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Abstract—In this paper, we consider a stochastic Gilpin-Ayala
model in polluted environments. Firstly, sufficient conditions
for extinction, non-persistence in the mean, weak persistence
and stochastic permanence of the species are established. The
threshold between extinction and weak persistence is obtained.
Then global attractivity of the model is studied. Finally, several
numerical figures are introduced to validate the results.

Index Terms—environmental pollution, stochastic noises, per-
manence, extinction.

I. INTRODUCTION

W ITH the rapid development of industries and agricul-
ture, many toxins are emitted into the environment.

These toxins have let lots of species go to extinction and let
many be on the verge of extinction. This motivates scholars
to investigate the effects of toxins on populations and to
establish theoretical persistence-extinction thresholds of the
species.

In recent years, many authors have investigated the effects
of toxins on species by using mathematical models. Hallam
and his colleagues did pioneering work in [1], [2], [3], where
the authors proposed some deterministic population models
with toxin effect and established the theoretical persistence-
extinction thresholds for their models. From then on, many
interesting and important population models with toxin effect
were proposed and analyzed. The authors in [4], [5], [6],
[7], [8], [9], [10], [11] considered single-species population
models in a polluted environment; The authors in [12], [13],
[14] investigated the effected of toxins on the persistence
and extinction of multi-species models; The studies [15],
[16] analyzed the population models with impulsive toxi-
cant input; Stage-structured population models in a polluted
environment were studied by [17], [18].

However, the growth of species in the natural world
is inevitably affected by environmental noises (May [19]).
Therefore several authors considered stochastic population
models in a polluted environment, see e.g. [20]-[26]. Espe-
cially, Liu and Wang [21] have investigated the following
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stochastic single-species model with toxin effect:



dx(t) = x(t)[r0 − r1C0(t)− ax(t)]dt+ σ1x(t)dB1(t)

dC0(t) = [kCe(t)− (g +m)C0(t)]dt

dCe(t) = [−hCe(t) + u(t)]dt
(1)

where x(t) is the size of the population; r0 > 0 stands for
the intrinsic growth rate of the population without toxicant;
r1 > 0 denotes the population response to the pollutant
present in the organism; C0(t) and Ce(t) represent the con-
centration of toxicant in the organism and in the environment,
respectively; B1(t) is a standard Brownian motion defined on
a complete probability space (Ω,F ,P); σ2

1 is the intensity of
the white noise; k > 0 stands for the organism’s net uptake
rate of toxicant from the environment; g > 0 and m > 0
represent the egestion and depuration rates of the toxicant in
the organism, respectively; h > 0 denotes the toxicant loss
rate from the environment by volatilization and so on; u(t)
is a non-negative bounded continuous function defined on
[0,+∞) representing the exogenous rate of input of toxicant
into the environment. Liu and Wang [21] have obtained the
persistence-extinction threshold and established the sufficient
conditions for stochastic permanence of the species.

Based on the study [21], some interesting and important
questions arise naturally:

(Q1) Model (1) is based on the classical Logistic equation.
Gilpin and Ayala [27] have pointed out that Logistic
equation has some limitations to describe the reality
in some cases and have proposed Gilpin-Ayala model.
Then what happens if the model in [21] is replaced by
Gilpin-Ayala model?

(Q2) Model (1) assumes that only the growth rate r0 is
affected by random noise. Then what happens if all
parameters are affected by random noise? In fact, May
[19] have pointed out that due to environmental noise,
the growth rate, competition rate and other parameters
in population models should be stochastic.

(Q3) The conditions of stochastic permanence in [21] are
too restricted, can we improve them?

(Q4) In the study of population models, global attractivity
of the solution is one of the most important topics.
Then, is the solution of the underlying model globally
attractive?

The aims of this paper are to study these problems. Suppose
that r1 and a in model (1) are also affected by random noises,
and then by Gilpin-Ayala model, we obtain the following
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stochastic single-species model with toxicant effect:

dx(t) = x(t)[r0 − r1C0(t)− axθ(t)]dt+ σ1x(t)dB1(t)
+ σ2C0(t)x(t)dB2(t) + σ3x

1+θ(t)dB3(t),

dC0(t) = [kCe(t)− (g +m)C0(t)]dt,

dCe(t) = [−hCe(t) + u(t)]dt,
(2)

where θ > 0 is a constant, B1(t), B2(t) and B3(t) are inde-
pendent standard Brownian motions defined on (Ω,F ,P). It
is easy to see that if θ = 1 and σ2 = σ3 = 0, then model
(2) becomes model (1).

In Section 2, we carry out the survival analysis for model
(2). Sufficient conditions for extinction, non-persistence in
the mean, weak persistence and stochastic permanence of
the species are established. The threshold between extinction
and weak persistence is obtained. The results in [21] are
improved and extended. In Section 3, we show that model
(2) is globally attractive. In Section 4, we extend these
results to a n−species model. In Section 5, some numerical
simulations are given to illustrate the main results. In the last
section, we give conclusions.

II. PERSISTENCE AND EXTINCTION

Both C0(t) and Ce(t) in model (2) are concentrations, so
we should give some conditions under which 0 ≤ C0(t) <
1, 0 ≤ Ce(t) < 1. In fact, we have

Lemma 1. ([21]) If 0 < k ≤ g+m, lim sup
t→+∞

u(t) ≤ h, then

0 ≤ C0(t) < 1, 0 ≤ Ce(t) < 1 for all t ≥ 0.

From now on, we always suppose that 0 < k ≤ g +
m, lim sup

t→+∞
u(t) ≤ h. Note that the last two equations in

model (2) are linear with respect to C0(t) and Ce(t), it is
easy to obtain their explicit solutions. So in the following
study, we need only to consider the first equation in model
(2), that is

dx(t) = x(t)[r0 − r1C0(t)− axθ(t)]dt+ σ1x(t)dB1(t)
+σ2C0(t)x(t)dB2(t) + σ3x

1+θ(t)dB3(t).
(3)

Note that x(t) in Eq.(3) represents the population size,
then x(t) should be nonnegative. So first of all, we must
show that for any given positive initial value, Eq. (3) has a
unique global positive solution.

