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Abstract—In this paper, we study the impact of the utility
functions on the risk averse investor’s equilibrium equity
premium in an economy with jump diffusion under an arbitrary
jump size. In other words, we provide answers to the investor’s
questions like how much compensation for having taken up
some risk is fair enough from an investment whose initial
wealth at time t = 0 is invested in a production economy
with jump diffusion under an arbitrary jump size if one is to
consume exponentially or quadratically from an accumulating
wealth among other utility functions. We considered the power,
negative exponential, square root and quadratic utility func-
tions. In these four risk averse utility functions considered, the
deterministic time preference function y(t) affects the optimal
consumption of the investor but it has no effect on the diffusive
and rare-events premia thereby not affecting the equilibrium
equity premium. However, the total value of an investor’s
wealth affects the optimal consumption but has no effect on
the equilibrium equity premium of the power and square
root utility functions. In case of the quadratic and negative
exponential utility functions, both the optimal consumption and
the equity premium are affected by the investor’s total wealth
value. Specifically, the negativity or positivity in the jump size
does not matter on the value of the equity premium of the
negative exponential utility function as this only depends on
the investor’s wealth value.

Index Terms—utility function,equilibrium, equity risk pre-
mium, jump diffusion.

I. INTRODUCTION

THE bottom line of any market is fairness. A market
where everybody should have a chance to make or lose

money. However, maintaining a fair market is not easy and
some people who put in very little or nothing get away with
quite huge sums of profit at the expense of others.

A price in the market change, from time to time. Thus,
time is money and money has value. This time value of
money poses significant questions as to whether one should
keep more of one’s wealth in the form of money (bond) or
in terms of capital goods (stocks). In addition, there is the
problem of finding a portfolio that will realize the future
claim.

In search of answers to market fairness, researchers con-
tinually strive to find conditions that can make the market
benefit those who invest reasonably in it. That is to say,
making it arbitrage free.

Option pricing has been one among the significant
branches in finance. It was first modeled under the Binomial
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discrete model. The Binomial option pricing model is based
on the assumptions that the stock price will only take two
possible values in a period and that trading will be at discrete
points in time. However, these assumptions do not seem
to capture the real stock price dynamics and this prompted
the formulation of the well celebrated Black-Scholes model.
The Black-Scholes model seems to capture the real price
dynamics to some extent in that, as the number of periods
increases, the stock price fluctuates over a large numbers of
possible values and trading is nearly continuous. The model
calibrates the Binomial parameters so that it converges to a
continous time model in the limit. This is according to [1].
Despite the introduction of this continuous model, current
research [[2], [3], [4], [5] and [6]] seems to suggest that this
model is still not effective in capturing the real stock price
process. This is because, by virtue of continuity, when the
price of an asset changes from say 20 pula to 23 pula, it is
as good as saying it has changed through all the prices in
between (continuity is a smooth curve). It is accepted [ [7]
and [8]] that although price changes continuously, effectively
it jumps continuously in time and hence the need to formulate
a model involving a jump process and a continuous process.
This new process called the jump-diffusion model and was
first introduced by [9]. This jump-diffusion model seems to
depend heavily on the distribution of the jump sizes and in
Merton’s model, the jump sizes are log-normally distributed.
His solutions also relied upon a product of log-normal
variates being log-normally distributed. [10], on the other
hand, based his model on the double exponential distribution
of jump amplitudes. His derivation stresses the significance
of the memoryless property of the exponential distribution.
To obtain an option formula, both [9] and [10] relied on
particular properties of the distributions the jumps where
following, but the model by [11] argued that, no special
properties were needed, and obtained an option formula for
any jump distribution while working in the Fourier space.

