} if ui ∈ B, uj ∈ C,

2
j−1∑

t=i+1

l(ut)− k(j − i− 1)

+2 min{l(ui)− 3, l(uj)− 3} if ui, uj ∈ C,

where ui and uj may exchange their positions.

(ii) when one vertex is the ancestor of another one, we
have

j−1∑
t=i

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥ 2
j−1∑

t=i+1

l(ut)− k(j − i− 1) + 2 min{l(ui), l(uj)},

Proof. Suppose that f is a multi-level distance labeling
of G with diam(G) = k−1. For any 0 ≤ i < j ≤ |V |−1,
add up the following equations

Jf (ut, ut+1) + 2ϕ(ut, ut+1)
= f(ut+1)− f(ut) + l(ut+1) + l(ut)− diam(G)− 1,

i ≤ t ≤ j − 1,

we obtain that
j−1∑
t=i

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

= f(uj)− f(ui)− k(j − i)

+2[
j−1∑

t=i+1

l(ut)] + l(ui) + l(uj).

By the definition of f , we have

f(uj)− f(ui) ≥ k − l(ui)− l(uj),

and then the condition (1) holds.

Since

f(uj)− f(ui)

= k(j − i)− 2[
j−1∑

t=i+1

l(ut)]− l(ui)− l(uj)

+
j−1∑
t=i

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]
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≥



k − l(ui)− l(uj) + 2 min{l(ui), l(uj)}
if ui (uj) is the ancestor of uj (ui),

k − l(ui)− l(uj) + 2 min{l(ui)− 1, l(uj)− 1}
if ui ∈ Aor deg(ui) = ti, uj ∈ A,

k − l(ui)− l(uj) + 2 min{l(ui)− 1, l(uj)− 2}
if ui ∈ Aor deg(ui) = ti, uj ∈ B,

k − l(ui)− l(uj) + 2 min{l(ui)− 1, l(uj)− 3}
if ui ∈ Aor deg(ui) = ti, uj ∈ C,

k − l(ui)− l(uj) + 2 min{l(ui)− 2, l(uj)− 2}
if ui, uj ∈ B,

k − l(ui)− l(uj) + 2 min{l(ui)− 2, l(uj)− 3}
ifui ∈ B, uj ∈ C,

k − l(ui)− l(uj) + 2 min{l(ui)− 3, l(uj)− 3}
ifui, uj ∈ C,

the condition (2) holds.

Assume that f satisfies conditions (1) and (2). If ui, uj
are in different branches, then

d(ui, uj) = l(ui) + l(uj),

and

f(uj)− f(ui) ≥ k − l(ui)− l(uj) = k − d(ui, uj).

If ui, uj are in a same branch, then

d(ui, uj) =

l(ui) + l(uj)− 2 min{l(ui), l(uj)}
if ui (uj) is the ancestor of uj (ui),

l(ui) + l(uj)− 2 min{l(ui)− 1, l(uj)− 1}
if ui ∈ A or deg(ui) = ti, uj ∈ A,

l(ui) + l(uj)− 2 min{l(ui)− 1, l(uj)− 2}
if ui ∈ A or deg(ui) = ti, uj ∈ B,

l(ui) + l(uj)− 2 min{l(ui)− 1, l(uj)− 3}
if ui ∈ A or deg(ui) = ti, uj ∈ C,

l(ui) + l(uj)− 2 min{l(ui)− 2, l(uj)− 2}
ifui, uj ∈ B,

l(ui) + l(uj)− 2 min{l(ui)− 2, l(uj)− 3}
ifui ∈ B, uj ∈ C,

l(ui) + l(uj)− 2 min{l(ui)− 3, l(uj)− 3}
ifui, uj ∈ C,

and thus f(uj) − f(ui) ≥ k − d(ui, uj). Hence f is a
multi-level distance labeling of G.

Now we revise the lower bound of the multi-level distance
number for the symmetric lobster-like tree about weight
center in Theorem 2.6 for odd k ≥ 9.

Theorem 2.8. Let G = Pk,(t4,··· ,ti,··· ,tk−3) be a symmet-
ric lobster-like tree about weight center. For odd k ≥ 9
and t4 = t k+1

2
= tk−3, we have

rn(G) ≥ 6

k−1
2∑

i=4

[(2i− 5)(ti − 2)]

+(3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 2.