Lemma 2. For any initial data x(0) = x0 > 0, Eq. (3) has
a unique global positive solution x(t) almost surely (a.s.).

Proof: The proof is similar to that of Theorem 4.1 in
[28] and hence is omitted.

Before we state and prove our main results, we recall some
important definitions.

Definition 1. (i) x(t) is said to go to extinction if
lim

t→+∞
x(t) = 0.

(ii) x(t) is said to be non-persistent in the mean if there is
a positive constant β such that

lim
t→+∞

t−1

∫ t

0

xβ(s)ds = 0.

(iii) x(t) is said to be weakly persistent ([4]) if

lim sup
t→+∞

x(t) > 0.

(iv) x(t) is said to be stochastically permanent ([29]), if
for every 0 < ε < 1, there are positive constants β
and M such that lim inf

t→+∞
P{x(t) ≥ β} ≥ 1 − ε and

lim inf
t→+∞

P{x(t) ≤ M} ≥ 1− ε.

Theorem 1. If lim sup
t→+∞

t−1
∫ t

0
b(s)ds < 0, then x(t) goes to

extinction a.s., where

b(t) = r0 − 0.5σ2
1 − r1C0(t)− 0.5σ2

2C
2
0 (t).

Proof: By Itô’s formula

ln[x(t)/x0] =

∫ t

0

[
b(s)− axθ(s)− 0.5σ2

3(s)x
2θ(s)

]
ds

+σ1B1(t) +M2(t) +M3(t),
(4)

where

M2(t) =

∫ t

0

σ2C0(s)dB2(s),M3(t) =

∫ t

0

σ3x
θ(s)dB3(s).

The quadratic variation of M2(t) is

⟨M2(t),M2(t)⟩ =
∫ t

0

σ2
2C

2
0 (s)ds ≤ σ2

2t.

It then follows from the strong law of large numbers for
martingales(see e.g., [30], P.16) that

lim
t→+∞

M2(t)/t = 0, a.s. (5)

The quadratic variation of M3(t) is

⟨M3,M3⟩ =
∫ t

0

σ2
3x

2θ(s)ds.

In view of the exponential martingale inequality,

P
{

sup
0≤t≤k

[
M3(t)−

1

2
⟨M3,M3⟩

]
> 2 ln k

}
≤ 1/k2.

An application of the Borel-Cantelli lemma (see e.g. [30],
P.10), for almost all ω ∈ Ω, there is a stochastic integer
k0 = k0(ω) such that for k ≥ k0,

sup
0≤t≤k

[
M3(t)−

1

2
⟨M3,M3⟩

]
≤ 2 ln k.

In other words, M3(t) ≤ 2 ln k + 0.5
∫ t

0
σ2
3x

2θ(s)ds for all
0 ≤ t ≤ k, k ≥ k0 almost surely. Substituting this inequality
into (4) gives

lnx(t)− lnx0

≤
∫ t

0

(b(s)− axθ(s))ds+ σ1B1(t) +M2(t) + 2 ln k

≤
∫ t

0

b(s)ds+ σ1B1(t) +M2(t) + 2 ln k

(6)
for all 0 ≤ t ≤ k, k ≥ k0 almost surely. Hence for 0 <
k − 1 ≤ t ≤ k, k ≥ k0, we have

t−1{lnx(t)− lnx0} ≤ t−1
∫ t

0
b(s)ds

+σ1B1(t)/t+M2(t)/t+ 2(k − 1)−1 ln k.

Then by (19) and lim
t→+∞

B1(t)/t = 0, we get

lim sup
t→+∞

t−1 lnx(t) ≤ lim sup
t→+∞

t−1
∫ t

0
b(s)ds < 0. Therefore

lim
t→+∞

x(t) = 0.
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Theorem 2. If lim sup
t→+∞

t−1
∫ t

0
b(s)ds = 0, then x(t) is non-

persistent in the mean a.s.

Proof: It is easy to see that for arbitrarily given ε > 0,
we can find a positive constant T1 such that

t−1

∫ t

0

b(s)ds < lim sup
t→+∞

t−1

∫ t

0

b(s)ds+ ε/2 = ε/4

for t > T1. Substituting this inequality into (6) gives

lnx(t)− lnx0

< εt/4− a

∫ t

0

xθ(s)ds+ σ1B1(t) +M2(t) + 2 ln k

for all T1 ≤ t ≤ k, k ≥ k0. Let t be sufficiently large such
that T1 ≤ T ≤ k − 1 ≤ t ≤ k, k ≥ k0 and

σ1B1(t)/t ≤ ε/4, (ln k)/t ≤ ε/8, M2(t)/t ≤ ε/4.

Consequently for T ≤ k − 1 ≤ t ≤ k and k ≥ k0,

lnx(t)− lnx0 ≤ εt− a

∫ t

0

xθ(s)ds.

Denote λ(t) =
∫ t

0
xθ(s)ds. Therefore,

θ−1 ln(dλ/dt) < εt− aλ(t) + ln x0.

Hence, eθaλ(t)(dλ/dt) < xθ
0e

θεt. In other words, we have
shown that

eθaλ(t) < eθaλ(T ) + xθ
0aε

−1eθεt − xθ
0aε

−1eθεT .

Taking the logarithm yields

λ(t) < (θa)−1 ln

{
xθ
0aε

−1eθεt + eθaλ(T ) − xθ
0aε

−1eθεT
}
.

Therefore,

lim sup
t→+∞

{
t−1

∫ t

0

xθ(s)ds

}
≤ lim sup

t→+∞
θ−1a−1

×
{
t−1 ln

{
xθ
0aε

−1eθεt + eθaλ(T ) − xθ
0aε

−1eθεT
}}

.

It then follows from the L’Hospital rule that

lim sup
t→+∞

{
t−1

∫ t

0

xθ(s)ds

}
≤ ε/a.

By the arbitrariness of ε that lim sup
t→+∞

t−1
∫ t

0
xθ(s)ds ≤ 0.