From the brief discussions of the models above, we
have concluded that establishing an equilibrium model to
explain the expected returns can either be approached by a
consumption-based asset pricing model which is built on an
exchange economy or a production-based asset pricing model
built on a production economy. The consumption based was
started by [12], and continued [13] but both researchers did
not include jumps in their models. More recent studies [[14],
[15], [16], and [17]] that are reviewed by [18] have included
the impact of jumps. The major conclusion from these studies
is that consumption-based approach maximizes the investor’s
expected utility by choosing an optimal level of consumption
at every period, while the production based does the same,
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but additional, it leaves the rest in the production to grow
for future consumption. This approach was initiated by [19]
and extended to consider various situations by many studies
[[20], [21], [22], [3], [23], [24], and [25]]. Studies by [26]
and [27] extended the study by [19] to include jumps. The
partial equilibrium models only includes derivative pricing
and not asset pricing which has been studied by [28], and
[29].

A. THE MODEL

As in [6], suppose in only one production process, we
want to invest Xt units of a particular good from time t to the
time (t+dt), we introduce our model by adding together the
drift term, a Brownian motion and a compensated compound
Poisson process which results in a Jump Diffusion process;

dXt

Xt−
= µdt+ δdBt + (ex − 1)dNt − λE(ex − 1)dt.

We subtract the expected value from the drift so that
the process becomes more volatile and hence a martingale
because its future is unexpected. The parameters µ, δ and
λ are taken as constants with µ being the expected rate
of return of the investment and hence the continuous part
of Xt is log-normally distributed. Xt− is the value of Xt

before the jump occurs. In our model, the jump size x is
first taken as arbitrary so the impact of the distribution on
the rare event premium can be studied and then as a random
number. This random number x and stochastic processes
Bt and Nt are independent. This follows directly from the
definition of Brownian motion as being a continuous process
and the Poisson being discrete which we obviously know
that continuous processes and discrete are independent. λ is
the frequency of the Poisson process and E(dNt) = λdt is
the probability that Nt will jump once in the given period.
E is just the expectation and (ex − 1) is the value of dNt
if a jump occurs. If the jump does not occur, dNt = 0.
This dNt models the sudden changes as a result of rare
events happening and dBt models small continuous changes
generated by the noise whose volatility is a constant δ.

We can clearly see that the compensated compound Pois-
son process (ex − 1)dNt − λE(ex − 1)dt has the mean of
zero ensuring that the expected return will be µ. It has the
mean of zero because

E[(ex − 1)dNt − λE(ex − 1)dt] = 0

because E(dNt) = λdt and E(λdt) = λdt.
If we apply Itô Lemma with Jumps we have,

dXt

Xt−
= µdt+ δdBt + (ex − 1)dNt − λE(ex − 1)dt

dXt

Xt−
= [µ− λE(ex − 1)]dt+ δdBt + (ex − 1)dNt

dXt = [µ− λE(ex − 1)]Xtdt+ δXtdBt

+(ex − 1)XtdNt

Now take diffusion part

d∗Xt = [µ− λE(ex − 1)]Xtdt+ δXtdBt

so that
dXt = d∗Xt + (ex − 1)XtdNt

then
dc = d∗c+ [c(Xte

x, t)− c(Xt, t)]dNt

’that is if the jump occurs’ where

d∗c = ctdt+ cXtd
∗Xt +

1

2
cXtXt(d

∗Xt)
2.

Thus

dc = ctdt+ cXtd
∗Xt +

1

2
cXtXt(d

∗Xt)
2

+[c(Xte
x, t)− c(Xt, t)]dNt.

Now
c(Xt, t) = lnXt

ct = 0, cXt =
1

Xt
, XtcXt = 1

cXtXt =
−1
X2
t

, X2
t cXtXt = −1

Also
c(Xte

x, t)− c(Xt, t) = lnXte
x − lnXt

= ln
Xte

x

Xt

= ln ex

= x.

Therefore dc becomes

d lnXt = {[µ− λE(ex − 1)]− 1

2
δ2}dt+ δdBt

+xdNt.

By integration we have

ln
XT

Xt
≡ Yτ = [µ− λE(ex − 1)− 1

2
δ2]τ + δBt

+

Nτ∑
i=1

xi

for τ = T − t

where Yτ is the continuously compounded investment return
over the period from time t to T and τ is the investment
period.

Suppose also that, at the risk-free rate ρ, the money market
account X0(t) is such that

dX0(t) = ρ(t)X0(t)dt

whose total supply is assumed to be zero. Consider here that
ρ is risk-free because it is the rate for the non risky asset
(money account).