Proof. Let f be a radio labeling of G, and the vertices in
G about f have the sequence as (1). By Definition 1.3

and Lemma 2.7, we have

f(u|V |−1) =
|V |−2∑
i=0

[f(ui+1)− f(ui)]

= k(|V | − 1)−
|V |−2∑
i=0

d(ui, ui+1) +
|V |−2∑
i=0

Jf (ui, ui+1)

= k(|V | − 1)− 2ω(G) + l(u0) + l(u|V |−1) + σ(f)

≥ k[6

k−1
2∑

i=4

(ti − 2) + 3t k+1
2

+ k − 7] + 1 + σ(f)

−2{
k−1
2∑

i=4

[(3k + 15− 6i)(ti − 2)] + 6t k+1
2

+ k2

4 −
49
4 }

= 6

k−1
2∑

i=4

[(2i− 5)(ti − 2)] + (3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 1 + σ(f),

where σ(f) =
|V |−2∑
i=0

[Jf (ui, ui+1) + 2ϕ(ui, ui+1)]. The

weights of all vertices appear twice except for l(u0) and
l(u|V |−1). Note that l(ui) ≥ 0 for 0 ≤ i ≤ |V |−1. There-
fore, only if u0 = v k+1

2 ,0 and the distance from u|V |−1 to
u0 is one, that is, l(u0) = 0 and l(u|V |−1) = 1, the right-
hand side of above formulae gets its minimum value.

Claim 1. Under the condition t4 = t k+1
2

= tk−3, there
must exist a vertex

ui ∈ {v1,0, v4,j , vk−3,j , vk,0|2t4 − 3 ≤ j ≤ 3t4 − 6}

such that ui−1, ui+1 6= v k+1
2 ,q, where 2t k+1

2
− 3 ≤ q ≤

3t k+1
2
− 6.

Assume that every vertex

ui ∈ {v1,0, v4,j , vk−3,j , vk,0|2t4 − 3 ≤ j ≤ 3t4 − 6}

for G = Pk,(t4,··· ,ti,··· ,tk−3)(k ≥ 9) is adjacent to one ver-
tex v k+1

2 ,q for some 2t k+1
2
− 3 ≤ q ≤ 3t k+1

2
− 6, then

t k+1
2
− 2 ≥ 1

2
(2t k+1

2
− 4 + 2) = t k+1

2
− 1,

a contradiction. Hence the claim holds.

Claim 2. Suppose that ui satisfies Claim 1, then

σ(f) =

|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)] ≥ 1.

Consider a consecutive subset of vertices {ui−1, ui, ui+1}
with 2 ≤ i ≤ |V | − 2. Then it is clear that there are two
vertices belong to the same branch.

(1) (i) If ui−1, ui+1 belong to the same branch of G and
any one vertex isn’t the ancestor of the other one, then

σ(f) =
|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥
i∑

t=i−1
[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]
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≥



2l(ut)− k + 2 min{l(ui)− 1, l(uj)− 1},
if ui ∈ A or deg(ui) = ti, uj ∈ A

2l(ut)− k + 2 min{l(ui)− 1, l(uj)− 2},
if ui ∈ Aor deg(ui) = ti, uj ∈ B,

2l(ut)− k + 2 min{l(ui)− 1, l(uj)− 3},
if ui ∈ A or deg(ui) = ti, uj ∈ C.

2l(ut)− k + 2 min{l(ui)− 2, l(uj)− 2},
if ui, uj ∈ B,

2l(ut)− k + 2 min{l(ui)− 2, l(uj)− 3},
if ui ∈ B, uj ∈ C,

2l(ut)− k + 2 min{l(ui)− 3, l(uj)− 3},
if ui, uj ∈ C,

≥ 2 · k−12 − k + 2 = 1.

Note that the upper result also holds when we exchange
the positions of ui and uj .

(ii) If ui−1, ui+1 belong to the same branch of G and one
vertex is the ancestor of another one, then

σ(f) =
|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥
i∑

t=i−1
[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥ 2l(ui)− k + 2 min{l(ui−1), l(ui+1)}
≥ 2 · k−12 − k + 2 = 1.

(2) (i) If ui−1, ui belong to the same branch of G and
one vertex is the ancestor of the other one, then

σ(f) =
|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥ Jf (ui−1, ui) + 2ϕ(ui−1, ui)
≥ 2 min{l(ui−1), l(ui)} ≥ 2.

(ii) If ui−1, ui belong to the same branch of G and any
one vertex isn’t the ancestor of the another one, then

σ(f) =
|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥ Jf (ui−1, ui) + 2ϕ(ui−1, ui)

≥



2 min{l(ui)− 1, l(uj)− 1},
if ui ∈ A or deg(ui) = ti, uj ∈ A

2 min{l(ui)− 1, l(uj)− 2},
if ui ∈ A or deg(ui) = ti, uj ∈ B,

2 min{l(ui)− 1, l(uj)− 3},
if ui ∈ A or deg(ui) = ti, uj ∈ C,

2 min{l(ui)− 2, l(uj)− 2},
if ui, uj ∈ B,

2 min{l(ui)− 2, l(uj)− 3},
if ui ∈ B, uj ∈ C,

2 min{l(ui)− 3, l(uj)− 3},
if ui, uj ∈ C.