Note that x(t) ≥ 0, then lim
t→+∞

t−1
∫ t

0
xθ(s)ds = 0.

Theorem 3. If lim sup
t→+∞

t−1
∫ t

0
b(s)ds > 0, then x(t) is

weakly persistent a.s.

Proof: : To begin with, let us prove

lim sup
t→+∞

lnx(t)

ln t
≤ 1, a.s. (7)

In fact, by Itô’s formula,

d(et lnx) = et
[
lnx+ b(t)− axθ − 0.5σ2

3x
2θ

]
dt

+etσ1dB1(t) + etσ2C0(t)dB2(t) + etσ3x
θdB3(t).

Consequently,

et lnx(t)− lnx0

=

∫ t

0

es
[
lnx(s) + b(s)− axθ(s)− 0.5σ2

3x
2θ(s)

]
ds

+N1(t) +N2(t) +N3(t),
(8)

where

N1(t) =

∫ t

0

esσ1dB1(s), N2(t) =

∫ t

0

esσ2C0(s)dB2(s),

N3(t) =

∫ t

0

esσ3x
θ(s)dB3(s).

Let N(t) = N1(t)+N2(t)+N3(t). Note that N(t) is a local
martingale, whose quadratic variation is

⟨N,N⟩ =
∫ t

0

e2s[σ2
1 + σ2

2C
2
0 (s) + σ2

3x
2θ(s)]ds.

By the exponential martingale inequality,

P
{

sup
0≤t≤µk

[
N(t)− 0.5e−µk⟨N,N⟩

]
> ρeµk ln k

}
≤ k−ρ,

where ρ > 1 and µ > 0 is arbitrary. By virtue of the Borel-
Cantelli lemma, for almost all ω ∈ Ω, there is a k0(ω) such
that for every k ≥ k0(ω),

N(t) ≤ 0.5e−µk⟨N(t), N(t)⟩+ ρeµk ln k, 0 ≤ t ≤ µk.

When this inequality is used in (8), one can see that

et lnx(t)− lnx0

≤
∫ t

0

es
[
lnx(s) + b(s)− axθ(s)− 0.5σ2

3x
2θ(s)

]
ds

+0.5e−µk

∫ t

0

e2sσ2
1ds+ 0.5e−µk

∫ t

0

e2sσ2
2C

2
0 (s)ds

+0.5e−µk

∫ t

0

e2sσ2
3x

2θ(s)ds+ ρeµk ln k

=

∫ t

0

es
[
lnx(s) + 0.5es−µkσ2

1 + 0.5es−µkσ2
2C

2
0 (s)

+b(s)− axθ − 0.5σ2
3x

2θ[1− es−µk]

]
ds+ ρeµk ln k.

Note that for arbitrary 0 ≤ t ≤ µk and x > 0, there is a
constant C independent of k such that

lnx+ b(t) + 0.5et−µkσ2
1 + 0.5et−µkσ2

2C
2
0 (t)

− axθ − 0.5σ2
3x

2θ[1− et−µk] ≤ C.

That is to say, for arbitrary 0 ≤ t ≤ µk, we have

et lnx(t)− lnx0 ≤ C[et − 1] + ρeµk ln k.

Thus if µ(k − 1) ≤ t ≤ µk and k ≥ k0(ω), then

lnx(t)/ ln t ≤ e−t lnx0/ ln t+ C[1− e−t]/ ln t
+ρe−µ(k−1)eµk ln k/ ln t.

Letting k → +∞ yields lim sup
t→+∞

lnx(t)
ln t ≤ ρeµ. Letting ρ → 1

and µ → 0 gives the required assertion (21).
Now suppose that lim sup

t→+∞
b(t) > 0, we prove

lim sup
t→+∞

x(t) > 0 almost surely. If it is false, set F =

{lim sup
t→+∞

x(t) = 0}, and suppose that P(F ) > 0. By (4),

t−1 ln(x(t)/x0) = t−1
∫ t

0
b(s)ds− t−1

∫ t

0
axθ(s)ds

−0.5t−1

∫ t

0

σ2
3x

2θ(s)ds+ (σ1B1(t) +M2 +M3)/t.

(9)
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For arbitrary ω ∈ F , we have lim
t→+∞

x(t, ω) = 0, it then
follows from the law of large numbers for local martingales
that lim

t→+∞
M3(t)/t = 0. When this identity and (5) are

used in (9), one can observe that lim sup
t→+∞

[t−1 lnx(t, ω)] =

lim sup
t→+∞

t−1
∫ t

0
b(s)ds > 0. Hence P{lim sup

t→+∞
[t−1 lnx(t)] >

0} > 0, which is a contradiction with (7).
Remark 1. From Theorems 1, 2 and 3, one can observe

that lim sup
t→+∞

t−1
∫ t

0
b(s)ds is the threshold between weak

persistence and extinction of the species.
In the study of population system, permanence is one

of the most important topics. So let us now consider the
permanence of x(t).

Theorem 4. If lim inf
t→+∞

b(t) > 0 and 0 < θ ≤ 1, then x(t) is
stochastically permanent.

Proof: Define V1(x) = 1/x1+θ, where x > 0. By Itô’s
formula,

dV1(x(t)) = (1 + θ)V1(x)

[
− r0 + r1C0(t) + axθ

]
dt

+0.5(1 + θ)(2 + θ)σ2
1V1(x)dt

+0.5(1 + θ)(2 + θ)σ2
2C

2
0 (t)V1(x)dt

+0.5(1 + θ)(2 + θ)σ2
3x

θ−1dt
−(1 + θ)σ1V1(x)dB1(t)− (1 + θ)σ2V1(x)C0(t)dB2(t)
−(1 + θ)σ3x

−1dB3(t).