Now consider the power utility function

U(r) =
rβ

β
, 0 < β < 1

which is the family with a constant relative risk aver-
sion(CRRA). We study the general equilibrium of one in-
vestor in the production economy who wishes to maximize
his expected utility function(reward function)

maxEt

∫ T

t

y(t)U(rt)dt,
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where U(rt) is the utility(happiness) function which models
the attitude of an investor towards the risk, y(t) is time
preference function , 0 ≤ t ≤ T,and rt is the consumption
rate at time t.

We know that happiness (Utility) depends on consumption.
The more consumption is, the more the utility. We notice here
that since 0 < β < 1,

dU

dr
= U ′ =

βrβ−1

β
= rβ−1 > 0

and
d2U

dr2
= U ′′ = (β − 1)rβ−1−1 = (β − 1)rβ−2 < 0

which implies that utility is a concave function arising from
the fact that U ′′ < 0. That is to say it increases gradualy as
the consumption rate increases.

So if Vt is the total value of someone’s investment in this
production economy at any time t then

Vt = V0(t) + V1(t)

where V0(t)is the value of the money market account and
V1(t) is the value of the investment in the stock market. Thus
V0(t) = (1 − ω)Vt and V1(t) = ωVt where ω is the wealth
ratio or simply (ω, 1−ω) is the portfolio. This means that this
investor invests ω units of assets in the risky investment and
(1− ω) units in the non risky investment. Notice, here that
we set V0(t) and V1(t) in such a way that one is attracted
to invest more in the stock market and less in the money
market. This is so because, people don’t usually like risks.
Hence we make the riskless alternative unfair by giving less
than its expected value. If however U(rt) was linear, then this
investor would be indifferent between a risky alternative and
the sure thing with an expected value same as the observed
value(the sure thing). In this case, his graph of consumption
rate against utility will just be a straight line αrt = U(rt)
for some constant α.

The investor’s optimal control problem then is to maximize
his expected utility function

maxEt

∫ T

t

y(t)U(rt)dt,

subject to

dVt
Vt

= [ρ+ ωφ− ωλE(ex − 1)− rt
Vt

]dt

+ωδdBt + ω(ex − 1)dNt

where φ≡µ−ρ is the equity premium which shows the signif-
icant judgements one is making as to how much risk he or she
sees in this economy (market) and what price one attaches
to that risk. [9], observes that if the consumer has reasonable
preferences then it is possible to use utility functions to
describe these preferences. The general equilibrium occurs
when ω = 1. The wealth ratio ω and rate of consumption rt
are control variables.

B. RESULTS AND DISCUSSION

1) Preposition: An investor’s equilibrium equity premium
with CRRA power utility function U(rt) =

rβt
β , 0 < β < 1,

in the production economy with jump diffusion is given by

φ = −(β − 1)δ2 + λE[(ex − 1)(1− (ex)β−1)].

where φδ = −(β − 1)δ2 is the diffusive risk premium and
φN = λE[(ex−1)(1− (ex)β−1)] is the rare-event premium.

Refer to Appendix A for the proof.

It is not possible to remove expectation in the rare event
premium and simulate graphs because the jump size is taking
to be arbitrary in this paper. This is to allow us study the
effect of the jump size on the rare-event premium.

We easily notice here that if we let the jump size x =
0, then (ex − 1) = 0 and hence regardless of what values
β, 0 < β < 1 assumes, the rare-event premium is zero. This
result is consistent with the real life phenomena of investment
because the investor cannot take a jump risk and thereby
benefit from it, if there is no jump in the process.

Now, since ρ is the risk free rate for the bond, then

ρ = µ− φ

ρ = µ+ (β − 1)δ2 − λE[(ex − 1)(1− (ex)β−1)].

Here, µ cannot be zero because the process must evolve
with respect to time but if we assume the process is not
volatile that is δ = 0, and there is no jump, then the risk
free rate for the bond is equal to µ. This result is consistent
to that obtained in [6].