≥ 2,

where the positions of ui and uj may exchange.

(3) For the same reason as (2), if ui, ui+1 belong to the
same branch, then we have

σ(f) =
|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)]

≥ Jf (ui, ui+1) + 2ϕ(ui, ui+1) ≥ 2.

Thus Claim 2 holds.

By arbitrary of f , we have

rn(G) ≥ 6

k−1
2∑

i=4

[(2i− 5)(ti − 2)]

+(3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 2.

3 The radio number of a class of sym-
metric lobster-like trees about weight
center

The radio number of G = Pk,(t4,··· ,ti,··· ,tk−3) is given be-
low.

Theorem 3.1. Let G = Pk,(t4,··· ,ti,··· ,tk−3) which satis-
fies

(i) all ti have the same parity,

(ii) t4 = t k+1
2

= tk−3 and t k+1
2 −j

≥ t4+j for 1 ≤ j ≤⌊
k−7
4

⌋
, when k is odd,

(iii) t k
2
≥ 1

2 (t4−2)+2 and t k
2−j
≥ t4+j for 1 ≤ j ≤

⌊
k−8
4

⌋
if both k and ti are even, and t k

2
≥ 1

2 (t4 − 1) + 2 and
t k

2−j
≥ t4+j for 1 ≤ j ≤

⌊
k−8
4

⌋
if k is even and ti is odd.

Then

rn(G) =



(3k − 12)t k+1
2

+ k2 − 7k + 1 for k = 7,

6

k−1
2∑

i=4

[(2i− 5)(ti − 2)] + (3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 2 for odd k ≥ 9,

6

k
2∑

i=4

[(2i− 5)(ti − 2)] + k2

2 − k + 1

for even k.

Proof. By Theorems 2.6, 2.8, and equation (3), it is
only need to prove the opposite inequality. Rearrange
the sequence of vertices of G as V (G) = U(f) =
{u0, u1, · · · , u|V |−1}. In the following, we will use an
algorithm to construct a multi-level distance labeling
f . The symbol → (l) indicates that the jump between
the two successive vertices ui and ui+1 is l, that is,
Jf (ui, ui+1) = l, and the symbol → indicates that the
jump between the two successive vertices ui and ui+1 is
0, that is, Jf (ui, ui+1) = 0. Let f(u0) = 0, and

f(ui+1) = f(ui)+diam(G)+1−d(ui, ui+1)+Jf (ui, ui+1)

for 0 ≤ i ≤ |V | − 2.

Case 1. If k is even, ti is odd, t k
2
≥ 1

2 (t4 − 1) + 2 and
t k

2−j
≥ t4+j for 1 ≤ j ≤

⌊
k−8
4

⌋
, then the algorithm is

defined as following:

u0 = v k
2 ,0
→ vk,0 → v1,0 → v k

2+1,2t k
2
+1
−3

→ v4,2t4−3 → vk−3,2tk−3−3 → v k
2 ,2t k

2
−3 →

vk−3,2tk−3−2 → v4,2t4−2 → v k
2+1,2t k

2
+1
−2

→ · · · → v k
2+1,

t4
2 +2t k

2
+1
− 9

2
→ v4,3t4−6 →
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vk−3,3tk−3−6 → v k
2 ,