Since lim inf
t→+∞

b(t) > 0, we can let 0 < κ < 1 be sufficiently
small such that

lim inf
t→+∞

b(t) > 0.5κ(θ + 1)(σ2
1 + σ2

2). (10)

Define V2(x) = (1 + V1(x))
κ. By Itô’s formula, for suffi-

ciently large t,

dV2(x) = κ(1 + V1(x))
κ−2×{

(1 + V1(x))(1 + θ)

[
V1(x)

(
− r0 + r1C0(t) + axθ

)
+0.5(2 + θ)σ2

1V1(x) + 0.5(2 + θ)σ2
2C

2
0 (t)V1(x)

+0.5(2 + θ)σ2
3x

θ−1

]
+ 0.5(κ− 1)(1 + θ)2

×
{
σ2
1V

2
1 (x) + σ2

2C
2
0 (t)V

2
1 (x) + σ2

3x
−2

}}
dt

−κ(1 + V1(x))
κ−1(1 + θ)

[
σ1V1(x)dB1(t)

+σ2C0(t)V1(x)dB2(t) + σ3x
−1dB3(t)

]
≤ κ(1 + θ)(1 + V1(x))

κ−2×{
−
[
lim inf
t→+∞

b(t)− ε− 0.5κ(θ + 1)(σ2
1 + σ2

2)

]
V 2
1 (x)

−
[
r0 − r1 − 0.5(2 + θ)(σ2

1 + σ2
2)

]
V1(x)

+a(V1(x) + 1)x−1 + (1 + 0.5θ)σ2
3(x

θ−1 + x−2)

}
dt

−κ(1 + V1(x))
κ−1(1 + θ)

[
σ1V1(x)dB1(t)

+σ2C0(t)V1(x)dB2(t) + σ3x
−1dB3(t)

]
,

where ε is sufficiently small satisfying

lim inf
t→+∞

b(t)− 0.5κ(θ + 1)(σ2
1 + σ2

2) > ε.

In the proof of the last inequality, we have used the facts
that C0(t) ≤ 1 and κ < 1. Let η > 0 be sufficiently small
such that

0 <
η

κ(1 + θ)
< lim inf

t→+∞
b(t)− 0.5κ(θ + 1)(σ2

1 + σ2
2)− ε.

Define V3(x) = eηtV2(x). By Itô’s formula, for sufficiently
large t,

dV3(x(t)) = ηeηtV2(x)dt+ eηtdV2(x)

≤ (1 + θ)κeηt(1 + V1(x))
κ−2

{
η(1 + V1(x))

2

κ(1 + θ)

−
[
lim inf
t→+∞

b(t)− ε− 0.5κ(θ + 1)(σ2
1 + σ2

2)

]
V 2
1 (x)

−
[
r0 − r1 − 0.5(2 + θ)(σ2

1 + σ2
2)

]
V1(x)

+a(V1(x) + 1)x−1 + (1 + 0.5θ)σ2
3(x

θ−1 + x−2)

}
dt

−eηtκ(1 + V1(x))
κ−1(1 + θ)

[
σ1V1(x)dB1(t)

+σ2C0(t)V1(x)dB2(t) + σ3x
−1dB3(t)

]
= eηtJ(x)dt− eηtκ(1 + V1(x))

κ−1(1 + θ)

[
(σ1dB1(t) + σ2C0(t)dB2(t))V1(x) + σ3x

−1dB3(t)

]
where

J(x) = (1 + θ)κ(1 + V1(x))
κ−2

{
−
[
lim inf
t→+∞

b(t)

−ε− 0.5κ(θ + 1)(σ2
1 + σ2

2)−
η

κ(1 + θ)

]
V 2
1 (x)

−
[
r0 − r1 − 0.5(2 + θ)(σ2

1 + σ2
2)−

2η

κ(1 + θ)

]
V1(x)

+aV1(x)x
−1 +

η

κ(1 + θ)
+ ax−1

+(1 + 0.5θ)σ2
3(x

θ−1 + x−2)

}
.

(11)
Now we are in the position to prove if 0 < θ ≤ 1, then J(x)
is upper bounded in R+. Let

K = min

{
1,

(
K1

4a

)−θ

,

(
K1

6σ2
3

)−2θ}
,

where

K1 = lim inf
t→+∞

b(t)−ε−0.5κ(θ+1)(σ2
1 +σ2

2)−η/[κ(1+θ)].

(a) If x ≥ K, then by the definition of V1(x), J(x) is
upper bounded, that is to say, there is a constant J1 > 0
such that sup

x≥K
J(x) < J1.

(b) If x < K, then by 0 < x < 1 and 0 < θ ≤ 1, one can
obtain that

xθ−1 = x2θx−θ−1 ≤ V1(x). (12)

On the other hand, by x <

(
K1

4a

)−θ

, we get

−0.25K1V
2
1 (x) + aV1(x)x

−1 < 0. (13)

In the same way, by x <

(
K1

6σ2
3

)−2θ

one can show that

−0.25K1V
2
1 (x) + (1 + 0.5θ)σ2

3x
−2 < 0. (14)
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When (12),(13) and (14) are used in (11), we derive that

J(x) ≤ (1 + θ)κ(1 + V1(x))
κ−2

{
− 0.5K1V

2
1 (x)

+
η

κ(1 + θ)
−

[
r0 − r1 − 0.5(2 + θ)(σ2

1 + σ2
2)

− 2η

κ(1 + θ)
− (1 + 0.5θ)σ2

3 − a

]
V1(x)

}
.

Hence if x < K, there is a positive constant J2 such that
supx<K J(x) < J2. Therefore, J(x) is upper bounded in
R+, i.e., J3 := supx∈R+

J(x) < +∞. Consequently, for
sufficiently large t,

dV3(x(t)) ≤ J3e
ηtdt

−eηtκ(1 + V1(x))
κ−1(1 + θ)

[
σ1V1(x)dB1(t)

+σ2C0(t)V1(x)dB2(t) + σ3x
−1dB3(t)

]
.

That is to say

E
[
eηt

(
1+ V1(x)

)κ]
≤

(
1+ V1(x0)

)κ

+ J3

(
eηt − 1

)
/η.

Hence

lim sup
t→+∞

E
[
V κ
1 (x(t))

]
≤ J3/η. (15)

Therefore

lim sup
t→+∞

E
[
x−κ−κθ(t)

]
≤ J3/η =: J4.