The deterministic time preference function y(t) affects the
optimal consumption of this investor but it has no effect
on the diffusive and rare-events premia. This is because it
appears in the optimal consumption equation for r(t) but it
does not appear anywhere in the equation for φ. We also
note here that, since µ, δ, and λ are constants, ρ is also a
constant. In addition, φδ = −(β − 1)δ2 is the price of the
diffusive risk and φN = λE[(ex − 1)(1 − (ex)β−1)] is the
price of the jump risk. Infact, since 0 < β < 1, we easily
observe that the diffusive risk premium is always positive.
On the other hand, for positive jump size x, (ex−1) > 0 and
(1− (ex)β−1) > 0 which implies (ex−1)(1− (ex)β−1) > 0
and hence we have a positive jump risk premium. In the case
where the jump size x, is negative, we have (ex − 1) < 0
and (1− (ex)β−1) < 0 meaning (ex − 1)(1− (ex)β−1) > 0
and the expectation of its value against a distribution of x is
also positive. Thus the rare-event premium is always positive
reqardless of the sign in the jump size.

2) Preposition: Under the CARA negative exponential
utility function U(rt) = −e−αrt , α > 0, the investor’s
equilibrium equity premium in the production economy with
jump diffusion is given by

φ = δ2αVt + λE[(ex − 1)(1− eαVt(1−e
x))]

where φδ = δ2αVt is the diffusive risk premium and

φN = λE[(ex − 1)(1− eαVt(1−e
x))]

is the rare-event premium.

Refer to Appendix B for the proof.

The deterministic time preference function y(t) affects the
optimal consumption of this investor but it has no effect
on the diffusive and rare-events premia. This is because it
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appears in the optimal consumption equation for r(t) but it
does not appear anywhere in the equation for φ. However,
the total wealth of the investor affects both the diffusive
and rare-events premia. If the value of the wealth of this
investor is positive (meaning he or she has no debts), then
the diffusive risk premium φδ = δ2αVt is always positive
and the rare-event premium will now depend on the jump
size x. If the jump size is also positive, then (ex − 1) > 0
and (1−eαVt(1−ex)) > 0, hence (ex−1)(1−eαVt(1−ex)) > 0
and thus we have a positive rare event premium. If the jump
size is negative, (ex − 1) < 0 and (1 − eαVt(1−e

x)) < 0,
implying that (ex − 1)(1 − eαVt(1−e

x)) > 0 and thus we
have a positive rare event premium because in either case,
the expectation of a positive quantity is always positive.

On the other hand if the investor has debts that is the
value of his wealth is negative, the diffusive risk premium is
also always negative. The rare-event premium is negative for
positive jump size x and is also negative for negative jump
size and thus it is always negative as long as the investor’s
total value of wealth is negative regardless of the positivity
or negativity in the jump size x.

We therefore suggest that, under the exponential utility
function, one has to always make sure he or she avoids debts
otherwise, there is no way the investor can gain once the
wealth value enters negative.

3) Preposition: In the production economy with jump
diffusion, the investor’s equilibrium equity premium with
square root utility function U(rt) =

√
rt, rt > 0, is given by

φ =
1

2
δ2 + λE[(ex − 1)(1− e− 1

2x)].

where φδ = 1
2δ

2 is the diffusive risk premium and

φN = λE[(ex − 1)(1− e− 1
2x)

is the rare-event premium.

Refer to Appendix C for the proof.

If the jump size x = 0, the rare-event premium is zero
and the investor benefits nothing in terms of taking the jump
risk. The diffusive risk premium is always positive except for
δ = 0 and the rare-event premium depends only on the jump
size. If the jump size is positive, ex − 1 > 0 and 1 > e−

1
2x,

hence the premium is positive. If the jump size is negative
then 1 < e−

1
2x, and ex − 1 < 0, and again the premium

is positive. Thus the equilibrium equity premium is always
positive regardless of the sign in the jump size.

This equilibrium equity premium is neither affected by the
wealth value nor the time preference. We therefore encourage
investors to strongly consider consuming with the square
root utility function if they are to invest in the production
economy with jump diffusion as their premium is not affected
by the wealth value, sign in the jump size and time preference
of their investments.