t4
2 +2t k

2
− 9

2
→ vk−1,0 →

v2,0 → v k
2+1,

t4
2 +2t k

2
+1
− 7

2
→ v k

2 ,
t4
2 +2t k

2
− 7

2

→ · · · → v k
2+1,3t k

2
+1
−6 → v k

2 ,3t k
2
−6 → vk−2,0

→ v k
2−2,0

→ v k
2+2,2t k

2
+2
−3 → v5,2t5−3 → · · ·

→ v k
2+2,3t5−6 → v5,3t5−6 → vk−3,0 → v k

2−3,0
→ · · · → vb 3k−4

4 c,2tb 3k−4
4 c−3

→ vb k+8
4 c,2tb k+8

4 c−3
→ · · · → vb 3k−4

4 c,3tb k+8
4 c−6

→ vb k+8
4 c,3tb k+8

4 c−6
→ vb 3k+2

4 c,0 → vb k+2
4 c,0

→ vb 3k
4 c,2tb 3k

4 c−3
→ vb k+12

4 c,2tb k+12
4 c−3

→ · · ·

→ vb 3k
4 c,3tb 3k

4 c−6
→ vb k+12

4 c,3tb 3k
4 c−6

→ vb 3k−2
4 c,0 → vb k−2

4 c,0 → · · · →
vk−4,2tk−4−3 → v k

2−1,2t k
2
−1
−3 → · · ·

→ vk−4,3tk−4−6 → v k
2−1,3tk−4−6 → v k

2+3,0 →
v3,0 → v k

2+2,3t5−5 → vb k+12
4 c,3tb 3k

4 c−5
→ · · ·

→ vb 3k−4
4 c,3tb 3k−4

4 c−6
→ v k

2−1,3t k
2
−1
−6 →

v k
2+1,t k

2
+1
−1 → v4,t4−1 → vk−3,tk−3−1 → v k

2 ,t k
2
−1

→ vk−3,tk−3
→ v4,t4 → v k

2+1,t k
2
+1
→ · · · →

v k
2+1,

t4
2 +t k

2
+1
− 5

2
→ v4,2t4−4 → vk−3,2tk−3−4 →

v k
2 ,

t4
2 +t k

2
− 5

2
→ v k

2+1,
t4
2 +t k

2
+1
− 3

2
→

v k
2 ,

t4
2 +t k

2
− 3

2
→ · · · → v k

2+1,2t k
2
+1
−4 → v k

2 ,2t k
2
−4

→ v k
2+2,t k

2
+2
−1 → v5,t5−1 → · · · → v k

2+2,2t5−4

→ v5,2t5−4 → · · · → vb 3k−4
4 c,tb 3k−4

4 c−1
→ vb k+8

4 c,tb k+8
4 c−1

→ · · · → vb 3k−4
4 c,2tb k+8

4 c−4
→ vb k+8

4 c,2tb k+8
4 c−4

→ vb 3k
4 c,tb 3k

4 c−1
→ vb k+12

4 c,tb 3k
4 c−1

→ · · · → vb 3k
4 c,2tb 3k

4 c−4
→ vb k+12

4 c,2tb 3k
4 c−4

→ · · · → vk−4,tk−4−1 →

v k
2−1,t k

2
−1
−1 → · · · → vk−4,2tk−4−4 → v k

2−1,2tk−4−4

→ v k
2+2,2t5−3 → vb k+12

4 c,2tb 3k
4 c−3

→ · · ·

→ vb 3k−4
4 c,2tb 3k−4

4 c−4
→ v k

2−1,2t k
2
−1
−4 → v k

2+1,1

→ v4,1 → vk−3,1 → v k
2 ,1
→ vk−3,2

→ v4,2 → v k
2+1,2 → v4,3 → vk−3,3 →

· · · → v k