For arbitrary ε > 0, let β = (ε/J4)
−κ−κθ. It then follows

from Chebyshev’s inequality that

P
{
x−κ−κθ(t) > β−κ−κθ

}
≤ E[x−κ−κθ(t)]

β−κ−κθ
.

In other words, lim sup
t→+∞

P{x(t) < β} ≤ βκ+κθJ4 = ε.

Therefore, lim inf
t→+∞

P{x(t) ≥ β} ≥ 1− ε.

To complete the proof, it suffices to show that for arbitrary
given ε > 0, there exists a constant M > 0 such that
lim inf
t→+∞

P(x(t) ≤ M) ≥ 1 − ε. The proof is similar to that

of [31] (Lemma 3.2). Define V (x) = xq , where x ∈ R+,
0 < q ≤ 1. By Itô’s formula

d(etV (x)) = etV (x)dt+ etdV (x)

= etxq

{
1 + q

[
r0 − 0.5(1− q)(σ2

1 + σ2
2C

2
0 (t))

−r1C0(t)− axθ − 0.5(1− q)σ2
3x

2θ

]}
dt

+etqxq

[
σ1dB1(t) + σ2C0(t)dB2(t) + σ3x

θdB3(t)

]
≤ etK2dt

+etqxq

[
σ1dB1(t) + σ2C0(t)dB2(t) + σ3x

θdB3(t)

]
,

where K2 is a positive constant. Hence

E[etxq(t)]− xq
0 ≤ E

∫ t

0

esK2ds ≤ K2(e
t − 1),

That is to say

lim sup
t→+∞

E[xq(t)] ≤ K2. (16)

Then the desired assertion follows from Chebyshev’s
inequality.

Remark 2. Liu and Wang [21] have studied model (1) and
have shown that

(i) If lim sup
t→+∞

t−1
∫ t

0
b1(s)ds < 0, then the species, x(t),

represented by model (1), goes to extinction, where
b1(t) = r0 − 0.5σ2

1 − r1C0(t).
(ii) If lim sup

t→+∞
t−1

∫ t

0
b1(s)ds > 0, then the species, x(t),

represented by (1) is weakly persistence a.s.;
(iii) If lim inf

t→+∞
b2(t) > 0, then x(t) is stochastic permanent,

where b2(t) = r0 − σ2
1 − r1C0(t).

As said above, model (1) is a special case of our model
(2). Therefore our Theorems 1 and 3 extends the results (i)
and (ii), respectively. On the other hand, note that b2(t) =
b(t) + 0.5σ2

1 ≥ b(t), Thus our conditions of Theorem 4 are
much weaker than that of (iii).

III. GLOBAL ATTRACTIVITY.
In the previous section, we have studied the persistence

and extinction of the population. Now let us consider the
global attractivity of the positive solution of Eq. (3). Before
we state and prove our main result of this section, let us give
the definition of global attractivity and recall an important
lemma.

Definition 2. Let x(t), y(t) be two arbitrary solutions of
Eq. (3) with initial values x0 > 0, y0 > 0 respectively. If
lim

t→+∞
E|x(t)− y(t)| = 0, then we say model (3) is globally

attractive.

Lemma 3. ([32]) If f is a non-negative, integrable, and
uniformly continuous function defined on R+ = [0,∞), then
lim

t→+∞
f(t) = 0.

Theorem 5. If lim inf
t→+∞

b(t) > 0 and 0 < θ ≤ 1, then model
(3) is globally attractive.

Proof: Define V (t) = | lnx(t)− ln y(t)|. It then follows
from Itô’s formula that

d+V (t) = sgn
(
x(t)− y(t)

)
d(lnx(t)− ln y(t))

= −a

∣∣∣∣xθ(t)− yθ(t)

∣∣∣∣dt− 1
2σ

2
3

∣∣∣∣x2θ(t)− y2θ(t))

∣∣∣∣dt
+ σ3

∣∣∣∣xθ(t)− yθ(t)

∣∣∣∣dB3(t)

≤ −a

∣∣∣∣xθ(t)− yθ(t)

∣∣∣∣dt+ σ2

∣∣∣∣xθ(t)− yθ(t)

∣∣∣∣dB3(t).

Integrating and then taking the expectation, we have

E(V (t)) ≤ E(V (0))− a

∫ t

0

E
∣∣∣∣xθ(s)− yθ(s)

∣∣∣∣ds.
Consequently,

E(V (t)) + a

∫ t

0

E
∣∣∣∣xθ(s)− yθ(s)

∣∣∣∣ds ≤ E(V (0)) < ∞.

Note that V (t) ≥ 0, hence E|xθ(t)− yθ(t)| ∈ L1[0,∞).
By (3),

E(xθ(t)) = x0 + θ

∫ t

0

xθ(s)

[
r0 − r1C0(s)− a

−0.5(1− θ)(σ2
1 + σ2

2C
2
0 (s))− 0.5(1− θ)σ2

3x
θ

]
ds,
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Consequently, E(xθ(t)) is continuously differentiable with
respect to t. On the other hand, in view of (16),

dE(xθ(t))

dt
≤ r0E(xθ(t)) ≤ K3,

where K3 is a positive constant. Therefore, E(xθ(t)) is uni-
formly continuous. By Lemma 3, lim

t→+∞
E|xθ(t)−yθ(t)| = 0.

Note that model (3) is permanent, hence lim
t→+∞

E|x(t) −
y(t)| = 0.

IV. GENERALIZATION.
In the above sections, we have investigated some dynamics

of model (3). As matter of fact, some results can be extended
to the multi-dimensional cases. Consider the following n-
species model:

dxi(t) = xi(t)

(
ri0 − ri1C0(t)−

n∑
j=1

aijx
θij
ij (t)

)
dt

+σi1xi(t)dBi1(t) + σi2C0(t)xi(t)dBi2(t)

+
n∑

j=1

σij3xi(t)x
θij
ij (t)dBij3(t), i = 1, 2, ..., n.