4) Preposition: An investor’s equilibrium equity premium
with quadratic utility function U(rt) = rt − ar2t , a > 0 in
the production economy with jump diffusion is given by

φ =
2aVtδ

2

1− 2aVt
+ λE[(ex − 1)(1− (1− 2aVte

x)

1− 2aVt
)].

where φδ = 2aVtδ
2

1−2aVt is the diffusive risk premium and

φN = λE[(ex − 1)(1− (1− 2aVte
x)

1− 2aVt
)]

is the rare-event premium.

See Appendix D for the proof.

It can easily be proved that, if the investor’s wealth at any
time t is zero, that is Vt = 0, the equilibrium equity premium
is also zero. This means that the investor must avoid debt
if some compensation is to be realised by taking any risk
in this investment. On the other hand, in the case of debt,
2aVtδ

2 < 0, and 1 − 2aVt > 0 and therefore 2aVtδ
2

1−2aVt < 0,
implying that the diffusive risk premium is negative. Thus the
diffusive risk premium is negative when the wealth value is
negative.

The other interesting result here is that, if the investor has
no debt and as one’s value of wealth increases, the diffusive
risk premium again becomes negative but the investor’s
equilibrium equity premium is compensated by taking the
jump risk because the rare-event premium depends on the
jump size and the wealth value. If both are positive, the rare-
event premium is positive. If both are negative, the rare-event
premium is again positive. We therefore advise investors
consuming quadratically in an economy as this to invest more
in the risky assets as either way the compensation realised
by taking the jump risk is always positive.

II. CONCLUSION

In conclusion, a risk averse investor who wishes to invest
in the production economy with jumps under an arbitrary
jump size would like to know how much compensation
one can expect from an investment in stocks and bond so
he can determine which proportions to invest in them. Of
course, this will depend on the investor’s attitude towards
risk taking. The more one becomes risk averse (risk fearing),
the less one invests in stocks (risky assets) and vice-versa.
We considered four risk averse utility functions namely
the power, exponential, square root and quadratic utility
functions and although we could not provide graphs because
of the jump size being arbitrary hence making it not possible
to find its expectation in the rare event premium, we were
able to compute for each one of them analytical formulas for
the equity premium required for an investment.

APPENDIX A
The optimality condition is by the Hamilton-Jacobi-

Bellman (HJB) equation

Et[dJ + yU(rt)dt] = 0.

We apply the Itô Lemma with Jumps as follows:

dVt
Vt

= [ρ+ ωφ− ωλE(ex − 1)− rt
Vt

]dt

+ωδdBt + ω(ex − 1)dNt

multiplying throughout by Vt we have

dVt = [ρ+ ωφ− ωλE(ex − 1)− rt
Vt

]Vtdt
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+ωδVtdBt + ω(ex − 1)VtdNt.

Let d∗Vt be the diffusion part so that

d∗Vt = [ρ+ ωφ− ωλE(ex − 1)− rt
Vt

]Vtdt

+ωδVtdBt

then

d∗J = Jtdt+ JVtd
∗Vt +

1

2
JVtVt(d

∗Vt)
2

so that

dJ = d∗J + [J(Vt(1 + ω(ex − 1)), t)− J(Vt, t)]dNt

= Jtdt+ JVt [ρ+ ωφ− ωλE(ex − 1)− rt
Vt

]Vtdt

+JVtωδVtdBt +
1

2
JVtVt [ω

2δ2V 2
t dt]

+[J(Vt(1 + ω(ex − 1)), t)− J(Vt, t)]dNt.