2+1,

t4−1
2
→ v4,t4−2 → vk−3,tk−3−2 →

v k
2 ,

t4−1
2
→ v k

2+1,
t4+1

2
→ v k

2 ,
t4+1

2
→ v k

2+1,
t4+3

2
→

v k
2 ,

t4+3
2
→ · · · → v k

2+1,t k
2
+1
−2 → v k

2 ,t k
2
−2

→ v k
2+2,1 → v5,1 → v k

2+2,2 → v5,2 → · · ·
→ v k

2+2,t5−2 → v5,t5−2 → · · · → vb 3k−4
4 c,1

→ vb k+8
4 c,1 → · · · → vb 3k−4

4 c,tb k+8
4 c−2

→

vb k+8
4 c,tb k+8

4 c−2
→ vb 3k

4 c,1 → vb k+12
4 c,1 → · · · →

vb 3k
4 c,tb 3k

4 c−2
→ vb k+12

4 c,tb 3k
4 c−2

→ · · · → vk−4,1

→ v k
2−1,1

→ · · · → vk−4,tk−4−2

→ v k
2−1,tk−4−2 → v k

2+2,t5−1 → vb k+12
4 c,tb 3k

4 c−1
→ · · · → vb 3k−4

4 c,tb 3k−4
4 c−2

→ v k
2−1,t k

2
−1
−2

→ v k
2+2,0 → v k

2−1,0
→ v k

2+1,0.

By the definition of f , we know that σ(f) = 0. Hence

f(u|V |−1) = 6

k
2∑

i=4

(2i− 5)(ti − 2) +
k2

2
− k + 1.

In the following we show that f is a multi-level distance
labelling.

Because 2l(ut) ≤ k for 0 ≤ t ≤ |V | − 1, we have

2

|V |−2∑
t=1

l(ut)− k(|V | − 1) ≤ 0,

but
|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)] ≥ 0,

so (1) of Lemma 2.1 holds.

In the algorithm above, by definition of f , there must
be a consecutive subset of vertices {ut−1, ut, ut+1} for
2 ≤ t ≤ |V | − 2 so that ut−1, ut+1 belong to the same
branch. If one of ut−1, ut+1 is the others’ ancestor, by
the construction of the algorithm, we always have

2l(ut)− k + 2 min{l(ut−1), l(ut+1)} ≤ 0

holds. Otherwise, we have

2l(ut)− k + 2 min{l(ut−1)− 1, l(ut+1)− 1} ≤ 0

or

2l(ut)− k + 2 min{l(ut−1)− 1, l(ut+1)− 2} ≤ 0

or

2l(ut)− k + 2 min{l(ut−1)− 1, l(ut+1)− 3} ≤ 0

or

2l(ut)− k + 2 min{l(ut−1)− 2, l(ut+1)− 2} ≤ 0

or

2l(ut)− k + 2 min{l(ut−1)− 2, l(ut+1)− 3} ≤ 0

or

2l(ut)− k + 2 min{l(ut−1)− 3, l(ut+1)− 3} ≤ 0

holds, and

|V |−2∑
t=0

[Jf (ut, ut+1) + 2ϕ(ut, ut+1)] ≥ 0.