(17)
where aij > 0, θij > 0; Bi1(t), Bi2(t) and Bij3(t) are in-
dependent standard Brownian motions defined on (Ω,F ,P),
1 ≤ i, j ≤ n.

Theorem 6. If lim sup
t→+∞

t−1
∫ t

0
bi(s)ds < 0, then the species,

xi(t), modeled by (17), goes to extinction a.s., i = 1, ..., n,
where bi(t) = ri0 − 1

2σ
2
i1 − ri1C0(t)− 1

2σ
2
i2C

2
0 (t).

Proof: By Itô’s formula

ln[xi(t)/xi0] =

∫ t

0

[
bi(s)−

n∑
j=1

aijx
θij
j (s)

−1

2

n∑
j=1

σ2
ij3(s)x

2θij
j (s)

]
ds

+σi1Bi1(t) +Mi2(t) +
n∑

j=1

Mij3(t),

(18)

where Mi2(t) =
∫ t

0
σi2C0(s)dBi2(s), Mij3(t) =∫ t

0
σij3x

θij
j (s)dBij3(s). The quadratic variation of Mi2(t)

is

⟨Mi2(t),Mi2(t)⟩ =
∫ t

0

σ2
i2C

2
0 (s)ds ≤ σ2

i2t.

By the strong law of large numbers for martingales,

lim
t→+∞

Mi2(t)/t = 0, a.s. (19)

The quadratic variation of Mij3(t) is

⟨Mij3,Mij3⟩ =
∫ t

0

σ2
ij3x

2θij
j (s)ds.

By virtue of the exponential martingale inequality,

P
{

sup
0≤t≤k

[
Mij3(t)−

1

2
⟨Mij3,Mij3⟩

]
> 2 ln k

}
≤ 1/k2.

It then follows from the Borel-Cantelli lemma that, for almost
all ω ∈ Ω, there is a stochastic integer k0 = k0(ω) such that
for k ≥ k0,

sup
0≤t≤k

[
Mij3(t)−

1

2
⟨Mij3(t),Mij3(t)⟩

]
≤ 2 ln k.

That is to say, Mij3(t) ≤ 2 ln k + 0.5
∫ t

0
σ2
ij3x

2θij (s)ds for
all 0 ≤ t ≤ k, k ≥ k0 almost surely. When this inequality
is used in (18), we have

lnxi(t)− lnxi0

≤
∫ t

0

bi(s)ds−
n∑

j=1

∫ t

0

aijx
θij
j (s)ds

+σi1Bi1(t) +Mi2(t) + 2n2 ln k

≤
∫ t

0

bi(s)ds+ σi1Bi1(t) +Mi2(t) + 2n2 ln k

(20)

for all 0 ≤ t ≤ k, k ≥ k0 almost surely. The following proof
is similar to that of Theorem 1 and hence is omitted.

Theorem 7. If lim sup
t→+∞

t−1
∫ t

0
bi(s)ds = 0, then xi(t) is

non-persistent in the mean a.s.

Proof: By (20), for arbitrarily given ε > 0, there is
a positive constant T such that for T ≤ k − 1 ≤ t ≤ k
and k ≥ k0, lnxi(t) − lnxi0 ≤ εt − aii

∫ t

0
xθii
i (s)ds. The

following proof is a slight modification of that in Theorem
2 and hence is omitted.

Theorem 8. The solution of model (17) obeys

lim sup
t→+∞

ln
∑n

i=1 xi(t)

ln t
≤ 1, a.s. (21)

Proof: Define W (x) =
∑n

i=1 xi. By Itô’s formula,

et ln
n∑

i=1

xi(t)− ln
n∑

i=1

xi(0)

=

∫ t

0

es
[
lnW (x(s)) +

1

W (x(s))

n∑
i=1

xi(s)

×
(
ri0 − ri1C0(s)−

n∑
j=1

aijx
θij
ij (s)

)]
ds

−
∫ t

0

es

2W (x(s))

n∑
i=1

[
σ2
i1 + σ2

i2C0(s)

]
x2
i (s)ds

−
∫ t

0

es

2W (x(s))

n∑
i=1

n∑
j=1

x2
i (s)x

2θij
j (s)

+
n∑

i=1

Ni1(t) +
n∑

i=1

Ni2(t) +
n∑

i=1

n∑
j=1

Nij3(t),

where

Ni1(t) =

∫ t

0

es

W (x(s))
σi1xi(s)dBi1(s),

Ni2(t) =

∫ t

0

es

W (x(s))
σi2xi(s)C0(s)dBi2(s),

Nij3(t) =

∫ t

0

es
es

W (x(s))
σij3xi(s)x

θij
j (s)dBij3(s).

Denote N(t) =
∑n

i=1(Ni1(t) + Ni2(t) +
∑n

j=1 Nij3(t)).
The following proof is similar to that of Theorem 3 by using
the exponential martingale inequality and the Borel-Cantelli
lemma and hence is omitted.

Theorem 9. If min1≤i≤n{lim inf
t→+∞

bi(t)} > 0, and 0 < θij ≤
1 for all 1 ≤ i, j ≤ n, then model (17) is stochastically
permanent, i.e., for every 0 < ε < 1, there are positive
constants β and M such that lim inf

t→+∞
P{|x(t)| ≥ β} ≥ 1 −

ε, lim inf
t→+∞

P{|x(t)| ≤ M} ≥ 1− ε.
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Proof: (i) Define V1(x) = 1/
∑n

i=1 xi, xi > 0. By
Itô’s formula,

dV1(x)

=

[
− V 2

1 (x)

n∑
i=1

xi

(
ri0 − ri1C0(t)−

n∑
j=1

aijx
θij
ij

)
+V 3

1 (x)

n∑
i=1

σ2
i1x

2
i + V 3

1 (x)

n∑
i=1

σ2
i2C

2
0 (t)x

2
i

+V 3
1 (x)

n∑
i=1

n∑
j=1

σ2
ij3x

2
ix

2θij
j

]
dt

−V 2
1 (x)

n∑
i=1

(
σi1dBi1(t) + σi2C0(t)dBi2(t)

)
xi

−V 2
1 (x)

n∑
i=1

n∑
j=1

σij3xi(t)x
θij
ij dBij3(t).