Here, JVt is the partial derivative of J with respect to Vt
and so is the case with all subscripts of J. Now

Et[dJ + yU(rt)dt] = 0

hence

= max
(rt,ω)

{Jtdt+ JVt [ρ+ ωφ− ωλE(ex − 1)]Vtdt

−JVtrtdt+ JVtωδVtE(dBt) +
1

2
JVtVt [ω

2δ2V 2
t dt]

+E[J(Vt(1 + ω(ex − 1)), t)− J(Vt, t)]E(dNt)}

+yU(rt)dt = 0

and since E(dBt) = 0 and E(dNt) = λdt we have the result

= max
(rt,ω)

{Jtdt+ JVt [ρ+ ωφ− ωλE(ex − 1)]Vtdt

−JVtrtdt+
1

2
JVtVt [ω

2δ2V 2
t dt]

+E[J(Vt(1 + ω(ex − 1)), t)− J(Vt, t)]λdt}

+yU(rt)dt = 0

multiplying by
1

dt
on both sides of the equation yields

max
(rt,ω)

{Jt + JVt [ρ+ ωφ− ωλE(ex − 1)]Vt − JVtrt

+
1

2
JVtVt [ω

2δ2V 2
t ] + λE[J(Vt(1 + ω(ex − 1)), t)]

−λJ(Vt, t)}+ yU(rt) = 0. (1)

Taking partial derivatives of this Bellman equation with
respect to rt and ω, we obtain equations

−JVt + yU(rt) = 0, (2)

[φ− λE(ex − 1)]VtJVt + JVtVtωδ
2V 2
t

+λE[JVt(Vt(1 + ω(ex − 1)), t)Vt(e
x − 1)] = 0. (3)

Solving for φ in the second equation gives

φVtJVt = λVtJVtE(ex − 1)− ωδ2V 2JVtVt

−λE[JVt(Vt(1 + ω(ex − 1), t)Vt(e
x − 1)]

Taking ω = 1 and dividing by VtJVt we have

φ = λE(ex−1)− JVtVt
JVt

δ2Vt−λ
1

JVt
E[JVt(Vte

x, t)(ex−1)].
(4)

Substituting this φ into the Bellman equation we get

Jt + ρVtJVt −
1

2
δ2V 2

t JVtVt − JVtrt + λE[J(Vte
x, t)]

−λVtE[JVt(Vte
x, t)(ex−1)]−λJ(Vt, t)+yU(rt) = 0 (5)

Taking

U(rt) =
rβt
β
, 0 < β < 1,

we solve for J(Vt, t) based on the assumption that

J(Vt, t) = Q(t)
V βt
β
. (6)

To solve for the optimal consumption, we use first order
conditiion (2) and proceed as follows:

yU ′(rt) = JVt

which implies
y[rβ−1t ] = Q(t)V β−1t

rt = (
Q(t)V β−1t

y
)

1
β−1

and therefore

rt = (
Q(t)

y
)

1
β−1Vt (7)

is the optimal consumption we require.
Also, substituting the functions J(Vt, t) = Q(t)

V βt
β , JVt =

Q(t)V β−1t and JVtVt = (β − 1)Q(t)V β−2t into the integro-
partial differential equation (5) gives

Q(t)V βt
β

+ ρQ(t)V βt −
1

2
δ2(β − 1)Q(t)V βt

−λV βt Q(t)E[ex(β−1)(ex − 1)] + λQ(t)V β−1t E[ex(β−1)]

−λQ(t)[
V βt
β

]

−Q(t)V βt [
Q(t)

y
]

1
β−1 +

y

β
V βt [(

Q(t)

y
)

β
1−β ] = 0

Differentiating with respect to Vt and dividing by V β−1t

we get

Q(t) + ρQ(t)β − 1

2
δ2β(β − 1)Q(t)

−λβQ(t)E[ex(β−1)(ex − 1)]

+λQ(t)(β − 1)V −1t E[ex(β−1)]− λQ(t)

−Q(t)β[
Q(t)

y
]

1
β−1 + y[(

Q(t)

y
)

β
1−β ] = 0.
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Thus,

Q(t) + aQ(t) + y[(
Q(t)

y
)

β
1−β ] = 0.

and
Q(T ) = 0

as terminal condition where

a = ρβ − 1

2
δ2β(β − 1)− λβE[ex(β−1)(ex − 1)]

+λ(β − 1)V −1t E[ex(β−1)]− λ− β[Q(t)

y
]

1
β−1 .

Substituting (6) into (4) gives us a formula for the equity
premium

φ = −(β − 1)δ2 + λE[(ex − 1)(1− (ex)β−1)].