Therefore, (2) of Lemma 3 holds.

So f is a multi-level distance labeling of G, then

rn(G) ≤ f(u|V |−1) = 6

k
2∑

i=4

[(2i− 5)(ti − 2)]

+k2

2 − k + 1.
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Case 2. If both k and ti are even, t k
2
≥ 1

2 (t4 − 2) + 2

and t k
2−j
≥ t4+j for 1 ≤ j ≤

⌊
k−8
4

⌋
, then the algorithm

is defined as following:

u0 = v k
2 ,0
→ vk,0 → v1,0 → v k

2+1,2t k
2
+1
−3

→ v4,2t4−3 → vk−3,2tk−3−3 → v k
2 ,2t k

2
−3

→ vk−3,2tk−3−2 → v4,2t4−2 → v k
2+1,2t k

2
+1
−2

→ · · · → vk−3,3tk−3−6 → v4,3t4−6 → vk−1,0
→ v2,0 → v k

2+1,
t4
2 +2t k

2
+1
−4 → v k

2 ,
t4
2 +2t k

2
−4

→ v k
2+1,

t4
2 +2t k

2
+1
−3 → v k

2 ,
t4
2 +2t k

2
−3 → · · · →

v k
2+1,3t k

2
+1
−6 → v k

2 ,3t k
2
−6 → vk−2,0

→ v k
2−2,0

→ v k
2+2,2t k

2
+2
−3 → v5,2t5−3 → · · · →

v k
2+2,3t5−6 → v5,3t5−6 → vk−3,0
→ v k

2−3,0
→ · · · → vb 3k−4

4 c,2tb 3k−4
4 c−3

→

vb k+8
4 c,2tb k+8

4 c−3
→ · · · → vb 3k−4

4 c,3tb k+8
4 c−6

→

vb k+8
4 c,3tb k+8

4 c−6
→ vb 3k+2

4 c,0
→ vb k+2

4 c,0 → vb 3k
4 c,2tb 3k

4 c−3
→ vb k+12

4 c,2tb k+12
4 c−3

→ · · · → vb 3k
4 c,3tb 3k

4 c−6
→ vb k+12

4 c,3tb 3k
4 c−6

→ vb 3k−2
4 c,0 → vb k−2

4 c,0 → · · · → vk−4,2tk−4−3 →
v k

2−1,2t k
2
−1
−3 → · · · → vk−4,3tk−4−6 → v k

2−1,3tk−4−6

→ v k
2+3,0 → v3,0 → v k

2+2,3t5−6 → vb k+12
4 c,3tb 3k

4 c−6
→ · · · → vb 3k−4

4 c,3tb 3k−4
4 c−6

→ v k
2−1,3t k

2
−1
−6 →

v k
2+1,t k

2
+1
−1 → v4,t4−1 → vk−3,tk−3−1 → v k

2 ,t k
2
−1 →

vk−3,tk−3
→ v4,t4 → v k

2+1,t k
2
+1
→ · · · → vk−3,2tk−3−4

→ v4,2t4−4 → v k
2+1,

t4
2 +t k

2
+1
−2 → v k

2 ,
t4
2 +t k

2
−2

→ · · · → v k
2+1,2t k

2
+1
−4 → v k

2 ,2t k
2
−4 → v k

2+2,t k
2
+2
−1

→ v5,t5−1 → · · · → v k
2+2,2t5−4 → v5,2t5−4

→ · · · → vb 3k−4
4 c,tb 3k−4

4 c−1
→ vb k+8

4 c,tb k+8
4 c−1

→ · · · → vb 3k−4
4 c,2tb k+8

4 c−4
→ vb k+8

4 c,2tb k+8
4 c−4

→ vb 3k
4 c,tb 3k

4 c−1
→ vb k+12

4 c,tb k+12
4 c−1

→ · · · →

vb 3k
4 c,2tb 3k

4 c−4
→ vb k+12

4 c,2tb 3k
4 c−4

→ · · · →

vk−4,tk−4−1 → v k
2−1,t k

2
−1
−1 → · · · → vk−4,2tk−4−4

→ v k
2−1,2tk−4−4 → v k

2+2,2t5−3 → vb k+12
4 c,2tb 3k

4 c−3
→ · · · → vb 3k−4

4 c,2tb 3k−4
4 c−4

→ v k
2−1,2t k

2
−1
−4 →

v k
2+1,1 → v4,1 → vk−3,1 → v k

2 ,1
→ vk−3,2 → v4,2

→ v k
2+1,2 → v4,3 → vk−3,3 → · · · → v k

2 ,
t4
2 −1

→ vk−3,tk−3−2 → v4,t4−2 → v k
2+1,

t4
2
→ v k

2 ,
t4
2
→

v k
2+1,

t4
2 +1 → · · · → v k

2 ,t k
2
−2 → v k

2+2,1

→ v5,1 → · · · → v k
2+2,t5−2 → v5,t5−2 → · · · →

vb 3k−4
4 c,1 → vb k+8

4 c,1 → · · · → vb 3k−4
4 c,tb k+8

4 c−2
→ vb k+8

4 c,tb k+8
4 c−2

→ vb 3k
4 c,1 → vb k+12

4 c,1 → · · ·

→ vb 3k
4 c,tb 3k

4 c−2
→ vb k+12

4 c,tb 3k
4 c−2

→ · · ·

→ vk−4,1 → v k
2−1,1

→ · · · → vk−4,tk−4−2 →
v k

2−1,tk−4−2 → v k
2+2,t5−1 → vb k+12

4 c,tb 3k
4 c−1

→ · · · → vb 3k−4
4 c,tb 3k−4

4 c−2
→

v k
2−1,t k

2
−1
−2 → v k

2+2,0 → v k
2−1,0

→ v k
2+1,0.

Similar as Case 1, we can obtain that f is a multi-level
distance labelling of G, and then

rn(G) ≤ f(u|V |−1) = 6

k
2∑

i=4

[(2i− 5)(ti − 2)]+
k2

2
−k+1.

Case 3. If both k and ti are odd, then t4 = t k+1
2

= tk−3

and t k+1
2 −j

≥ t4+j for 1 ≤ j ≤
⌊
k−7
4

⌋
. The algorithm is

defined as following:

u0 = v k+1
2 ,0 → vk,0 → v1,0 → v k+1

2 ,2t k+1
2
−3 → v4,2t4−3

→ vk−3,2tk−3−3 → v k+1
2 ,2t k+1

2
−2 → vk−3,2tk−3−2

→ v4,2t4−2 → v k+1
2 ,2t k+1

2
−1 → · · · → v k+1

2 ,3t k+1
2
−6

→ v4,3t4−6 → vk−3,3tk−3−6 → (1)v k−1
2 ,2t k−1

2
−3

→ vk−1,0 → v2,0 → v k+3
2 ,2t k+3

2
−3 → v5,2t5−3 →

v k+3
2 ,2t k+3

2
−2 → v5,2t5−2 → · · · → v k+3

2 ,3t5−6 →

v5,3t5−6 → v k+7
2 ,0 → v3,0 → v k+5

2 ,2t k+5
2
−3 → v6,2t6−3

→ · · · → v k+5
2 ,3t6−6 → v6,3t6−6 → v k+9

2 ,0 → v4,0
→ · · · → vb 3k−5

4 c,2tb 3k−5
4 c−3

→ vb k+9
4 c,2tb k+9

4 c−3
→

· · · → vb 3k−5
4 c,3tb k+9

4 c−6
→ vb k+9

4 c,3tb k+9
4 c−6

→

vb 3k+3
4 c,0 → vb k+5

4 c,0 → vb 3k−1
4 c,2tb 3k−1

4 c−3
→

vb k+13
4 c,2tb k+13

4 c−3
→ · · · → vb 3k−1

4 c,3tb 3k−1
4 c−6

→

vb k+13
4 c,3tb 3k−1

4 c−6
→ vb 3k+7

4 c,0 → vb k+9
4 c,0 → · · · →

vk−4,2tk−4−3 → v k−1
2 ,2t k−1

2
−2 → · · · → v k−1

2 ,3tk−4−6

→ vk−4,3tk−4−6 → v
k−5
2

,0 → vk−2,0 → v k−1
2 ,3tk−4−5

→ v k+3
2 ,3t5−5 → vb k+13

4 c,3tb 3k−1
4 c−5

→ · · · →

v k−1
2 ,3t k−1

2
−6 → vb 3k−5

4 c,3tb 3k−5
4 c−6

→ v k+1
2 ,t k+1

2
−1

→ vk−3,tk−3−1 → v4,t4−1 → v k+1
2 ,t k+1

2

→ v4,t4 →

vk−3,tk−3
→ · · · → v k+1

2 ,2t k+1
2
−4 → vk−3,2tk−3−4

→ v4,2t4−4 → v k+3
2 ,t k+3

2
−1 → v5,t5−1 → · · · →

v k+3
2 ,2t5−4 → v5,2t5−4 → · · · → vb 3k−5

4 c,tb 3k−5
4 c−1

→ vb k+9
4 c,tb k+9

4 c−1
→ · · · → vb 3k−5

4 c,2tb k+9
4 c−4

→ vb k+9
4 c,2tb k+9

4 c−4
→ vb 3k−1

4 c,tb 3k−1
4 c−1

→ vb k+13
4 c,tb k+13

4 c−1
→ · · · → vb 3k−1

4 c,2tb 3k−1
4 c−4

→ vb k+13
4 c,2tb 3k−1

4 c−4
→ · · · → vk−4,tk−4−1

→ v k−1
2 ,t k−1

2
−1 → · · · → vk−4,2tk−4−4

→ v k−1
2 ,2t

k−4
−4 → v k+3

2 ,2t5−3 → vb k+13
4 c,2tb 3k−1

4 c−3
→ · · · → v k−1

2 ,2t k−1
2
−4 → vb 3k−5

4 c,2tb 3k−5
4 c−4

→

v k+1
2 ,1 → vk−3,1 → v4,1 → v k+1

2 ,2 → v4,2 → vk−3,2
→ · · · → v k+1

2 ,t k+1
2
−2 → v4,t4−2 → vk−3,tk−3−2

→ v5,1 → v k+3
2 ,1 → · · · → v5,t5−2 → v k+3

2 ,t5−2
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→ · · · → vb k+9
4 c,1 → vb 3k−5

4 c,1 → · · · →
vb k+9

4 c,tb k+9
4 c−2

→ vb 3k−5
4 c,tb k+9

4 c−2
→ vb k+13

4 c,1
→ vb 3k−1

4 c,1 → · · · → vb k+13
4 c,tb 3k−1

4 c−2
→

vb 3k−1
4 c,tb 3k−1

4 c−2
→ · · · → v k−1

2 ,1 → vk−4,1

→ · · · → v k−1
2 ,tk−4−2 → vk−4,tk−4−2 →

vb k+13
4 c,tb 3k−1

4 c−1
→ v k+3

2 ,t5−1 → · · · →

v k−1
2 ,t k−1

2
−4 → vb 3k−5

4 c,tb 3k−5
4 c−2

→ v k−3
2 ,0

→ v k+5
2 ,0 → v k−1

2 ,0 → v k+3
2 ,0.

Similar as Case 1, we can show that f is a multi-level
distance labelling of G.

By definition of f , if k = 7, then there is no vertex sat-
isfying Claim 1, so σ(f) = 0, thus rn(G) ≤ f(u|V |−1) =
(3k − 12)t k+1

2
+ k2 − 7k + 1.

If k ≥ 9, then there is only one vertex

ut ∈ {v1,0, v4,j , vk−3,j , vk,0|2t4 − 3 ≤ j ≤ 3t4 − 6}

such that ut−1, ut+1 belong to the same branch,
l(ut−1) = l(v4,3t4−6) = k−1

2 , l(ut+1) = l(v k−1
2 ,2t k−1

2
−3) =

4 and ut+1 is not the ancestor of ut−1, thus

ϕ(ut−1, ut+1) = min{l(ut−1)− 3, l(ut+1)− 3} = 1.

By Theorem 2.8 and the above algorithm, we have
σ(f) = 1, hence

rn(G) ≤ 6

k−1
2∑

i=4

[(2i− 5)(ti − 2)] + (3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 2.

Case 4. If k is odd and ti is even, then t4 = t k+1
2

= tk−3

and t k+1
2 −j

≥ t4+j for 1 ≤ j ≤
⌊
k−7
4

⌋
. The algorithm is

defined as following:

u0 = v k+1
2 ,0 → vk,0 → v1,0 → v k+1

2 ,2t k+1
2
−3 → v4,2t4−3

→ vk−3,2tk−3−3 → v k+1
2 ,2t k+1

2
−2 → vk−3,2tk−3−2

→ v4,2t4−2 → v k+1
2 ,2t k+1

2
−1 → · · · → v k+1

2 ,3t k+1
2
−6

→ vk−3,3tk−3−6 → v4,3t4−6 → (1)v k+3
2 ,2t k+3

2
−3 →

v2,0 → vk−1,0 → v k−1
2 ,2t k−1

2
−3 → vk−4,2tk−4−3

→ v k−1
2 ,2t k−1

2
−2 → vk−4,2tk−4−2 → · · · → v k−1

2 ,3tk−4−6

→ vk−4,3tk−4−6 → v k−5
2 ,0 → vk−2,0 → v k−3

2 ,2t k−3
2
−3 →

vk−5,2tk−5−3 → · · · → v k−3
2 ,3tk−5−6 → vk−5,3tk−5−6 →

v k−7
2 ,0 → vk−3,0 → · · · → vb k+13

4 c,2tb k+13
4 c−3

→ vb 3k−1
4 c,2tb 3k−1

4 c−3
→ · · · → vb k+13

4 c,3tb 3k−1
4 c−6

→ vb 3k−1
4 c,3tb 3k−1

4 c−6
→ vb k+5

4 c,0 → vb 3k+7
4 c,0 →

vb k+9
4 c,2tb k+9

4 c−3
→ vb 3k−5

4 c,2tb 3k−5
4 c−3

→ · · · →

vb k+9
4 c,3tb k+9

4 c−6
→ vb 3k−5

4 c,3tb k+9
4 c−6

→ vb k+1
4 c,0 →

vb 3k+3
4 c,0 → · · · → v6,2t6−3 → v k+5

2 ,2t k+5
2
−3 → · · · →

v6,3t6−6 → v k+5
2 ,3t6−6 → v4,0 → v k+9

2 ,0 → v5,2t5−3 →
v k+3

2 ,2t k+3
2
−2 → v5,2t5−2 → v k+3

2 ,2t k+3
2
−1 → · · ·

→ v5,3t5−6 → v k+3
2 ,3t5−5 → v4,0 → v k+9

2 ,0 →
vb k+13

4 c,3tb 3k−1
4 c−6

→ v k+3
2 ,3t5−4 → · · · →

vb 3k−5
4 c,3tb 3k−5

4 c−6
→ v k−1

2 ,3t k−1
2
−6 → v k+1

2 ,t k+1
2
−1

→ v4,t4−1 → vk−3,tk−3−1 → v k+1
2 ,t k+1

2

→ vk−3,tk−3

→ v4,t4 → · · · → v k+1
2 ,2t k+1

2
−4 → vk−3,2tk−3−4

→ v4,2t4−4 → v k+3
2 ,t k+3

2
−1 → v5,t5−1 → · · · →

v k+3
2 ,2t5−4 → v5,2t5−4 → · · · →

vb 3k−5
4 c,tb 3k−5

4 c−1
→ vb k+9

4 c,tb k+9
4 c−1

→ · · · →

vb 3k−5
4 c,2tb k+9

4 c−4
→ vb k+9

4 c,2tb k+9
4 c−4

→

vb 3k−1
4 c,tb 3k−1

4 c−1
→ vb k+13

4 c,tb k+13
4 c−1

→ · · · →

vb 3k−1
4 c,2tb 3k−1

4 c−4
→ vb k+13

4 c,2tb 3k−1
4 c−4

→ · · · →

vk−4,tk−4−1 → v k−1
2 ,t k−1

2
−1 → · · · → vk−4,2tk−4−4 →

v k−1
2 ,2t

k−4
−4 → v k+3

2 ,2t5−3 → vb k+13
4 c,2tb 3k−1

4 c−3
→

· · · → vb 3k−5
4 c,2tb 3k−5

4 c−4
→ v k−1

2 ,2t k−1
2
−4 → v k+1

2 ,1

→ v4,1 → vk−3,1 → v k+1
2 ,2 → vk−3,2 → v4,2 → · · ·

→ v k+1
2 ,t k+1

2
−2 → vk−3,tk−3−2 → v4,t4−2 → v k+3

2 ,1 →

v5,1 → · · · → v k+3
2 ,t5−2 → v5,t5−2 → · · · → vb 3k−5

4 c,1
→ vb k+9

4 c,1 → · · · → vb 3k−5
4 c,tb k+9

4 c−2
→

vb k+9
4 c,tb k+9

4 c−2
→ vb 3k−1

4 c,1 → vb k+13
4 c,1 → · · · →

vb 3k−1
4 c,tb 3k−1

4 c−2
→ vb k+13

4 c,tb 3k−1
4 c−2

→ · · · →

vk−4,1 → v k−1
2 ,1 → · · · → vk−4,tk−4−2 → v k−1

2 ,tk−4−2
→ v k+3

2 ,t5−1 → vb k+13
4 c,tb 3k−1

4 c−1
→

· · · → vb 3k−5
4 c,tb 3k−5

4 c−2
→ v k−1

2 ,t k−1
2
−2 → · · · →

v k+5
2 ,0 → v k−3

2 ,0 → v k+3
2 ,0 → v k−1

2 ,0.

Similar as Case 3, we can show that f is a multi-level
distance labelling of G.

If k = 7, then

rn(G) ≤ (3k − 12)t k+1
2

+ k2 − 7k + 1.

If k ≥ 9, then

rn(G) ≤ 6

k−1
2∑

i=4

[(2i− 5)(ti − 2)] + (3k − 12)t k+1
2

+ 1
2 (k − 7)2 + 2.

Applying Theorems 2.4-2.6, and 2.8, we have shown that
the theorem holds.
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