Since min1≤i≤n{lim inf
t→+∞

bi(t)} > 0, we can let 0 < κ < 1

be sufficiently small such that

min
1≤i≤n

{lim inf
t→+∞

bi(t)} >
κ

2
max
1≤i≤n

(σ2
i1 + σ2

i2). (22)

Define V2(x) = (1 + V1(x))
κ. By Itô’s formula,

dV2(x) = κ(1 + V1(x))
κ−2

{
− (1 + V1(x))V

2
1 (x)

×
n∑

i=1

xi

(
ri0 − ri1C0(t)−

n∑
j=1

aijx
θij
ij

)
+V 3

1 (x)
n∑

i=1

(
σ2
i1 + σ2

i2C
2
0 (t) +

n∑
j=1

σ2
ij3x

2θj
j

)
x2
i

+
κ+ 1

2
V 4
1 (x)

n∑
i=1

(
σ2
i1 + σ2

i2C
2
0 (t)

)
x2
i

+
κ+ 1

2
V 4
1 (x)

n∑
i=1

n∑
j=1

σ2
ij3x

2
ix

2θij
j

}
dt

−κ(1 + V1(x))
κ−1V 2

1 (x)
n∑

i=1

(
σi1dBi1(t)

+σi2C0(t)xidBi2(t) +
n∑

j=1

σij3x
θij
j dBij3(t)

)
xi

≤ κ(1 + V1(x))
κ−2

{
− V 2

1 (x)

×
(

min
1≤i≤n

{lim inf
t→+∞

bi(t)} −
κ

2
max
1≤i≤n

(σ2
i1 + σ2

i2)

)
+V1(x)

(
max
1≤i≤n

ri1 + max
1≤i≤n

(σ2
i1 + σ2

i2)

)
+(1 + V1(x))V

2
1 (x) max

1≤i,j≤n
aij

n∑
i=1

n∑
j=1

xix
θij
j

+V 3
1 (x) max

1≤i,j≤n
σ2
ij3

n∑
i=1

n∑
j=1

x2
ix

2θij
j

+V 4
1 (x) max

1≤i,j≤n
σ2
ij3

n∑
i=1

n∑
j=1

x2
ix

2θij
j

}
dt

−κ(1 + V1(x))
κ−1V 2

1 (x)
n∑

i=1

(
σi1dBi1(t)

+σi2C0(t)xidBi2(t) +

n∑
j=1

σij3x
θij
j dBij3(t)

)
xi

Let η > 0 be sufficiently small such that
η

κ(1 + θ)
< lim inf

t→+∞
b(t)− 0.5κ(θ + 1)(σ2

1 + σ2
2)− ε.

Define
V3(x) = eηtV2(x).

By Itô’s formula, for sufficiently large t,

dV3(x(t)) = ηeηtV2(x)dt+ eηtdV2(x)

≤ κeηt(1 + V1(x))
κ−2

{
−
(

min
1≤i≤n

{lim inf
t→+∞

bi(t)}

−η

κ
− κ

2
max
1≤i≤n

(σ2
i1 + σ2

i2)

)
V 2
1 (x)

+V1(x)

(
2η

κ
+ max

1≤i≤n
ri1 + max

1≤i≤n
(σ2

i1 + σ2
i2)

)
+(1 + V1(x))V

2
1 (x) max

1≤i,j≤n
aij

n∑
i=1

n∑
j=1

xix
θij
j

+V 3
1 (x) max

1≤i,j≤n
σ2
ij3

n∑
i=1

n∑
j=1

x2
ix

2θij
j

+V 4
1 (x) max

1≤i,j≤n
σ2
ij3

n∑
i=1

n∑
j=1

x2
ix

2θij
j

}
dt

−κeηt(1 + V1(x))
κ−1V 2

1 (x)

×
n∑

i=1

{
σi1dBi1(t) + σi2C0(t)dBi2(t)

+

n∑
j=1

σij3x
θij
j (t)dBij3(t)

}
xi(t)

Denote

J(x) = κ(1 + V1(x))
κ−2

{
−
(

min
1≤i≤n

{lim inf
t→+∞

bi(t)}

−η

κ
− κ

2
max
1≤i≤n

(σ2
i1 + σ2

i2)

)
V 2
1 (x)

+V1(x)

(
2η

κ
+ max

1≤i≤n
ri1 + max

1≤i≤n
(σ2

i1 + σ2
i2)

)
+(1 + V1(x))V

2
1 (x) max

1≤i,j≤n
aij

n∑
i=1

n∑
j=1

xix
θij
j

+V 3
1 (x) max

1≤i,j≤n
σ2
ij3

n∑
i=1

n∑
j=1

x2
ix

2θij
j

+V 4
1 (x) max

1≤i,j≤n
σ2
ij3

n∑
i=1

n∑
j=1

x2
ix

2θij
j

}
.

Then similar to the proof of Theorem 4 we can show that
J(x) is upper bounded in Rn

+, i.e., J3 := supx∈R+
J(x) <

+∞. Consequently, for sufficiently large t,

dV3(x(t)) ≤ J3e
ηtdt− κeηt(1 + V1(x))

κ−1V 2
1 (x)

×
n∑

i=1

{
σi1dBi1(t) + σi2C0(t)dBi2(t)

+
n∑

j=1

σij3x
θij
j (t)dBij3(t)

}
xi(t).

The following proof is similar to that of Theorem 4 and
hence is omitted.

The following proof is similar to that of Theorem 4 by
applying Itô’s formula to V (x) =

∑n
i=1 x

q , where x > 0,
0 < q ≤ 1, and hence is omitted.