APPENDIX B

Suppose now that we took the exponential utility function

U(rt) = −e−αrt , α > 0,

from the Constant Absolute Risk Aversion (CARA) family
then

U ′(rt) = αe−αrt > 0,

U ′′(rt) = −α2e−αrt < 0,

which implies the utility function is concave. Now the
coefficient of absolute risk aversion is

−U ′′(rt)
U ′(rt)

=
α2e−αrt

αe−αrt
= α > 0

To solve for J(Vt, t), we guess that

J(Vt, t) = −Qte−αVt ,

then we solve for optimal consumption using first order
condition (2) as follows

yU ′(rt) = JVt

which implies

y(αe−αrt) = αQte
−αVt

and hence

−αrt = ln[
Qte

−αVt

y
]

and therefore we have our optimal consumption for this
investor as

rt =
−1
α

ln[
Qte

−αVt

y
], α > 0.

Substituting the functions

J(Vt, t) = −Qte−αVt ,

JVt(Vt, t) = αQte
−αVt

and
JVtVt(Vt, t) = −α2Qte

−αVt

into the integro-partial differential equation (5) we have

−Qte−αVt + ραQtVte
−αVt +

1

2
δ2α2QtV

2
t e
−αVt

−λαQtE[Vte
−αVtex(ex − 1)] + λαQtE[e−αVte

x

]

−λαQte−αVt − αQte−αVtrt − yeln[
Qte

−αVt
y ] = 0.

Substituting for rt gives

−Qte−αVt + ραQtVte
−αVt +

1

2
δ2α2QtV

2
t e
−αVt

−λαQtE[Vte
−αVtex(ex − 1)] + λαQtE[e−αVte

x

]

−λαQte−αVt +Qte
−αVt ln[

Qte
−αVt

y
]

−yeln[
Qte

−αVt
y ] = 0.

Differentiating with respect to Vt and substituting into (4)
gives the equity premium

φ = δ2αVt + λE[(ex − 1)(1− eαVt(1−e
x))].

APPENDIX C

Consider the square root utility function

U(rt) =
√
rt, rt > 0,

then
U ′(rt) =

1

2
(rt)
− 1

2

=
1

2
√
rt
> 0

and

U ′′(rt) = −
1

4
(rt)
− 1

2−1 = −1

4
(rt)
− 3

2 = −1

4
× 1√

r3t

= − 1

4
√
r3t

< 0

implying that it is a concave function. The coefficient of
aversion is

RRA = −U
′′rt
U ′

=

rt
4
√
r3t

1
2
√
rt

=
rt

4
√
r3t
× 2
√
rt

=
2rt
√
rt

4rt
√
rt

=
1

2
> 0.

This can easily be seen that RRA is 1
2 by virtue of square

root since CRRA family are of form U(c) = cβ for some
RRA = β > 0.

To solve for J(Vt, t), we conjecture that

J(Vt, t) = Qt
√
Vt = QtV

1
2
t

JVt(Vt, t) =
1

2
QtV

1
2−1
t =

1

2
QtV

− 1
2

t =
Qt

2
√
Vt

JVtVt(Vt, t) = −
1

4
QtV

− 1
2−1 = −1

4
QtV

− 3
2

t

= − Qt

4
√
V 3
t

= − Qt

4Vt
√
Vt
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then we solve for optimal consumption

yU ′(rt) = JVt

y(
1

2
√
rt
) =

Qt
2
√
rt

(
y

2
√
rt
) =

Qt
2
√
rt

2y
√
Vt = 2Qt

√
rt

2y
√
Vt

2Qt
=
√
rt

which implies
y
√
Vt

Qt
= (rt)

1
2

and therefore

rt = (
y
√
Vt

Qt
)2 =

y2Vt
Q2
t

is our optimal consumption. We can clearly see that it is
affected by the time preference function y(t) and also by
(Vt), the total wealth at time t.