V. NUMERICAL SIMULATIONS

In this section, we introduce some numerical figures to
illustrate our main results. To begin with, let us consider
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model (3). For the sake of simplicity, we choose θ = 1.
Then Eq. (3) becomes

dx(t) = x(t)[r0 − r1C0(t)− ax(t)]dt+ σ1x(t)dB1(t)
+ σ2C0(t)x(t)dB2(t) + σ3x

2(t)dB3(t).
(23)

By virtue of the Milstein methods given in [33] (see also
[34]), consider the discretization equation of Eq. (23):

xk+1 = xk + xk

[
r0 − r1C0(k∆t)− axk

]
∆t

+σ1xk

√
∆tξk + σ2C0(k∆t)xk

√
∆tγk + σ3x

2
k

√
∆tηk

+0.5σ1xk(ξ
2
k − 1)

√
∆t+ 0.5σ2C0(k∆t)xk(γ

2
k − 1)

√
∆t

+0.5σ3x
2
k(η

2
k − 1)

√
∆t,

where ξk, γk and ηk, k = 1, 2, ..., n, are Gaussian random
variables.
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Fig. 1: Solution of Eq.(23). (a) shows that the population goes
to extinction (σ1 = 0.65); (b) shows that the population is
non-persistent in the mean (σ1 =

√
0.4); (c) shows that the

population is weakly persistent (σ1 = 0.6); (d) indicates that
the population is stochastically permanent (σ1 = 0.5).

In Fig.1, we choose r0 = 0.32, r1 = 0.5, C0(t) =
0.2 + 0.05 sin t, a = 0.1, σ2 = σ3 = 1. The only
difference between conditions of Fig.1(a), Fig.1(b), Fig.1(c)
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Fig. 1: (Continued)
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Fig. 2: Plot of two solution trajectories for Eq.(23) with two
sets of initial conditions x0 = 0.8 and y0 = 0.6. This figure
shows that model (23) is globally attractive.
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Fig. 3: Solution of Eq.(17). (a) shows that all the populations
go to extinction (r10 = 0.08 and r20 = 0.12); (b) shows
that Eq.(17) is stochastic permanent (r10 = 0.11 and r20 =
0.153).

and Fig.1(d) is that the value of σ1 is different. In Fig.1(a),
we let σ1 = 0.65. Hence

lim sup
t→+∞

t−1

∫ t

0

b(s)ds = −0.01 < 0.

In view of Theorem 1, x(t) goes to extinction. Fig.1(a)
confirms this. In Fig.1(b), we let σ1 =

√
0.4. Therefore,

lim inf
t→+∞

b(t) = 0. It then follows from Theorem 2 that x(t)
is non-persistent in the mean. See Fig.1(b). In Fig.1(c), we
choose σ1 = 0.6. Thus lim sup

t→+∞
t−1

∫ t

0
b(s)ds = 0.04 > 0.

According to Theorem 3, x(t) is weakly persistent, Fig.1(c)
confirms this. In Fig.1(d), we let σ1 = 0.5. Therefore,
lim inf
t→+∞

b(t) = 0.025. It then follows from Theorem 4 that

x(t) is stochastic permanent. See Fig.1(d).
In Fig.2, the parameters are same with that in Fig.1(d).

Then by Theorem 5, model (3) is globally attractive. Fig.2
confirms this.

Now let us turn to model (17). For the sake of simplicity,
we choose n = 2 and θij = 1. In Fig.3, we choose r11 =

r21 = 0.5, C0(t) = 0.2, a11 = 0.4, a12 = 0.2, a21 = 0.3,
a22 = 0.4, σ11 = 0.4, σ21 = 0.5, σ113 = σ123 = 0.8,
σ21 = 0.5, σ22 = 0.5, σ213 = σ223 = 0.9. The only
difference between conditions of Fig.3(a) and Fig.3(b) is that
the values of r10 and r20 are different. In Fig.3(a), we choose
r10 = 0.08 and r20 = 0.12. Hence

lim sup
t→+∞

t−1

∫ t

0

b1(s)ds = −0.005 < 0,

lim sup
t→+∞

t−1

∫ t

0

b2(s)ds = −0.01 < 0.

By Theorem 6, both x1 and x2 go to extinction. See Fig.3(a).
In Fig.3(b), we let r10 = 0.11 and r20 = 0.153. Therefore,

lim inf
t→+∞

b1(t) = 0.025, lim inf
t→+∞

b2(t) = 0.023.

By Theorem 9, model (17) is stochastic permanent. See
Fig.3(b).

VI. CONCLUSION

In this paper, under the assumptions that all the coefficients
are affected by white noise, we have proposed and investigat-
ed a stochastic single-species Gilpin-Ayala population model
in a polluted environment. We have established the sufficient
conditions for extinction, non-persistence in the mean, weak
persistence and stochastic permanence of the population. The
critical value between weak persistence and extinction have
been obtained. We have also demonstrated that the solution
of the model is globally attractive. Some recent results have
been extended and improved.

Our results indicate that a different type of environmental
noise has a different effect on the persistence and extinction
of the species (see Remark 1). By the definition of b(t),
the white noise σ1Ḃ1(t) is unfavorable for the persistence
of the population, the white noise σ2Ḃ2(t) has no impact
on the persistence or extinction of the population, the white
noise σ3Ḃ3(t) is also unfavorable for the persistence of the
population.

Our Theorems 1-4 have some important and interesting bi-
ological meanings. From Theorems 1 and 3 one can observe
that persistence and extinction of the population x(t) depend
only on the growth rate r0, the power of the white noises
σ2
1 and σ2

3 , the dose-response parameter of the population to
the organismal toxicant concentration r1, the concentration
of toxicant in the organism C0(t), but are independent of
initial population size x0, the parameters θ and a, as well as
the power of the white noise σ2

2 . So in order to conserve a
species, one has the following ways.

(i) To reduce the values of σ2
1 and σ2

3 .
(ii) To reduce the concentration of toxicant in the organism

(i.e., to reduce the pollutant output u(t)).
However, one could not conserve a population by influencing
σ2
2 and θ.
Some interesting topics deserve further investigation. In

Theorem 4 and Theorem 5, our conditions have some lim-
itations on θ. It is of interest to consider whether these
limitations can be dropped. It is also interesting to investigate
other multi-species population models (see e.g. [35], [36],
[37], [38]).
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