Substituting Jt, JVt and JVtVt into the integro-partial
differential equation we get

QtV
1
2
t + ρVt

Qt

2V
1
2
t

− 1

2
δ2V 2

t (−
Qt

4VtV
1
2
t

)

−λVtE[
Qt

2(Vtex)
1
2

(ex − 1)] + λE[Qt(Vte
x)

1
2 ]

−λQtV
1
2
t −

Qt

2V
1
2
t

rt + y(rt)
1
2 = 0

Substituting for the optimal consumption rt we get

QtV
1
2
t +

1

2
ρQtV

1
2
t +

1

8
δ2QtV

1
2
t

−1

2
λQtV

1
2
t E[e−

1
2x(ex − 1)] + λQtV

1
2
t E[e

1
2x]

−λQtV
1
2
t −

1

2Qt
y2V

1
2
t +

y2V
1
2
t

Qt
= 0.

Differentiating with respect to Vt, dividing through out by
V
− 1

2
t and substituting into (4) gives the equilibrium equity

premium as

φ =
δ2

2
+ λE[(ex − 1)(1− e− 1

2x)].

APPENDIX D

Suppose now that this investor consumed quadratically
from the investment, that is

U(rt) = rt − ar2t , a > 0,

then
U ′(rt) = 1− 2art > 0,

U ′′(rt) = −2a < 0

implying U(rt) is a concave utility function by virtue of
U ′′(rt) being negative. The

RRA = −U
′′rt
U ′

=
2art

1− 2art
> 0

because 1− 2art > 0 and 2art > 0.
We solve for J(Vt, t) by conjecturing that

J(Vt, t) = Qt(Vt − aV 2
t )

= QtVt − aQtV 2
t

so that
JVt(Vt, t) = Qt − 2aQtVt

and
JVtVt(Vt, t) = −2aQt.

We then proceed to solve for the optimal consumption by
using the first order condition (2) as follows

yU ′(rt)− JVt = 0,

that is
yU ′(rt) = JVt .

Now, substituting U ′(rt) and JVt gives

y(1− 2art) = Qt − 2aQtVt

so that
y − 2arty = Qt − 2aQtVt

−2arty = Qt − 2aQtVt − y

which implies

2arty = −Qt + 2aQtVt + y

and therefore we have our optimal consumption result as

rt =
y −Qt + 2aQtVt

2ay

which is affected by both the time preference function y(t)
and Vt the total wealth at any time t.

Substituting into the integro-partial differencial equation
(5) gives

QtVt − aQtV 2
t + ρVtQt − 2aρQtV

2
t + δ2V 2

t aQt

−λVtE[(Qt − 2aQtVte
x)(ex − 1)]

+λE[QtVte
x − aQtV 2

t e
2x]− λQtVt

+λaQtV
2
t −Qtrt + 2aQtrtVt + yrt − yar2t = 0.

Substituting for rt and simplifying gives

QtVt − aQtV 2
t + ρVtQt − 2aρQtV

2
t + δ2V 2

t aQt

−λVtQtE[(ex − 1)] + 2aλV 2
t QtE[ex(ex − 1)]

+λQtVtE[ex]− λQtaV 2
t E[e2x]− λQtVt + λaQtV

2
t

−Qt
2a

+
Q2
t

2ay
− Q2

tVt
y

+QtVt −
Q2
tVt
y

+
2aQ2

tV
2
t

y
+

y

2a
− Qt

2a
+QtVt

− (y −Qt)2

4ay
− (y −Qt)QtVt

y
− aQ2

tV
2
t

y
= 0.

Differentiating with respect to Vt and adding together
common terms gives

Qt − 2aQtVt + ρQt − 4aρQtVt + 2δ2VtaQt
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−λQtE[(ex − 1)] + 4aλVtQtE[ex(ex − 1)]

+λQtE[ex]− 2λQtaVtE[e2x]− λQt + 2λaQtVt

−2Q2
t

y
+ 2Qt −

(y −Qt)Qt
y

+
2aQ2

tVt
y

= 0

and
Q(T ) = 0

as terminal conditions.
So substituting into (4) we have the desired equilibrium

equity premium formula

φ =
2aVtδ

2

1− 2aVt
+ λE[(ex − 1)(1− (1− 2aVte

x)

1− 2aVt
)].
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